Ako ďaleko môže človek počuť? Psychoakustika a črty vnímania

Často hodnotíme kvalitu zvuku. Pri výbere mikrofónu, programu na spracovanie zvuku alebo formátu nahrávania zvukových súborov jeden z najviac dôležité otázky- ako dobre to bude znieť. Existujú však rozdiely medzi charakteristikami zvuku, ktoré možno merať, a tými, ktoré možno počuť.

Tón, timbre, oktáva.

Mozog vníma zvuky určitých frekvencií. Je to spôsobené zvláštnosťami mechanizmu vnútorného ucha. Receptory umiestnené na hlavnej membráne vnútorné ucho premieňajú zvukové vibrácie na elektrické potenciály, ktoré vzrušujú vlákna sluchového nervu. Vlákna sluchového nervu majú frekvenčnú selektivitu v dôsledku excitácie buniek Cortiho orgánu umiestneného v rôzne miesta hlavná membrána: vysoké frekvencie sú vnímané v blízkosti oválneho okna, nízke - v hornej časti špirály.

S fyzikálnou charakteristikou zvuku, frekvenciou, úzko súvisí výška, ktorú cítime. Frekvencia sa meria ako číslo plné cykly sínusová vlna za jednu sekundu (hertz, Hz). Táto definícia frekvencie je založená na skutočnosti, že sínusová vlna má presne rovnaký priebeh. V reálnom živote má túto vlastnosť veľmi málo zvukov. Akýkoľvek zvuk však môže byť reprezentovaný súborom sínusových kmitov. Takéto nastavenie zvyčajne nazývame tónom. To znamená, že tón je signál určitej výšky, ktorý má diskrétne spektrum (hudobné zvuky, samohlásky reči), v ktorých sa rozlišuje frekvencia sínusovej vlny, ktorá má v tomto súbore maximálnu amplitúdu. Signál, ktorý má široké spojité spektrum, ktorého všetky frekvenčné zložky majú rovnakú priemernú intenzitu, sa nazýva biely šum.

Postupné zvyšovanie frekvencie zvukových vibrácií je vnímané ako postupná zmena tónu od najnižšieho (basového) k najvyššiemu.

Miera presnosti, s akou človek určuje výšku zvuku podľa ucha, závisí od ostrosti a tréningu jeho ucha. Ľudské ucho dokáže dobre rozlíšiť dva tóny, ktoré sú si vo výške blízke. Napríklad vo frekvenčnej oblasti približne 2000 Hz môže človek rozlíšiť dva tóny, ktoré sa od seba líšia frekvenciou o 3-6 Hz alebo ešte menej.

Frekvenčné spektrum hudobného nástroja alebo hlasu obsahuje postupnosť rovnomerne rozložených vrcholov – harmonických. Zodpovedajú frekvenciám, ktoré sú násobkami nejakej základnej frekvencie, najintenzívnejšej zo sínusových vĺn, ktoré tvoria zvuk.

Špeciálny zvuk (timbre) hudobného nástroja (hlasu) je spojený s relatívnou amplitúdou rôznych harmonických a výška tónu vnímaná osobou najpresnejšie vyjadruje základnú frekvenciu. Zafarbenie, ktoré je subjektívnym odrazom vnímaného zvuku, nemá kvantitatívne hodnotenie a je charakterizované iba kvalitatívne.

V „čistom“ tóne je len jedna frekvencia. Vnímaný zvuk sa zvyčajne skladá z frekvencie základného tónu a niekoľkých „nečistých" frekvencií, ktoré sa nazývajú podtóny. Podtóny sú násobkom frekvencie základného tónu a sú menšie ako jeho amplitúda. Zafarbenie zvuku závisí od intenzity distribúcia cez podtóny. Spektrum kombinácie hudobných zvukov, nazývané akord, sa ukazuje ako zložitejšie. V takomto spektre je niekoľko základných frekvencií spolu so sprievodnými podtónmi.

Ak je frekvencia jedného zvuku presne dvojnásobkom frekvencie iného, ​​zvuková vlna „zapadne“ jeden do druhého. Frekvenčná vzdialenosť medzi takýmito zvukmi sa nazýva oktáva. Frekvenčný rozsah vnímaný človekom, 16-20 000 Hz, pokrýva približne desať až jedenásť oktáv.

Amplitúda zvukových vibrácií a hlasitosť.

Počuteľná časť rozsahu zvukov je rozdelená na nízkofrekvenčné zvuky - do 500 Hz, stredofrekvenčné zvuky - 500-10 000 Hz a vysokofrekvenčné zvuky - nad 10 000 hertzov. Ucho je najcitlivejšie na relatívne úzky rozsah zvukov strednej frekvencie od 1000 do 4000 Hz. To znamená, že zvuky rovnakej sily v strednom frekvenčnom rozsahu môžu byť vnímané ako hlasné a v nízkofrekvenčnom alebo vysokofrekvenčnom rozsahu - ako tiché alebo vôbec nepočuteľné. Táto vlastnosť vnímania zvuku je spôsobená tým, že zvuková informácia potrebná pre existenciu človeka – reč alebo zvuky prírody – sa prenáša hlavne v strednom frekvenčnom rozsahu. Hlasitosť teda nie je fyzikálny parameter, ale intenzita sluchového vnemu, subjektívna charakteristika zvuku spojená so zvláštnosťami nášho vnímania.

Sluchový analyzátor vníma zvýšenie amplitúdy zvukovej vlny v dôsledku zvýšenia amplitúdy vibrácií hlavnej membrány vnútorného ucha a stimulácie zvyšujúceho sa počtu vláskových buniek prenosom elektrických impulzov s vyššou frekvenciou a viac nervové vlákna.

Naše ucho dokáže rozlíšiť intenzitu zvuku v rozsahu od najslabšieho šepotu po najhlasnejší hluk, čo zhruba zodpovedá 1 miliónnásobnému zvýšeniu amplitúdy pohybu hlavnej membrány. Ucho však interpretuje tento obrovský rozdiel v amplitúde zvuku ako približne 10 000-násobok zmeny. To znamená, že škála intenzity je silne "stlačená" mechanizmom vnímania zvuku sluchový analyzátor. To umožňuje osobe interpretovať rozdiely v intenzite zvuku v extrémne širokom rozsahu.

Intenzita zvuku sa meria v decibeloch (dB) (1 bel sa rovná desaťnásobku amplitúdy). Rovnaký systém sa používa na určenie zmeny objemu.

Pre porovnanie môžeme uviesť približnú úroveň intenzity rôznych zvukov: sotva počuteľný zvuk(prah sluchu) 0 dB; šepkanie pri uchu 25-30 dB; reč s priemernou hlasitosťou 60-70 dB; veľmi hlasná reč (kričanie) 90 dB; pri koncertoch rockovej a popovej hudby v strede sály 105-110 dB; vedľa dopravného lietadla vzlietajúceho 120 dB.

Veľkosť zvýšenia hlasitosti vnímaného zvuku má prah diskriminácie. Počet rozlíšiteľných stupňov hlasitosti pri stredných frekvenciách nepresahuje 250, pri nízkych a vysokých frekvenciách prudko klesá a v priemere je okolo 150.

Každý videl na audiogramoch alebo audio zariadení taký parameter hlasitosti alebo s ním spojený -. Toto je jednotka merania hlasitosti. Kedysi sa ľudia zhodli a označili, že normálne človek počuje od 0 dB, čo vlastne znamená určitý akustický tlak, ktorý ucho vníma. Štatistiky hovoria, že normálny rozsah je ako mierny pokles na 20dB, tak aj sluch nad normu v podobe -10dB! Delta "normy" je 30 dB, čo je akosi dosť veľa.

Aký je dynamický rozsah sluchu? Ide o schopnosť počuť zvuky s rôznou hlasitosťou. Zvyčajne sa prijíma ako fakt, že ľudské ucho počuť od 0dB do 120-140dB. Dôrazne sa neodporúča dlhodobo počúvať zvuky už od 90 dB a viac.

