Значение ощущений в профессиональной деятельности врача. Значение ощущения в жизни человека, виды ощущения

Регистрирующие электроды располагают так, чтобы на многоканальной записи были представлены все основные отделы мозга, обозначаемые начальными буквами их латинских названий. В клинической практике используют две основные системы отведений ЭЭГ: международную систему «10-20» и модифицированную схему с уменьшенным количеством электродов. При необходимости получения более детальной картины ЭЭГ предпочтительна схема «10-20».

Референтным называют такое отведение, когда на «вход 1» усилителя подаётся потенциал от электрода, стоящего над мозгом, а на «вход 2» - от электрода на удалении от мозга. Электрод, расположенный над мозгом, чаще всего называют активным. Электрод, удалённый от мозговой ткани, носит название референтного. В качестве такового используют левую (А 1) и правую (А 2) мочки уха. Активный электрод подсоединяют к «входу 1» усилителя, подача на который отрицательного сдвига потенциала вызывает отклонение регистрирующего пера вверх. Референтный электрод подключают к «входу 2». В некоторых случаях в качестве референтного электрода используют отведение от двух закороченных между собой электродов (АА), расположенных на мочках ушей. Поскольку на ЭЭГ регистрируется разность потенциалов между двумя электродами, на положение точки на кривой будут в равной мере, но в противоположном направлении влиять изменения потенциала под каждым из пары электродов. В референтном отведении под активным электродом генерируется переменный потенциал мозга. Под референтным электродом, находящимся вдали от мозга, имеется постоянный потенциал, который не проходит в усилитель переменного тока и не влияет на картину записи. Разность потенциалов отражает без искажения колебания электрического потенциала, генерируемого мозгом под активным электродом. Однако область головы между активным и референтным электродами составляет часть электрической цепи «усилитель-объект», и наличие на этом участке достаточно интенсивного источника потенциала, расположенного асимметрично относительно электродов, будет существенно отражаться на показаниях. Следовательно, при референтном отведении суждение о локализации источника потенциала не вполне надёжно.

Биполярным называют отведение, при котором на «вход 1» и «вход 2» усилителя подсоединяют электроды, стоящие над мозгом. На положение точки записи ЭЭГ на мониторе в одинаковой мере влияют потенциалы под каждым из пары электродов, и регистрируемая кривая отражает разность потенциалов каждого из электродов. Поэтому суждение о форме колебания под каждым из них на основе одного биполярного отведения оказывается невозможным. В то же время анализ ЭЭГ, зарегистрированных от нескольких пар электродов в различных комбинациях, позволяет выяснить локализацию источников потенциалов, составляющих компоненты сложной суммарной кривой, получаемой при биполярном отведении.

Например, если в задней височной области присутствует локальный источник медленных колебаний, при подсоединении к клеммам усилителя переднего и заднего височных электродов (Та, Тр) получается запись, содержащая медленную составляющую, соответствующую медленной активности в задней височной области (Тр), с наложенными на неё более быстрыми колебаниями, генерируемыми нормальным мозговым веществом передней височной области (Та). Для выяснения вопроса о том, какой же электрод регистрирует эту медленную составляющую, на двух дополнительных каналах коммутированы пары электродов, в каждой из которых один представлен электродом из первоначальной пары, то есть Та или Тр. а второй соответствует какому-либо не височному отведению, например F и О.

Понятно, что во вновь образуемой паре (Тр-О), включающей задний височный электрод Тр, находящийся над патологически изменённым мозговым веществом, опять будет присутствовать медленная составляющая. В паре, на входы которой подана активность от двух электродов, стоящих над относительно интактным мозгом (Ta-F), будет регистрироваться нормальная ЭЭГ. Таким образом, в случае локального патологического коркового фокуса подключение электрода, стоящего над этим фокусом, в паре с любым другим приводит к появлению патологической составляющей на соответствующих каналах ЭЭГ. Это и позволяет определить локализацию источника патологических колебаний.