Dynamický rozsah každého ucha nám hovorí, že pri 0dB ucho počuje dobre a detailne, pri 50dB počuje dobre a detailne. Môžete to urobiť pri 100 dB. V praxi bol každý v klube alebo na koncerte, kde hrala nahlas hudba – a ten detail je úžasný. Ľahli sme si jedlo sotva potichu cez slúchadlá tichá miestnosť- a tiež všetky detaily sú na svojom mieste.

V skutočnosti možno stratu sluchu opísať ako zníženie dynamického rozsahu. V skutočnosti osoba so slabým sluchom nepočuje detaily pri nízkej hlasitosti. Jeho dynamický rozsah sa zužuje. Namiesto 130 dB je to 50-80 dB. To je dôvod, prečo: neexistuje spôsob, ako „strčiť“ informácie, ktoré sú v skutočnosti v rozsahu 130 dB, do rozsahu 80 dB. A ak si tiež pamätáte, že decibely sú nelineárnou závislosťou, potom sa celá tragédia situácie vyjasní.

Ale teraz si spomeňme dobrý sluch. Tu niekto počuje všetko na úrovni asi 10 dB pokles. To je normálne a spoločensky prijateľné. V praxi môže takýto človek počuť bežnú reč na vzdialenosť 10 metrov. Potom sa však objaví muž perfektné ihrisko-- nad 0 o 10 dB -- a rovnakú reč počuje zo vzdialenosti 50 metrov za rovnakých podmienok. Dynamický rozsah je širší – je tam viac detailov a možností.

Široký dynamický rozsah spôsobuje, že mozog pracuje úplne, kvalitatívne iným spôsobom. Oveľa viac informácií, je to oveľa presnejšie a podrobnejšie, pretože. zaznievajú čoraz viac rôznych presahov a harmonických, ktoré s úzkym dynamický rozsah miznú: unikajú pozornosti človeka, pretože nemožné ich počuť.

Mimochodom, keďže je k dispozícii dynamický rozsah 100dB+, znamená to aj to, že ho človek môže neustále využívať. Len som počúval na úrovni hlasitosti 70 dB, potom som náhle začal počúvať - ​​20 dB, potom 100 dB. Prechod by mal trvať čo najmenej času. A vlastne sa dá povedať, že človek s pádom si nepripúšťa veľký dynamický rozsah. Zdá sa, že nepočujúci nahrádzajú myšlienku, že všetko je teraz veľmi nahlas – a ucho sa pripravuje počuť nahlas alebo veľmi nahlas, namiesto skutočnej situácie.

Dynamický rozsah zároveň svojou prítomnosťou ukazuje, že ucho nielen nahráva zvuky, ale sa aj prispôsobuje aktuálnej hlasitosti, aby všetko dobre počulo. Celkový parameter objemu sa prenáša do mozgu presne rovnakým spôsobom ako zvukové signály.

Ale človek s dokonalým sluchom môže veľmi flexibilne meniť svoj dynamický rozsah. A aby niečo počul, nenapína sa, ale čisto relaxuje. Sluch tak zostáva výborný ako v dynamickom, tak zároveň aj vo frekvenčnom rozsahu.

Najnovšie príspevky z tohto denníka

  • Ako začína pokles pri vysokých frekvenciách? Žiadny spôsob, ako počuť alebo pozornosť? (20 000 Hz)

    Môžete vykonať čestný experiment. Berieme Obyčajní ľudia aj keď má 20 rokov. A zapnite hudbu. Pravda, je tu jedna výhrada. Musíš to vziať a urobiť to...


  • Kňučať pre kňučanie. Video

    Ľudia si zvyknú fňukať. Zdá sa, že je to povinné a nevyhnutné. Takéto sú zvláštne emócie a pocity vo vnútri. Ale každý zabúda, že fňukanie nie je...

  • Hovoríte o nejakom probléme – to znamená, že vám na ňom záleží. Naozaj nemôžete byť ticho. Toto hovoria stále. Zároveň im však chýba...

  • Čo je dôležitá udalosť? Je to vždy niečo, čo človeka skutočne ovplyvňuje? Alebo? V skutočnosti je dôležitá udalosť len štítok v hlave...


  • Odstránenie načúvacieho prístroja: zložitosť prechodu. Opravy sluchu #260. Video

    Prichádza zaujímavý moment: teraz je sluch natoľko dobrý, že ho možno niekedy celkom dobre počuť aj bez SA. Ale snažím sa to zložiť - všetko sa zdá ...


  • Slúchadlá na kostné vedenie. Prečo, čo a ako to bude so sluchom?

    Každý deň môžete počuť stále viac o slúchadlách a reproduktoroch kostného vedenia. Osobne je to podľa mňa veľmi zlý nápad v spojení s oboma ...

7. februára 2018

Ľudia (aj tí, ktorí sa v danej problematike dobre orientujú) majú často zmätok a ťažkosti s jasným pochopením toho, ako presne je frekvenčný rozsah zvuku, ktorý človek počuje, rozdelený na všeobecné kategórie (nízke, stredné, vysoké) a užšie podkategórie (horné basy, nižšia stredná atď.). Tieto informácie sú zároveň mimoriadne dôležité nielen pre experimenty s audiosystémom v aute, ale sú užitočné aj pre všeobecný vývoj. Znalosti sa určite zídu pri nastavovaní audiosystému akejkoľvek zložitosti a hlavne pomôžu správne posúdiť silné resp. slabé stránky ten či onen akustický systém alebo nuansy počúvania hudby v miestnosti (v našom prípade je relevantnejší interiér auta), pretože má priamy vplyv na výsledný zvuk. Ak je sluchom dobre a jasne pochopená prevaha určitých frekvencií vo zvukovom spektre, potom je elementárne a rýchlo možné posúdiť zvuk konkrétnej hudobnej skladby, pričom je zreteľne počuť vplyv akustiky miestnosti na zafarbenie zvuku, príspevok samotného akustického systému k zvuku a jemnejšie rozoznať všetky nuansy, o čo sa snaží ideológia „hi-fi“ ozvučenia.

Rozdelenie počuteľného rozsahu do troch hlavných skupín

Terminológia rozdelenia počuteľného frekvenčného spektra k nám prišla čiastočne z muzikálu, čiastočne z vedeckých svetov a vo všeobecnosti je známa takmer každému. Najjednoduchšie a najzrozumiteľnejšie rozdelenie, ktoré môže zažiť frekvenčný rozsah zvuku vo všeobecnosti, je nasledovné:

  • nízke frekvencie. Limity nízkofrekvenčného rozsahu sú v rámci 10 Hz (dolný limit) – 200 Hz (horný limit). Spodná hranica začína presne od 10 Hz, hoci v klasickom pohľade je človek schopný počuť už od 20 Hz (všetko pod ním spadá do infrazvukovej oblasti), zvyšných 10 Hz je stále čiastočne počuť, ale aj cítiť hmatovo v prípade hlbokých nízkych basov a dokonca ovplyvňujú aj psychický stav človeka.
    Nízkofrekvenčný rozsah zvuku má funkciu obohatenia, emocionálneho nasýtenia a konečnej odozvy – ak je výpadok v nízkofrekvenčnej časti akustiky alebo pôvodnej nahrávky silný, tak to neovplyvní rozpoznanie konkrétnej skladby, melódiu alebo hlas, ale zvuk bude vnímaný slabo, ochudobnene a priemerne, pričom subjektívne bude z hľadiska vnímania ostrejší a ostrejší, keďže stredy a výšky budú vyduté a dominujú na pozadí absencie dobrej nasýtenej basovej oblasti.