Дополнительный критерий определения локализации источника интересующего потенциала на ЭЭГ - феномен изврашения фазы колебаний. Если подсоединить на входы двух каналов электроэнцефалографа три электрода следующим образом: электрод 1 - к «входу 1», электрод 3 - к «входу 2» усилителя Б, а электрод 2 - одновременно к «входу 2» усилителя А и «входу 1» усилителя Б; предположить, что под электродом 2 происходит положительное смещение электрического потенциала по отношению к потенциалу остальных отделов мозга (обозначено знаком «+»), то очевидно, что электрический ток, обусловленный этим смещением потенциала, будет иметь противоположное направление в цепях усилителей А и Б, что отразится в противоположно направленных смещениях разности потенциалов - противофазах - на соответствующих записях ЭЭГ. Таким образом, электрические колебания под электродом 2 в записях по каналам А и Б будут представлены кривыми, имеющими одинаковые частоты, амплитуды и форму, но противоположными по фазе. При коммутации электродов по нескольким каналам электроэнцефалографа в виде цепочки противофазные колебания исследуемого потенциала будут регистрироваться по тем двум каналам, к разноимённым входам которых подключён один общий электрод, стоящий над источником этого потенциала.

Правила регистрации электроэнцефалограммы и функциональные пробы

Пациент во время исследования должен находиться в свето- и звукоизолированном помещении в удобном кресле с закрытыми глазами. Наблюдение за исследуемым ведут непосредственно или с помощью видеокамеры. В ходе записи маркерами отмечают значимые события и функциональные пробы.

При пробе открывания и закрывания глаз на ЭЭГ появляются характерные артефакты электроокулограммы. Возникающие изменения ЭЭГ позволяют выявить степень контактности обследуемого, уровень его сознания и ориентировочно оценить реактивность ЭЭГ.

Для выявления реагирования мозга на внешние воздействия применяют одиночные стимулы в виде короткой вспышки света, звукового сигнала. У больных в коматозном состоянии допустимо применение ноцицептивных стимулов нажатием ногтем на основание ногтевого ложа указательного пальца больного.

Для фотостимуляции используют короткие (150 мкс) вспышки света, близкого по спектру к белому, достаточно высокой интенсивности (0,1-0,6 Дж). Фотостимуляторы позволяют предъявлять серии вспышек, применяемые для исследования реакции усвоения ритма - способности электроэнцефалографических колебаний воспроизводить ритм внешних раздражений. В норме реакция усвоения ритма хорошо выражена на частоте мельканий, близкой к собственным ритмам ЭЭГ. Ритмические волны усвоения имеют наибольшую амплитуду в затылочных отделах. При фотосенситивных эпилептических припадках ритмическая фотостимуляция выявляет фотопароксизмальный ответ - генерализованный разряд эпилептиформной активности.

Гипервентиляцию проводят главным образом для вызывания эпилептиформной активности. Обследуемому предлагают глубоко ритмично дышать в течение 3 мин. Частота дыхания должна быть в пределах 16-20 в минуту. Регистрацию ЭЭГ начинают по меньшей мере за 1 минуту до начала гипервентиляции и продолжают в течение всей гипервентиляции и ещё не менее 3 мин после её окончания.

Электроэнцефалография (ЭЭГ) — метод регистрации электрической активности мозга с помощью электродов, располагаемых на коже волосистой части головы.

По аналогии с работой компьютера, от работы отдельного транзистора до функционирования компьютерных программ и приложений, электрическую активность мозга можно рассматривать на различных уровнях: с одной стороны — потенциалы действия отдельных нейронов, с другой — общая биоэлектрическая активность мозга, которую регистрируют при помощи ЭЭГ.

Результаты ЭЭГ используются как для клинической диагностики, так и в научных целях. Существует интракраниальная, или внутричерепная ЭЭГ (intracranial EEG, icEEG), также называемая субдуральной ЭЭГ (subdural EEG, sdEEG) и электрокортикографией (ЭКоГ, или electrocorticography, ECoG). При проведении таких видов ЭЭГ регистрация электрической активности осуществляется непосредственно с поверхности мозга, а не с кожи головы. ЭКоГ характеризуется более высоким пространственным разрешением по сравнению с поверхностной (чрескожной) ЭЭГ, поскольку кости черепа и кожа головы несколько «смягчают» электрические сигналы.