    Dosť veľké množstvo hudobné nástroje reprodukujú zvuky v nízkofrekvenčnom rozsahu, vrátane mužských vokálov môže spadať do oblasti až 100 Hz. Najvýraznejší nástroj, ktorý hrá od začiatku počuteľný rozsah(od 20 Hz) možno pokojne nazvať dychovým orgánom.
  • Stredné frekvencie. Limity stredného frekvenčného rozsahu sú v rámci 200 Hz (dolný limit) – 2400 Hz (horný limit). Stredný rozsah bude vždy zásadný, určujúci a vlastne tvoria základ zvuku či hudby skladby, preto jeho význam nemožno preceňovať.
    Vysvetľuje sa to rôznymi spôsobmi, ale hlavne je táto vlastnosť ľudského sluchového vnímania daná evolúciou - stalo sa tak za dlhé roky nášho formovania, že načúvací prístroj najostrejšie a najjasnejšie zachytáva stredný frekvenčný rozsah, pretože. v rámci toho je ľudská reč a je to hlavný nástroj pre efektívna komunikácia a prežitie. To vysvetľuje aj určitú nelineárnosť sluchového vnímania, ktoré je pri počúvaní hudby vždy zamerané na prevahu stredných frekvencií, pretože. náš načúvací prístroj je na tento rozsah najcitlivejší a tiež sa mu automaticky prispôsobuje, akoby viac „zosilňoval“ na pozadí iných zvukov.

    V strednom pásme je prevažná väčšina zvukov, hudobných nástrojov alebo vokálov, aj keď je úzky rozsah ovplyvnený zhora alebo zdola, potom rozsah zvyčajne siaha aj tak do horného alebo spodného stredu. V súlade s tým sa vokály (mužské aj ženské) nachádzajú v strednom frekvenčnom rozsahu, ako aj takmer všetky známe nástroje, ako sú: gitara a iné struny, klavír a iné klávesy, dychové nástroje atď.
  • Vysoké frekvencie. Hranice vysokofrekvenčného rozsahu sú v rámci 2400 Hz (dolný limit) - 30000 Hz (horný limit). Horná hranica, podobne ako v prípade nízkofrekvenčného rozsahu, je do istej miery svojvoľná a tiež individuálna: priemerný človek nepočuje nad 20 kHz, ale existujú vzácnych ľudí s citlivosťou do 30 kHz.
    Množstvo hudobných podtónov môže teoreticky ísť aj do oblasti nad 20 kHz a ako viete, podtóny sú v konečnom dôsledku zodpovedné za zafarbenie zvuku a výsledné zafarbenie celého zvukového obrazu. Zdanlivo „nepočuteľné“ ultrazvukové frekvencie môžu jednoznačne ovplyvniť psychický stav človeka, hoci ich nebude počuť obvyklým spôsobom. V opačnom prípade je úloha vysokých frekvencií, opäť analogicky s nízkymi, viac obohacujúca a doplnková. Aj keď má vysokofrekvenčný rozsah oveľa väčší vplyv na rozpoznanie konkrétneho zvuku, spoľahlivosť a zachovanie pôvodného timbru ako nízkofrekvenčná sekcia. Vysoké frekvencie dodávajú hudobným skladbám „vzdušnosť“, transparentnosť, čistotu a jasnosť.

    Mnoho hudobných nástrojov tiež hrá vo vysokofrekvenčnom rozsahu, vrátane vokálov, ktoré môžu ísť do oblasti 7000 Hz a vyššie pomocou podtónov a harmonických. Najvýraznejšou skupinou nástrojov vo vysokofrekvenčnom segmente sú sláčikové a dychové nástroje a plnohodnotnejšie vo zvuku dosahujú takmer Horná hranica počuteľný rozsah (20 kHz) činely a husle.

V každom prípade je úloha absolútne všetkých frekvencií v rozsahu počuteľnom ľudským uchom pôsobivá a problémy v dráhe pri akejkoľvek frekvencii budú pravdepodobne jasne viditeľné, najmä pre trénovaného načúvacieho prístroja. Cieľom reprodukovania hi-fi zvuku vysokej kvality triedy (alebo vyššej) je zabezpečiť, aby všetky frekvencie zneli navzájom čo najpresnejšie a najrovnomernejšie, ako sa to stalo v čase nahrávania zvukovej stopy v štúdiu. Prítomnosť silných prepadov alebo špičiek vo frekvenčnej odozve akustického systému naznačuje, že vďaka svojim konštrukčným vlastnostiam nie je schopný reprodukovať hudbu tak, ako to autor alebo zvukár pôvodne zamýšľal v čase nahrávania.

Pri počúvaní hudby človek počuje kombináciu zvuku nástrojov a hlasov, z ktorých každý znie vo svojom vlastnom segmente frekvenčného rozsahu. Niektoré nástroje môžu mať veľmi úzky (obmedzený) frekvenčný rozsah, iné naopak doslova siahajú od spodnej po hornú hranicu počuteľnosti. Treba brať do úvahy, že napriek rovnakej intenzite zvukov v rôznych frekvenčných rozsahoch ľudské ucho vníma tieto frekvencie s rôznou hlasitosťou, čo je opäť spôsobené mechanizmom biologického prístroja. naslúchadlo. Povaha tohto javu je v mnohých ohľadoch vysvetlená aj biologickou nevyhnutnosťou adaptácie hlavne na stredofrekvenčný rozsah zvuku. Takže v praxi bude zvuk s frekvenciou 800 Hz pri intenzite 50 dB vnímaný sluchom subjektívne ako hlasnejší ako zvuk rovnakej sily, ale s frekvenciou 500 Hz.

Navyše, rôzne zvukové frekvencie zaplavujúce počuteľný frekvenčný rozsah zvuku budú mať rôznu prahovú citlivosť na bolesť! prah bolesti považovaný za štandard stredná frekvencia 1000 Hz s citlivosťou približne 120 dB (môže sa mierne líšiť v závislosti od jednotlivca). Rovnako ako v prípade nerovnomerného vnímania intenzity pri rôznych frekvenciách s normálne hladiny objeme, približne rovnaká závislosť sa pozoruje vo vzťahu k prahu bolesti: vyskytuje sa najrýchlejšie pri stredných frekvenciách, ale na okrajoch počuteľného rozsahu sa prah zvyšuje. Pre porovnanie, prah bolesti pri priemernej frekvencii 2000 Hz je 112 dB, zatiaľ čo prah bolesti pri nízkej frekvencii 30 Hz bude už 135 dB. Prah bolesti pre nízke frekvencie vždy vyššia ako stredná a vysoká.

Podobný nepomer je pozorovaný vzhľadom na sluchový prah je spodná hranica, po ktorej sa zvuky stávajú počuteľnými pre ľudské ucho. Bežne sa za prah počutia považuje 0 dB, ale opäť to platí pre referenčnú frekvenciu 1000 Hz. Ak na porovnanie zoberieme nízkofrekvenčný zvuk s frekvenciou 30 Hz, potom bude počuteľný až pri intenzite vyžarovania vĺn 53 dB.

Uvedené črty ľudského sluchového vnímania majú, samozrejme, priamy vplyv pri otázke počúvania hudby a dosahovania určitého psychologický efekt vnímanie. Pamätáme si, že zvuky s intenzitou nad 90 dB sú zdraviu škodlivé a môžu viesť k znehodnoteniu a výraznému poškodeniu sluchu. Ale zároveň zvuk nízkej intenzity, ktorý je príliš tichý, bude trpieť silnými frekvenčnými nerovnomernosťami biologické vlastnosti sluchové vnímanie, ktoré má nelineárny charakter. Hudobná dráha s hlasitosťou 40-50 dB bude teda vnímaná ako vyčerpaná, s výrazným nedostatkom (dalo by sa povedať poruchou) nízkych a vysokých frekvencií. Pomenovaný problém je dobre a dlho známy, na boj s ním dokonca aj známa funkcia tzv kompenzácia hlasitosti, ktorá pomocou ekvalizácie vyrovnáva úrovne nízkych a vysokých frekvencií v blízkosti úrovne stredov, čím eliminuje nežiaduci pokles bez potreby zvyšovania úrovne hlasitosti, čím sa počuteľný frekvenčný rozsah zvuku subjektívne zjednocuje z hľadiska stupňa. distribúcie zvukovej energie.