Однако намного чаще используется электроэнцефалография транскраниальная. Этот метод является ключевым в диагностике эпилепсии, а также дает дополнительную ценную информацию при множестве других неврологических нарушений.

Историческая справка

В 1875 г. практикующий врач из Ливерпуля Ричард Катон (Richard Caton, 1842-1926) представил в Британском Медицинском Журнале результаты изучения электрического явления, наблюдаемого при исследовании им полушарий мозга кроликов и обезьян. В 1890 г. Бек (Beck) опубликовал исследование спонтанной электрической активности мозга кроликов и собак, проявлявшейся в виде ритмических колебаний, изменяющихся при воздействии света. В 1912 г. русский физиолог Владимир Владимирович Правдич-Неминский опубликовал первую ЭЭГ и вызванные потенциалы млекопитающего (собаки). В 1914 г. другие ученые (Cybulsky and Jelenska-Macieszyna) сфотографировали запись ЭЭГ искусственно вызванного приступа.

Немецкий физиолог Ганс Бергер (Hans Berger, 1873-1941) приступил к исследованиям ЭЭГ человека в 1920 г. Он дал устройству его современное название и, хотя другие ученые ранее проводили аналогичные эксперименты, иногда именно Бергер считается первооткрывателем ЭЭГ. В дальнейшем его идеи развивал Эдгар Дуглас Эдриан (Edgar Douglas Adrian).

В 1934 г. впервые был продемонстрирован паттерн эпилептиформной активности (Fisher и Lowenback). Началом клинической энцефалографии считается 1935 г., когда Гиббс, Дэвис и Леннокс (Gibbs, Davis and Lennox) описали интериктальную активность и паттерн малого эпилептического приступа. Впоследствии, в 1936 г. Гиббс и Джаспер (Gibbs and Jasper) охарактеризовали интериктальную активность как очаговый признак эпилепсии. В том же году в Массачусетском госпитале (Massachusetts General Hospital) была открыта первая лаборатория по изучению ЭЭГ.

Франклин Оффнер (Franklin Offner, 1911-1999), профессор биофизики Северо-западного Университета, разработал прототип электроэнцефалографа, который включал пьезоэлектрический самописец — кристограф (все устройство целиком называлось Динографом Оффнера).

В 1947 г. в связи с основанием Американского Общества Электроэнцефалографии (The American EEG Society) прошел первый Международный конгресс по вопросам ЭЭГ. А уже в 1953 г. (Aserinsky and Kleitmean) обнаружили и описали фазу сна с быстрым движением глаз.

В 50-х годах ХХ века английский врач Вильям Грей Вальтер разработал метод, названный ЭЭГ-топографией, который позволил картировать на поверхности мозга электрическую активность мозга. Этот метод не применяется в клинической практике, его используют только при проведении научных исследований. Метод приобрел особенную популярность в 80-е годы XX века и представлял особый интерес для исследователей в области психиатрии.

Физиологические основы ЭЭГ

При проведении ЭЭГ измеряют суммарные постсинаптические токи. Потенциал действия (ПД, кратковременное изменение потенциала) в пресинаптической мембране аксона вызывает высвобождение нейромедиатора в синаптическую щель. Нейромедиатор, или нейротрансмиттер, — химическое вещество, осуществляющее передачу нервных импульсов через синапсы между нейронами. Пройдя через синаптическую щель, нейромедиатор связывается с рецепторами постсинаптической мембраны. Это вызывает ионные токи в постсинаптической мембране. В результате во внеклеточном пространстве возникают компенсаторные токи. Именно эти внеклеточные токи формируют потенциалы ЭЭГ. ЭЭГ нечувствительна к ПД аксонов.

Хотя за формирование сигнала ЭЭГ ответственны постсинаптические потенциалы, поверхностная ЭЭГ не способна зафиксировать активность одного дендрита или нейрона. Правильнее сказать, что поверхностная ЭЭГ представляет собой сумму синхронной активности сотен нейронов, имеющих одинаковую ориентацию в пространстве, расположенных радиально к коже головы. Токи, направленные по касательной к коже головы, не регистрируются. Таким образом, во время ЭЭГ регистрируется активность радиально расположенных в коре апикальных дендритов. Поскольку вольтаж поля уменьшается пропорционально расстоянию до его источника в четвертой степени, активность нейронов в глубоких слоях мозга зафиксировать гораздо труднее, нежели токи непосредственно около кожи.

Токи, регистрируемые на ЭЭГ, характеризуются различными частотами, пространственным распределением и взаимосвязью с различными состояниями мозга (например, сон или бодрствование). Такие колебания потенциала представляют собой синхронизированную активность целой сети нейронов. Идентифицированы лишь немногие нейронные сети, ответственные за регистрируемые осцилляции (например, таламокортикальный резонанс, лежащий в основе «сонных веретен» — учащенных альфа-ритмов во время сна), тогда как многие другие (например, система, формирующая затылочный основной ритм) пока не установлены.

Методика проведения ЭЭГ

Для получения традиционного поверхностного ЭЭГ запись производят с помощью электродов, помещаемых на кожу волосистой части головы с применением электропроводящего геля или мази. Обычно перед помещением электродов по возможности удаляют омертвевшие клетки кожи, которые повышают сопротивление. Методику возможно усовершенствовать, используя углеродные нанотрубки, которые проникают в верхние слои кожи и способствуют улучшению электрического контакта. Такая система датчиков называется ENOBIO; однако представленная методика в общей практике (ни в научных исследованиях, ни тем более в клинике) пока не используется. Обычно во многих системах используются электроды, каждый из которых имеет отдельный провод. В некоторых системах используются специальные шапочки или сетчатые конструкции в виде шлема, в которых заключены электроды; чаще всего такой подход оправдывает себя, когда используется комплект с большим количеством плотно расположенных электродов.

Для большинства вариантов применения в клинике и в исследовательских целях (за исключением наборов с большим количеством электродов) расположение и название электродов определены Международной «10-20» системой. Использование данной системы гарантирует, что названия электродов между различными лабораториями строго согласованы. В клинике чаще всего используется набор из 19 отводящих электродов (плюс заземление и электрод сравнения). Для регистрации ЭЭГ новорожденных обычно используется меньшее количество электродов. Чтобы получить ЭЭГ конкретной области мозга с более высоким пространственным разрешением, можно использовать дополнительные электроды. Набор с большим количеством электродов (обычно в виде шапочки или шлема-сетки) может содержать до 256 электродов, расположенных на голове на более или менее одинаковом расстоянии друг от друга.

Каждый электрод соединен с одним входом дифференциального усилителя (то есть один усилитель приходится на пару электродов); в стандартной системе электрод сравнения соединен с другим входом каждого дифференциального усилителя. Такой усилитель увеличивает потенциал между измерительным электродом и электродом сравнения (обычно в 1,000-100,000 раз, или коэффициент усиления напряжения составляет 60-100 дБ). В случае аналоговой ЭЭГ сигнал затем проходит через фильтр. На выходе сигнал регистрируется самописцем. Однако в наше время многие самописцы являются цифровыми, и усиленный сигнал (после прохождения через фильтр подавления шумов) преобразуется с помощью аналого-цифрового преобразователя. Для клинической поверхностной ЭЭГ частота аналого-цифрового преобразования происходит при 256-512 Гц; частота преобразования до 10 кГц используется в научных целях.

При цифровой ЭЭГ сигнал сохраняется в электронном виде; для отображения он также проходит через фильтр. Обычные параметры для фильтра низких частот и для фильтра высоких частот составляют 0,5-1 Гц и 35-70 Гц соответственно. Фильтр низких частот обычно отсеивает артефакты, представляющие собой медленные волны (например, артефакты движения), а фильтр высоких частот уменьшает чувствительность канала ЭЭГ к колебаниям высоких частот (например, электромиографические сигналы). Кроме того, может использоваться дополнительный узкополосный режекторный фильтр для устранения помех, вызванных линиями электропитания (60 Гц в США и 50 Гц во многих других странах). Режекторный фильтр часто используется, если запись ЭЭГ осуществляется в отделении интенсивной терапии, то есть в крайне неблагоприятных для ЭЭГ технических условиях.