Ak vezmeme do úvahy zaujímavé a jedinečné vlastnosti ľudského sluchu, je užitočné poznamenať, že so zvyšujúcou sa hlasitosťou zvuku sa krivka frekvenčnej nelinearity splošťuje a pri 80-85 dB (a vyšších) sa zvukové frekvencie stanú subjektívne ekvivalentné v intenzite (s odchýlkou ​​3-5 dB). Zarovnanie síce nie je úplné a graf bude stále viditeľný, síce vyhladený, ale zakrivená čiara, ktorá si zachová tendenciu k prevahe intenzity stredných frekvencií oproti zvyšku. V audio systémoch je možné takéto nerovnosti vyriešiť buď pomocou ekvalizéra, alebo pomocou samostatných ovládačov hlasitosti v systémoch so samostatným zosilňovaním kanál po kanáli.

Rozdelenie počuteľného rozsahu na menšie podskupiny

Popri všeobecne akceptovanom a dobre známom rozdelení do troch všeobecných skupín sa niekedy stáva, že je potrebné podrobnejšie a podrobnejšie zvážiť jednu alebo druhú úzku časť, čím sa frekvenčný rozsah zvuku rozdelí na ešte menšie "fragmenty". Vďaka tomu sa objavilo podrobnejšie členenie, pomocou ktorého jednoducho rýchlo a pomerne presne naznačíte zamýšľaný segment zvukového rozsahu. Zvážte toto rozdelenie:

Malý vybraný počet nástrojov zostupuje do oblasti najnižších basov a ešte viac subbasov: kontrabas (40-300 Hz), violončelo (65-7000 Hz), fagot (60-9000 Hz), tuba ( 45-2000 Hz), rohy (60-5000Hz), basgitara (32-196Hz), basový bubon (41-8000Hz), saxofón (56-1320Hz), klavír (24-1200Hz), syntetizátor (20-20000Hz), organ (20-7000 Hz), harfa (36-15000 Hz), kontrafagot (30-4000 Hz). Uvedené rozsahy zahŕňajú všetky harmonické tóny nástrojov.

  • Horné basy (80 Hz až 200 Hz) reprezentované vysokými tónmi klasických basových nástrojov, ako aj najnižšími počuteľnými frekvenciami jednotlivých strún, napríklad gitary. Horný basový rozsah je zodpovedný za pocit sily a prenos energetického potenciálu zvukovej vlny. Dáva tiež pocit drive, horné basy sú navrhnuté tak, aby naplno odhalili perkusívny rytmus tanečných skladieb. Na rozdiel od spodných basov je horný zodpovedný za rýchlosť a tlak basovej oblasti a celého zvuku, preto je v kvalitnom audio systéme vždy vyjadrený rýchlo a uštipačným spôsobom, ako citeľný hmatový úder. súčasne s priamym vnímaním zvuku.
    Útok, tlak a hudobný drajv sú teda zodpovedné vyššie basy a len tento úzky segment zvukového rozsahu dokáže dať poslucháčovi pocit legendárneho „punču“ (z anglického punch – blow) , kedy je mohutný zvuk vnímaný hmatateľne a silným úderom v hrudníku. Dobre sformovaný a správny rýchly horný bas v hudobnom systéme teda spoznáte podľa kvalitného vypracovania energického rytmu, zozbieraného ataku a podľa dobre sformovaných nástrojov v spodnom registri nôt, ako sú violončelo, klavír alebo dychové nástroje.

    V audio systémoch je najvýhodnejšie dať segment horného basového rozsahu stredobasovým reproduktorom s pomerne veľkým priemerom 6,5 "-10" a s dobrými indikátormi výkonu, silným magnetom. Tento prístup je vysvetlený skutočnosťou, že práve tieto reproduktory budú z hľadiska konfigurácie schopné naplno odhaliť energetický potenciál, ktorý je súčasťou tejto veľmi náročnej oblasti počuteľného rozsahu.
    Nezabudnite však na detail a zrozumiteľnosť zvuku, tieto parametre sú dôležité aj v procese vytvárania konkrétneho hudobného obrazu. Keďže horné basy sú už dobre lokalizované / definované v priestore sluchom, rozsah nad 100 Hz je potrebné dať výhradne predným reproduktorom, ktoré budú tvoriť a budovať scénu. V segmente horných basov sa výborne ozýva stereo panoráma, ak ju zabezpečuje samotná nahrávka.

    Horná oblasť basov už dostatočne pokrýva veľké číslo nástroje a dokonca aj nízke mužské vokály. Preto sú medzi nástrojmi tie isté, ktoré hrali nízke basy, no pridávajú sa k nim mnohé ďalšie: tomy (70-7000 Hz), malý bubon (100-10000 Hz), perkusie (150-5000 Hz), tenorový trombón ( 80-10000 Hz), trúbka (160-9000 Hz), tenor saxofón (120-16000 Hz), alt saxofón (140-16000 Hz), klarinet (140-15000 Hz), altové husle (130-6700 Hz), gitara (80-5000 Hz). Uvedené rozsahy zahŕňajú všetky harmonické tóny nástrojov.

  • Spodný stred (200 Hz až 500 Hz)- najrozsiahlejšia oblasť, zachytávajúca väčšinu nástrojov a vokálov, mužských aj ženských. Keďže oblasť spodných stredov skutočne prechádza z energicky nasýtených horných basov, dá sa povedať, že to „preberá“ a zodpovedá aj za správny prenos rytmickej sekcie v spojení s pohonom, aj keď tento vplyv už klesá. smerom k čistým stredným frekvenciám.
    V tomto rozsahu sa sústreďujú nižšie harmonické a podtóny, ktoré vypĺňajú hlas, preto je mimoriadne dôležitý pre správny prenos vokálov a saturáciu. V dolnom strede sa nachádza aj celý energetický potenciál hlasu interpreta, bez ktorého nedôjde k zodpovedajúcemu návratu a emocionálnej odozve. Analogicky s prenosom ľudského hlasu v tomto segmente rozsahu ukrývajú svoj energetický potenciál aj mnohé živé nástroje, najmä tie, ktorých spodná hranica počuteľnosti začína od 200-250 Hz (hoboj, husle). Spodný stred umožňuje počuť melódiu zvuku, ale neumožňuje jasné rozlíšenie nástrojov.

    V súlade s tým je za to zodpovedný nižší stred správny dizajn väčšinu nástrojov a hlasov, ktoré saturujú a robia ich rozpoznateľnými podľa zafarbenia farby. Taktiež spodný stred je mimoriadne náročný z hľadiska správneho prenosu plnohodnotného basového rozsahu, keďže „vychytáva“ drajv a atak basov hlavných bicích a očakáva sa, že ho patrične podporí a plynulo „dotvorí“, postupne to znižuje na nič. Pocity zvukovej čistoty a zrozumiteľnosti basov spočívajú práve v tejto oblasti a ak sú v dolnom strede problémy z prebytku alebo prítomnosti rezonančných frekvencií, tak zvuk poslucháča unaví, bude špinavý a mierne mumlavý. .
    Ak je nedostatok v oblasti nižšieho stredu, utrpí to správne cítenie basov a spoľahlivý prenos vokálneho partu, ktorý bude bez tlaku a energie. To isté platí pre väčšinu nástrojov, ktoré bez opory spodného stredu stratia „tvár“, nesprávne orámujú a ich zvuk sa citeľne ochudne, aj keď zostane poznať, už nebude taký plný.