Для оценки возможности лечения эпилепсии хирургическим путем возникает необходимость расположить электроды на поверхность мозга, под твердой мозговой оболочкой. Чтобы осуществить данный вариант ЭЭГ, производят краниотомию, то есть формируют трепанационное отверстие. Такой вариант ЭЭГ и называют интракраниальной, или внутричерепной ЭЭГ (intracranial EEG, icEEG), или субдуральной ЭЭГ (subdural EEG, sdEEG), или электрокортикографией (ЭКоГ, или electrocorticography, ECoG). Электроды могут погружаться в структуры мозга, например, миндалевидное тело (амигдала) или гиппокамп — отделы мозга, в которых формируются очаги эпилепсии, но сигналы которых невозможно зафиксировать в ходе поверхностной ЭЭГ. Сигнал электрокортикограммы обрабатывается так же, как цифровой сигнал рутинной ЭЭГ (см. выше), однако существует несколько особенностей. Обычно ЭКоГ регистрируется при более высоких частотах по сравнению с поверхностной ЭЭГ, поскольку, согласно теореме Найквиста, в субдуральном сигнале преобладают высокие частоты. Кроме того, многие артефакты, влияющие на результаты поверхностной ЭЭГ, не оказывают влияния на ЭКоГ, и поэтому часто использование фильтра для сигнала на выходе не требуется. Обычно амплитуда ЭЭГ сигнала взрослого человека составляет около 10-100 мкВ при измерении на коже волосистой части головы и около 10-20 мВ при субдуральном измерении.

Поскольку ЭЭГ-сигнал представляет собой разность потенциалов двух электродов, результаты ЭЭГ могут изображаться несколькими способами. Порядок одновременного отображения определенного количества отведений при записи ЭЭГ называется монтажом.

Биполярный монтаж

Каждый канал (то есть отдельная кривая) представляет собой разность потенциалов между двумя соседними электродами. Монтаж представляет собой совокупность таких каналов. Например, канал «Fp1-F3» — это разность потенциалов между электродом Fp1 и электродом F3. Следующий канал монтажа, «F3-C3», отражает разность потенциалов между электродами F3 и C3, и так далее для всего набора электродов. Общий для всех отведений электрод отсутствует.

Референциальный монтаж

Каждый канал представляет собой разность потенциалов между выбранным электродом и электродом сравнения. Для электрода сравнения не существует стандартного места расположения; однако его расположение отлично от расположения измерительных электродов. Часто электроды располагают в области проекций срединных структур мозга на поверхность черепа, поскольку в таком положении они не усиливают сигнал ни от одного из полушарий. Другой популярной системой фиксации электродов является крепление электродов на мочках уха или сосцевидных отростках.

Лапласовский монтаж

Используется при записи цифровой ЭЭГ, каждый канал — это разность потенциалов электрода и среднего взвешенного значения для окружающих электродов. Усредненный сигнал называется в таком случае усредненным референтным потенциалом. При использовании аналоговой ЭЭГ во время записи специалист переключается с одного типа монтажа на другой с целью максимально отразить все характеристики ЭЭГ. В случае цифровой ЭЭГ все сигналы сохраняются согласно определенному типу монтажа (обычно референциальному); поскольку любой тип монтажа может быть сконструирован математически из любого другого, специалист может наблюдать за ЭЭГ в любом варианте монтажа.

Нормальная ЭЭГ-активность

Обычно ЭЭГ описывают, используя такие термины как (1) ритмическая активность и (2) кратковременные компоненты. Ритмическая активность меняется по частоте и амплитуде, в частности, формируя альфа-ритм. Но некоторые изменения параметров ритмической активности могут иметь клиническое значение.

Большинство известных сигналов ЭЭГ соответствуют диапазону частот от 1 до 20 Гц (в стандартных условиях записи ритмы, частота которых выходит за пределы указанного диапазона, скорее всего являются артефактами).