    Pri stavbe audiosystému je rozsah spodného stredného a vyššieho (až po vrchol) zvyčajne daný stredným reproduktorom (MF), ktoré by bezpochyby mali byť umiestnené v prednej časti pred poslucháčom. a postaviť pódium. Pri týchto reproduktoroch nie je až taká dôležitá veľkosť, môže byť 6,5" a nižšia, nakoľko dôležitý je detail a schopnosť odhaliť nuansy zvuku, čo je dosiahnuté konštrukčnými vlastnosťami samotného reproduktora (difúzor, zavesenie a iné vlastnosti).
    Správna lokalizácia je tiež životne dôležitá pre celý stredofrekvenčný rozsah a doslova najmenšie naklonenie alebo otočenie reproduktora môže mať citeľný vplyv na zvuk v zmysle správnej realistickej reprodukcie obrazu nástrojov a vokálov v priestore, hoci to bude do značnej miery závisieť od konštrukčných prvkov samotného kužeľa reproduktora.

    Spodná stredná pokrýva takmer všetky existujúce nástroje a ľudské hlasy, nehrá síce zásadnú úlohu, no aj tak je veľmi dôležitá pre plnohodnotné vnímanie hudby či zvukov. Medzi nástrojmi bude rovnaká zostava, ktorá dokázala získať späť spodný rozsah basov, no pridávajú sa k nim ďalšie, ktoré začínajú už od spodného stredu: činely (190-17000 Hz), hoboj (247-15000 Hz), flauta (240- 14500 Hz), husle (200-17000 Hz). Uvedené rozsahy zahŕňajú všetky harmonické tóny nástrojov.

  • Stredný stred (500 Hz až 1200 Hz) alebo len čistý stred, takmer podľa teórie rovnováhy možno tento segment rozsahu považovať za fundamentálny a fundamentálny vo zvuku a právom ho nazvať „zlatým stredom“. V prezentovanom segmente frekvenčného rozsahu nájdete hlavné tóny a harmonické tóny veľkej väčšiny nástrojov a hlasov. Čistota, zrozumiteľnosť, jas a prenikavý zvuk závisia od sýtosti stredu. Dá sa povedať, že celý zvuk sa akoby „rozťahuje“ do strán od základne, čo je stredofrekvenčný rozsah.

    V prípade výpadku v strede sa zvuk stáva nudným a nevýrazným, stráca zvukovosť a jas, vokály prestávajú fascinovať a vlastne miznú. Stred je tiež zodpovedný za zrozumiteľnosť hlavných informácií pochádzajúcich z nástrojov a vokálov (v menšej miere, pretože spoluhlásky idú vo vyššom rozsahu), čo pomáha dobre ich rozlíšiť sluchom. Väčšina existujúcich nástrojov v tomto rozsahu ožíva, stáva sa energickou, informatívnou a hmatateľnou, to isté sa deje s vokálom (najmä ženským), ktorý je v strede naplnený energiou.

    Základný rozsah strednej frekvencie pokrýva absolútnu väčšinu nástrojov, ktoré už boli uvedené vyššie, a tiež odhaľuje plný potenciál mužských a ženských vokálov. Iba vzácne vybrané nástroje začínajú svoj život na stredných frekvenciách, pričom spočiatku hrajú v pomerne úzkom rozsahu, napríklad malá flauta (600-15000 Hz).
  • Horná stredná (1200 Hz až 2400 Hz) predstavuje veľmi jemnú a náročnú časť sortimentu, s ktorou je potrebné narábať opatrne a opatrne. V tejto oblasti nie je až tak veľa základných nôt, ktoré tvoria základ zvuku nástroja alebo hlasu, ale veľké množstvo podtónov a harmonických, vďaka ktorým je zvuk zafarbený, zaostrený a svetlý charakter. Ovládaním tejto oblasti frekvenčného rozsahu sa možno skutočne hrať so sfarbením zvuku, takže je buď živý, iskrivý, priehľadný a ostrý; alebo naopak suchý, umiernený, no zároveň asertívnejší a šoférsky.

    No prílišné zdôrazňovanie tohto rozsahu má na zvukový obraz krajne nežiadúci vplyv, pretože. začína nápadne rezať ucho, dráždiť a dokonca spôsobovať bolesti nepohodlie. Preto horný stred vyžaduje jemný a opatrný postoj s ním, tk. kvôli problémom v tejto oblasti je veľmi ľahké pokaziť zvuk, alebo naopak urobiť ho zaujímavým a dôstojným. Zvyčajne sfarbenie v hornej strednej oblasti do značnej miery určuje subjektívny aspekt žánru akustického systému.

    Vďaka vyššiemu stredu sa konečne sformujú vokály a mnohé nástroje, dobre sa rozlíšia podľa sluchu a objaví sa zrozumiteľnosť zvuku. To platí najmä pre nuansy reprodukcie ľudského hlasu, pretože v hornej strednej časti je umiestnené spektrum spoluhlások a samohlásky, ktoré sa objavili v raných rozsahoch stredu, pokračujú. Vo všeobecnom zmysle horný stred priaznivo zdôrazňuje a plne odhaľuje tie nástroje alebo hlasy, ktoré sú nasýtené hornými harmonickými, podtónmi. Najmä ženské vokály, mnohé sláčikové, sláčikové a dychové nástroje sa v hornej polovici odhaľujú skutočne živo a prirodzene.

    Prevažná väčšina nástrojov hrá stále vo vyššej strednej časti, aj keď mnohé sú už zastúpené len vo forme wrapov a ústnych harmoník. Výnimkou sú niektoré zriedkavé, ktoré sa spočiatku vyznačujú obmedzeným nízkofrekvenčným rozsahom, napríklad tuba (45-2000 Hz), ktorá úplne končí v hornej časti.

  • Nízke výšky (2400 Hz až 4800 Hz)- toto je zóna/oblasť zvýšeného skreslenia, ktorá, ak je prítomná v ceste, sa v tomto segmente zvyčajne prejaví. Taktiež nižšie výšky sú zaplavené rôznymi harmonickými nástrojmi a vokálom, ktoré zároveň nesú veľmi špecifický a dôležitá úloha v konečnom návrhu umelo vytvoreného hudobného obrazu. Nižšie výšky nesú hlavnú záťaž vysokofrekvenčného rozsahu. Vo zvuku sa prejavujú z väčšej časti zvyškovými a dobre počúvanými harmonickými vokálmi (hlavne ženskými) a neutíchajúcimi silnými harmonickými niektorými nástrojmi, ktoré dotvárajú obraz konečnými dotykmi prirodzeného zafarbenia zvuku.

    Prakticky nehrajú rolu z hľadiska rozlišovania nástrojov a rozpoznávania hlasov, hoci spodná časť zostáva vysoko informatívnou a zásadnou oblasťou. V skutočnosti tieto frekvencie načrtávajú hudobné obrazy nástrojov a vokálov, naznačujú ich prítomnosť. V prípade výpadku spodného vysokého segmentu frekvenčného rozsahu sa prejav stane suchým, nezáživným a neúplným, približne to isté sa deje s inštrumentálnymi časťami - stráca sa jas, je skreslená samotná podstata zdroja zvuku, stáva sa zreteľne neúplným a nedostatočne formovaným.

    V každom bežnom audio systéme preberá úlohu vysokých frekvencií samostatný reproduktor nazývaný výškový reproduktor (vysoká frekvencia). Rozmerovo zvyčajne malý, je nenáročný na vstupný výkon (v rozumných medziach) analogicky so stredovou a najmä basovou sekciou, no je tiež nesmierne dôležitý, aby zvuk hral správne, realisticky a aspoň krásne. Výškový reproduktor pokrýva celý počuteľný vysokofrekvenčný rozsah od 2000-2400 Hz do 20000 Hz. V prípade výškových reproduktorov, podobne ako stredotónovej časti, je veľmi dôležité správne fyzické umiestnenie a smerovosť, pretože výškové reproduktory sa podieľajú nielen na formovaní zvukovej scény, ale aj na jej dolaďovaní.

    Pomocou výškových reproduktorov môžete do veľkej miery ovládať scénu, približovať/odďaľovať interpretov, meniť tvar a priebeh nástrojov, hrať sa s farbou zvuku a jeho jasom. Rovnako ako v prípade nastavovania stredotónových reproduktorov, aj tu ovplyvňuje správny zvuk výškových reproduktorov takmer všetko, a to často veľmi, veľmi citlivo: natočenie a sklon reproduktora, jeho vertikálne a horizontálne umiestnenie, vzdialenosť od blízkych plôch atď. Úspech správneho naladenia a rafinovanosť HF sekcie však závisí od konštrukcie reproduktora a jeho polárneho vzoru.

    Nástroje, ktoré hrajú až do nižších výšok, to robia prevažne cez harmonické, a nie základné. Inak v spodnom vysokom pásme "naživo" takmer všetky tie isté, ktoré boli v stredofrekvenčnom segmente, t.j. takmer všetky existujúce. Rovnako je to aj s hlasom, ktorý je aktívny najmä v nižších vysokých frekvenciách, v ženských vokálnych partoch je počuť zvláštny jas a vplyv.

  • Stredne vysoká (4800 Hz až 9600 Hz) Stredne vysoké frekvenčné pásmo sa často považuje za hranicu vnímania (napríklad v lekárskej terminológii), hoci v praxi to nie je pravda a závisí od individuálnych charakteristík človeka a od jeho veku (čím je človek starší, tým viac klesá prah vnímania). V hudobnej ceste tieto frekvencie dávajú pocit čistoty, priehľadnosti, „vzdušnosti“ a určitej subjektívnej úplnosti.

    V skutočnosti je prezentovaný segment rozsahu porovnateľný so zvýšenou čistotou a detailmi zvuku: ak nedochádza k poklesu v strednej časti, potom je zdroj zvuku mentálne dobre lokalizovaný v priestore, koncentrovaný v určitom bode a vyjadrený pocit určitej vzdialenosti; a naopak, ak chýba spodný vrch, potom sa zdá byť čistota zvuku rozmazaná a obrazy sa strácajú v priestore, zvuk sa stáva zakaleným, upnutým a synteticky nereálnym. Podľa toho je regulácia nižších vysokých frekvencií porovnateľná so schopnosťou virtuálne „pohybovať“ zvukovou scénou v priestore, t.j. posuňte ho preč alebo priblížte.

    Stredné vysoké frekvencie v konečnom dôsledku poskytujú požadovaný prezenčný efekt (presnejšie ho dotvárajú naplno, keďže efekt je založený na hlbokých a oduševnených basoch), vďaka týmto frekvenciám sa nástroje a hlas stávajú maximálne realistickými a spoľahlivými. . O stredových vrcholoch môžeme tiež povedať, že sú zodpovedné za detail vo zvuku, za početné drobné nuansy a presahy ako vo vzťahu k inštrumentálnej časti, tak aj vo vokálnej časti. Na konci segmentu strednej výšky začína „vzduch“ a transparentnosť, čo je tiež celkom jasne cítiť a ovplyvňuje vnímanie.

    Napriek tomu, že zvuk neustále klesá, v tomto segmente rozsahu sú stále aktívne: mužský a ženský spev, basový bubon (41-8000 Hz), tomy (70-7000 Hz), snare drum (100-10000 Hz), činely (190-17000 Hz), vzdušný trombón (80-10000 Hz), trúbka (160-9000 Hz), fagot (60-9000 Hz), saxofón (56-1320 Hz), klarinet (140-15000 Hz), hoboj (247-15000 Hz), flauta (240-14500 Hz), pikola (600-15000 Hz), violončelo (65-7000 Hz), husle (200-17000 Hz), harfa (36-15000 Hz) ), organ (20-7000 Hz), syntetizátor (20-20000 Hz), tympány (60-3000 Hz).

  • Horné vysoké (9600 Hz až 30000 Hz) veľmi zložitý a pre mnohých nepochopiteľný rozsah, poskytujúci z väčšej časti podporu pre určité nástroje a vokály. Horné výšky dodávajú zvuku najmä charakteristiky vzdušnosti, priehľadnosti, kryštalinity, niekedy aj jemného pridania a zafarbenia, čo sa môže zdať pre mnohých nepodstatné a dokonca nepočuteľné, no stále má veľmi určitý a špecifický význam. Pri pokuse o vytvorenie špičkového „hi-fi“ alebo dokonca „hi-endového“ zvuku sa hornému rozsahu výšok venuje maximálna pozornosť, pretože právom sa verí, že vo zvuku sa nemôže stratiť ani ten najmenší detail.

    Navyše, okrem bezprostredne počuteľnej časti, horná vysoká oblasť, ktorá sa plynule mení na ultrazvukové frekvencie, môže mať stále nejaké psychologický dopad: aj keď tieto zvuky nepočuť zreteľne, ale vlny sú vyžarované do priestoru a človek ich môže vnímať, pričom skôr na úrovni tvorby nálady. V konečnom dôsledku ovplyvňujú aj kvalitu zvuku. Vo všeobecnosti sú tieto frekvencie najjemnejšie a najjemnejšie v celom rozsahu, ale sú zodpovedné aj za pocit krásy, elegancie, iskrivú dochuť hudby. Pri nedostatku energie v hornom vysokom rozsahu je celkom možné cítiť nepohodlie a hudobné podhodnotenie. Rozmarný horný vysoký rozsah navyše dáva poslucháčovi pocit priestorovej hĺbky, akoby sa ponoril hlboko do pódia a bol zahalený zvukom. Prebytok sýtosti zvuku v naznačenom úzkom rozsahu však môže zvuk zbytočne „piesočať“ a neprirodzene stenčovať.

    Pri diskusii o hornom vysokofrekvenčnom rozsahu stojí za zmienku aj výškový reproduktor s názvom „super výškový reproduktor“, čo je vlastne konštrukčne rozšírená verzia bežného výškového reproduktora. Takýto reproduktor je navrhnutý tak, aby pokryl väčšiu časť rozsahu v hornej časti. Ak prevádzkový rozsah bežného výškového reproduktora končí na očakávanej hraničnej značke, nad ktorou ľudský sluch teoreticky nevníma zvukovú informáciu, t.j. 20 kHz, potom môže super výškový reproduktor zvýšiť túto hranicu na 30-35 kHz.

    Myšlienka implementácie takéhoto sofistikovaného reproduktora je veľmi zaujímavá a kuriózna, pochádza zo sveta „hi-fi“ a „hi-end“, kde sa verí, že žiadne frekvencie v hudobnej ceste nemožno ignorovať a , aj keď ich priamo nepočujeme, stále sú spočiatku prítomné pri živom prevedení konkrétnej skladby, čo znamená, že môžu mať nejaký vplyv nepriamo. Situáciu so super výškovým reproduktorom komplikuje len fakt, že nie všetky zariadenia (zdroje/prehrávače zvuku, zosilňovače a pod.) sú schopné vydávať signál v plnom rozsahu, bez orezávania frekvencií zhora. To isté platí aj pre samotný záznam, ktorý sa často robí s škrtom vo frekvenčnom rozsahu a stratou kvality.

  • Približne vyššie popísaným spôsobom vyzerá rozdelenie počuteľného frekvenčného rozsahu na podmienené segmenty ako v skutočnosti, pomocou delenia možno ľahšie pochopiť problémy v audio ceste za účelom ich eliminácie alebo vyrovnania zvuku. Napriek tomu, že každý si predstavuje nejaký výlučne svoj vlastný a len jemu zrozumiteľný štandardný obraz zvuku v súlade len s jeho chuťové preferencie, charakter pôvodného zvuku má tendenciu k vyrovnaniu, alebo skôr k spriemerovaniu všetkých znejúcich frekvencií. Preto je správny štúdiový zvuk vždy vyvážený a pokojný, celé spektrum zvukových frekvencií v ňom smeruje k rovnej čiare na grafe frekvenčnej odozvy (amplitúda-frekvenčná odozva). Rovnaký smer sa snaží implementovať nekompromisné „hi-fi“ a „hi-end“: získať čo najrovnomernejší a vyvážený zvuk, bez špičiek a poklesov v celom počuteľnom rozsahu. Takýto zvuk sa môže svojou povahou zdať nudný a nevýrazný, bez jasu a nezaujímavý pre bežného neskúseného poslucháča, ale je to práve tento zvuk, ktorý je v skutočnosti skutočne správny, pričom sa usiluje o rovnováhu analogicky k tomu, ako platia zákony samotný vesmír, v ktorom žijeme, sa prejavuje.

    Tak či onak, túžba znovu vytvoriť nejaký špecifický charakter zvuku vo vašom audio systéme závisí výlučne od preferencií poslucháča. Niekomu vyhovuje zvuk s prevažne mohutnými basmi, inému zvýšený jas „zvýšených“ vrcholov, iní si môžu užiť hodiny drsných vokálov zvýraznených v strede ... Možnosti vnímania môžu byť veľké množstvo, a informácie o frekvenčnom rozdelení rozsahu na podmienené segmenty pomôžu každému, kto chce vytvoriť zvuk svojich snov, len teraz s úplnejším pochopením nuancií a jemností tých zákonov, ktoré zvuk ako fyzikálny jav dodržiava.

    Pochopenie procesu saturácie určitými frekvenciami zvukového rozsahu (naplnenie energie v každej sekcii) v praxi nielen uľahčí ladenie akéhokoľvek audio systému a umožní v princípe postaviť scénu, ale tiež poskytne neoceniteľné skúsenosti pri posudzovaní špecifickej povahy zvuku. Vďaka skúsenostiam bude človek schopný okamžite určiť nedostatky zvuku sluchom, navyše veľmi presne opísať problémy v určitej časti rozsahu a navrhnúť Možné riešenie na zlepšenie zvukového obrazu. Je možné vykonať korekciu zvuku rôzne metódy, kde môžete použiť ekvalizér napríklad ako „páky“ alebo sa „pohrať“ s umiestnením a nasmerovaním reproduktorov – a tým zmeniť charakter skoré úvahy vlnenie, eliminovanie stojatého vlnenia a pod. To už bude „úplne iný príbeh“ a téma na samostatné články.

    Frekvenčný rozsah ľudského hlasu v hudobnej terminológii

    Samostatne a oddelene v hudbe je priradená úloha ľudského hlasu ako vokálnej časti, pretože povaha tohto javu je skutočne úžasná. Ľudský hlas je tak mnohostranný a jeho rozsah (v porovnaní s hudobné nástroje) je najširšia, s výnimkou niektorých nástrojov, ako je klavír.
    Navyše v rôzneho vekučlovek môže vydávať zvuky rôznej výšky, in detstva do ultrazvukových výšok, v dospelosti je mužský hlas celkom schopný klesať extrémne nízko. Tu, ako predtým, je to mimoriadne dôležité individuálnych charakteristík hlasivky osoba, pretože sú ľudia, ktorí dokážu ohromiť hlasom v rozsahu 5 oktáv!

      Baby
    • alt (nízky)
    • soprán (vysoký)
    • Výšky (vysoké u chlapcov)
      Pánske
    • Basy hlboké (extra nízke) 43,7-262 Hz
    • Basy (nízke) 82-349 Hz
    • Barytón (stredný) 110-392 Hz
    • Tenor (vysoký) 132-532 Hz
    • Tenor altino (extra vysoký) 131-700 Hz
      Dámske
    • Kontralt (nízky) 165-692 Hz
    • Mezzosoprán (stredný) 220-880 Hz
    • Soprán (vysoký) 262-1046 Hz
    • Koloratúrny soprán (extra vysoký) 1397 Hz

    Video vytvorené spoločnosťou AsapSCIENCE je akýmsi testom straty sluchu súvisiacim s vekom, ktorý vám pomôže spoznať hranice vášho sluchu.

    Vo videu sa prehrávajú rôzne zvuky, od 8000 Hz, čo znamená, že nemáte sluchové postihnutie.

    Potom frekvencia stúpa a to naznačuje vek vášho sluchu v závislosti od toho, kedy prestanete počuť určitý zvuk.

    Takže ak počujete frekvenciu:

    12 000 Hz - máte menej ako 50 rokov

    15 000 Hz - máte menej ako 40 rokov

    16 000 Hz - máte menej ako 30 rokov

    17 000 – 18 000 – máte menej ako 24 rokov

    19 000 – máte menej ako 20 rokov

    Ak chcete, aby bol test presnejší, mali by ste nastaviť kvalitu videa na 720p, alebo lepšie 1080p a počúvať pomocou slúchadiel.

    Test sluchu (video)

    strata sluchu

    Ak ste počuli všetky zvuky, s najväčšou pravdepodobnosťou máte menej ako 20 rokov. Výsledky závisia od senzorických receptorov vo vašom uchu tzv vlasové bunky ktoré sa časom poškodia a degenerujú.

    Tento typ straty sluchu sa nazýva senzorineurálna strata sluchu. Táto porucha môže byť spôsobená celý riadok infekcie, lieky a autoimunitné ochorenia. Vonkajšie vláskové bunky, ktoré sú naladené tak, aby zachytávali vyššie frekvencie, zvyčajne odumierajú ako prvé, a tak dochádza k efektu straty sluchu súvisiacej s vekom, ako je demonštrované v tomto videu.

    Ľudský sluch: zaujímavé fakty

    1. Medzi zdravými ľuďmi frekvenčný rozsah, ktorý môže počuť ľudské ucho sa pohybuje od 20 (nižšia ako najnižšia nota na klavíri) do 20 000 Hertzov (vyššia ako najvyššia nota na malej flaute). Horná hranica tohto rozsahu sa však s vekom neustále znižuje.

    2. Ľudia hovorte medzi sebou pri frekvencii 200 až 8000 Hz a ľudské ucho je najcitlivejšie na frekvenciu 1000 - 3500 Hz

    3. Zvuky, ktoré sú nad hranicou ľudského sluchu sa nazývajú ultrazvuk a tie nižšie infrazvuk.

    4. Náš uši neprestávajú fungovať ani v spánku a pritom stále počuť zvuky. Náš mozog ich však ignoruje.


    5. Zvuk sa šíri rýchlosťou 344 metrov za sekundu. Sonický tresk nastane, keď objekt prekoná rýchlosť zvuku. Zvukové vlny pred a za objektom sa zrážajú a vytvárajú náraz.

    6. Uši - samočistiaci orgán. Póry vo zvukovode vylučujú ušný maz a drobné chĺpky nazývané riasinky vytláčajú vosk z ucha

    7. Hluk detského plaču je približne 115 dB a je to hlasnejšie ako klaksón auta.

    8. V Afrike žije kmeň Maabanov, ktorí žijú v takom tichu, že sú aj v starobe. počuť šepot do vzdialenosti 300 metrov.


    9. Úroveň zvuk buldozéra pri nečinnosti je asi 85 dB (decibel), čo môže spôsobiť poškodenie sluchu už po jednom 8-hodinovom pracovnom dni.

    10. Sedenie vpredu rečníci na rockovom koncerte, vystavujete sa 120 dB, čo začne poškodzovať váš sluch už po 7,5 minútach.

    Ľudský sluch

    Sluch- schopnosť biologických organizmov vnímať zvuky orgánmi sluchu; špeciálna funkcia načúvací prístroj, vzrušený zvukové vibrácie prostredia, ako je vzduch alebo voda. Jeden z biologických vzdialených vnemov, nazývaný aj akustický vnem. Poskytuje sluchový senzorický systém.

    Ľudský sluch je schopný počuť zvuk v rozsahu od 16 Hz do 22 kHz pri prenose vibrácií vzduchom a až do 220 kHz pri prenose zvuku cez kosti lebky. Tieto vlny sú dôležité biologický význam, Napríklad, zvukové vlny v rozsahu 300-4000 Hz zodpovedajú ľudskému hlasu. Zvuky nad 20 000 Hz majú málo praktickú hodnotu, pretože rýchlo spomaľujú; vibrácie pod 60 Hz sú vnímané prostredníctvom vibračného zmyslu. Rozsah frekvencií, ktoré je človek schopný počuť, sa nazýva sluchový alebo zvukový rozsah; vyššie frekvencie sa nazývajú ultrazvuk a nižšie frekvencie infrazvuk.

    Schopnosť rozlíšiť zvukové frekvencie silne závisí od konkrétneho človeka: jeho veku, pohlavia, dedičnosti, náchylnosti na choroby sluchového orgánu, tréningu a únavy sluchu. Niektorí ľudia sú schopní vnímať zvuky relatívne vysokej frekvencie – až 22 kHz, prípadne aj vyššej.
    U ľudí, rovnako ako u väčšiny cicavcov, je orgánom sluchu ucho. U mnohých zvierat sa sluchové vnímanie uskutočňuje kombináciou rôzne telá, ktoré sa môžu svojou stavbou výrazne líšiť od ucha cicavcov. Niektoré zvieratá sú schopné vnímať akustické vibrácie, nie počuteľné človekom(ultrazvuk alebo infrazvuk). Netopiere Počas letu používajú ultrazvuk na echolokáciu. Psy sú schopné počuť ultrazvuk, ktorý je základom pre prácu tichých píšťaliek. Existujú dôkazy, že veľryby a slony môžu používať infrazvuk na komunikáciu.
    Človek dokáže rozlíšiť niekoľko zvukov súčasne vďaka tomu, že v slimáku môže byť súčasne niekoľko stojatých vĺn.

    Pracovný mechanizmus sluchový systém:

    Zvukový signál akejkoľvek povahy možno opísať pomocou určitého súboru fyzikálnych vlastností:
    frekvencia, intenzita, trvanie, časová štruktúra, spektrum atď.

    Zodpovedajú určitým subjektívnym vnemom vznikajúcim pri vnímaní zvukov sluchovým systémom: hlasitosť, výška tónu, zafarbenie, údery, konsonancie-disonancie, maskovanie, lokalizácia-stereoefekt atď.
    Sluchové vnemy sú spojené s fyzicka charakteristika nejednoznačné a nelineárne, napríklad hlasitosť závisí od intenzity zvuku, od jeho frekvencie, od spektra atď. Ešte v minulom storočí sa ustálil Fechnerov zákon, ktorý potvrdil, že tento vzťah je nelineárny: „Senzácie
    úmerné pomeru logaritmov podnetu.“ Napríklad pocity zmeny hlasitosti sú primárne spojené so zmenou logaritmu intenzity, výšky tónu – so zmenou logaritmu frekvencie atď.

    Všetky zvukové informácie, ktoré človek prijíma z vonkajšieho sveta (tvorí asi 25 % z celkového počtu), rozpoznáva pomocou sluchového ústrojenstva a práce vyšších častí mozgu, prevádza ich do sveta svoje pocity a robí rozhodnutia, ako na ne reagovať.
    Predtým, ako pristúpime k štúdiu problému, ako sluchový systém vníma tón, stručne sa zastavíme pri mechanizme sluchového systému.
    V tomto smere sa teraz dosiahlo veľa nových a veľmi zaujímavých výsledkov.
    Sluchová sústava je akýmsi prijímačom informácií a skladá sa z periférnej časti a vyšších častí sluchovej sústavy. Najviac študované sú procesy premeny zvukových signálov v periférnej časti sluchového analyzátora.

    periférna časť

    Ide o akustickú anténu, ktorá prijíma, lokalizuje, zaostruje a zosilňuje zvukový signál;
    - mikrofón;
    - frekvenčný a časový analyzátor;
    - analógovo-digitálny prevodník, ktorý premieňa analógový signál na binárne nervové impulzy - elektrické výboje.

    Celkový pohľad na periférny sluchový systém je znázornený na prvom obrázku. Periférny sluchový systém sa zvyčajne delí na tri časti: vonkajší, stredný a vnútorné ucho.

    vonkajšie ucho pozostáva z ušnice a zvukovodu, zakončeného tenkou membránou nazývanou bubienka.
    Vonkajšie uši a hlava sú komponenty externej akustickej antény, ktorá spája (prispôsobuje) ušný bubienok k vonkajšiemu zvukovému poľu.
    Hlavnými funkciami vonkajších uší sú binaurálne (priestorové) vnímanie, lokalizácia zdroja zvuku a zosilnenie zvukovej energie najmä v stredných a vysokých frekvenciách.

    zvukovodu je zakrivená valcová trubica dĺžky 22,5 mm, ktorá má prvú rezonančnú frekvenciu cca 2,6 kHz, takže v tomto frekvenčnom rozsahu výrazne zosilňuje zvukový signál a práve tu sa nachádza oblasť maximálnej citlivosti sluchu.

    Ušný bubienok - tenký film s hrúbkou 74 mikrónov, má tvar kužeľa smerujúceho špičkou k strednému uchu.
    Pri nízkych frekvenciách sa pohybuje ako piest, pri vyšších vytvára zložitý systém uzlových čiar, ktorý je dôležitý aj pre zosilnenie zvuku.

    Stredné ucho- vzduchom vyplnená dutina spojená s nosohltanom eustachova trubica na zarovnanie atmosferický tlak.
    Pri zmene atmosférického tlaku môže vzduch vstupovať alebo vystupovať zo stredného ucha, takže bubienok nereaguje na pomalé zmeny statického tlaku – hore a dole atď. V strednom uchu sú tri malé sluchové kostičky:
    kladivo, nákovu a strmeň.
    Palička je pripevnená k ušný bubienok jeden koniec, druhý prichádza do kontaktu s nákovou, ktorá je pomocou malého zväzku spojená so strmeňom. Základňa strmeňa je spojená s oválne okno do vnútorného ucha.

    Stredné ucho vykonáva nasledujúce funkcie:
    zosúladenie impedancie vzdušného prostredia s kvapalným prostredím kochley vnútorného ucha; obrana od hlasné zvuky(akustický reflex); zosilnenie (pákový mechanizmus), vďaka ktorému sa akustický tlak prenášaný do vnútorného ucha zvýši o takmer 38 dB v porovnaní s tým, ktorý vstupuje do bubienka.

    vnútorné ucho nachádza sa v bludisku kanálov v spánková kosť a zahŕňa orgán rovnováhy ( vestibulárny aparát) a slimák.

    Slimák(kochlea) hrá hlavnú úlohu v sluchovom vnímaní. Je to trubica s premenlivým prierezom, trikrát preložená ako hadí chvost. V rozloženom stave má dĺžku 3,5 cm.Vnútri má slimák extrémne komplexná štruktúra. Po celej dĺžke je rozdelený dvomi membránami na tri dutiny: scala vestibuli, strednú dutinu a scala tympani.

    V Cortiho orgáne dochádza k transformácii mechanických vibrácií membrány na diskrétne elektrické impulzy nervových vlákien. Keď bazilárna membrána vibruje, riasinky na vláskových bunkách sa ohýbajú a to generuje elektrický potenciál, ktorý spôsobuje tok el. nervové impulzy, prenášajúce všetky potrebné informácie o prijatom zvukovom signáli do mozgu na ďalšie spracovanie a odozvu.

    Vyššie časti sluchového ústrojenstva (vrátane sluchovej kôry) možno považovať za logický procesor, ktorý extrahuje (dekóduje) užitočné zvukové signály na pozadí hluku, zoskupuje ich podľa určitých charakteristík, porovnáva ich s obrazmi v pamäti, určuje ich informačnú hodnotu a rozhoduje o reakciách.

    KATEGÓRIE

    POPULÁRNE ČLÁNKY

    2023 "kingad.ru" - ultrazvukové vyšetrenie ľudských orgánov