Дельта-волны (δ-ритм)

Частота дельта-ритма составляет примерно до 3 Гц. Этот ритм характеризуется высокоамплитудными медленными волнами. Обычно присутствует у взрослых в фазе медленного сна. В норме также встречается и у детей. Дельта-ритм может возникать очагами в области подкорковых повреждений или распространяться повсеместно при диффузном поражении, метаболической энцефалопатии, гидроцефалии или глубоких поражениях срединных структур мозга. Обычно данный ритм наиболее заметен у взрослых во фронтальной области (лобная перемежающаяся ритмическая дельта-активность, или FIRDA — Frontal Intermittent Rhythmic Delta) и у детей в затылочной (затылочная перемежающаяся ритмическая дельта-активность или OIRDA — Occipital Intermittent Rhythmic Delta).

Тета-волны (θ-ритм)


Тета-ритм характеризуется частотой от 4 до 7 Гц. Обычно наблюдается у детей младшего возраста. Может встречаться у детей и взрослых в состоянии дремы или во время активации, а также в состоянии глубокой задумчивости или медитации. Избыточное количество тета-ритмов у пожилых пациентов свидетельствует о патологической активности. Может наблюдаться в виде очагового нарушения при локальных подкорковых поражениях; а кроме того, может распространяться генерализованно при диффузных нарушениях, метаболической энцефалопатии, поражениях глубинных структур мозга и в некоторых случаях при гидроцефалии.

Альфа-волны (α-ритм)

Для альфа-ритма характерная частота от 8 до 12 Гц. Название этому виду ритма дал его первооткрыватель, немецкий физиолог Ганс Бергер (Hans Berger). Альфа-волны наблюдаются в задних отделах головы с обеих сторон, причем их амплитуда выше в доминантной части. Данный вид ритма выявляется, когда исследуемый закрывает глаза или находится в расслабленном состоянии. Замечено, что альфа-ритм затухает, если открыть глаза, а также в состоянии умственного напряжения. Сейчас такой вид активности называют «основным ритмом», «затылочным доминирующим ритмом» или «затылочным альфа-ритмом». В действительности у детей основной ритм имеет частоту менее 8 Гц (то есть, технически попадает в диапазон тета-ритма). Дополнительно к основному затылочному альфа-ритму в норме присутствуют еще несколько его нормальных вариантов: мю-ритм (μ-ритм) и височные ритмы — каппа и тау-ритмы (κ и τ-ритмы). Альфа-ритмы могут возникать и в патологических ситуациях; например, если в состоянии комы на ЭЭГ пациента наблюдается диффузный альфа-ритм, который возникает без внешней стимуляции, такой ритм называют «альфа-кома».

Сенсомоторный ритм (μ-ритм)

Мю-ритм характеризуется частотой альфа-ритма и наблюдается в сенсомоторной коре. Движение противоположной руки (или представление такого движения) вызывает затухание мю-ритма.

Бета-волны (β-ритм)

Частота бета-ритма составляет от 12 до 30 Гц. Обычно сигнал имеет симметричное распределение, но наиболее очевиден в лобной области. Низкоамплитудный бета-ритм с варьирующей частотой часто связан с беспокойными и суетливыми размышлениями и активной концентрацией внимания. Ритмичные бета-волны с доминирующим набором частот связаны с различными патологиями и действием лекарственных препаратов, особенно бензодиазепинового ряда. Ритм с частотой более 25 Гц, наблюдаемый при снятии поверхностной ЭЭГ, чаще всего представляет собой артефакт. Он может отсутствовать или быть слабо выраженным в областях повреждения коры. Бета-ритм доминирует в ЭЭГ пациентов, находящихся в состоянии тревоги или беспокойства или у пациентов, у которых открыты глаза.

Гамма-волны (γ-ритм)

Частота гамма-волн составляет 26-100 Гц. Из-за того, что кожа головы и кости черепа обладают свойствами фильтра, гамма-ритмы регистрируются только при проведении электрокортиграфии или, возможно, магнитоэнцефалографии (МЭГ). Считается, что гамма-ритмы представляют собой результат активности различных популяций нейронов, объединенных в сеть для выполнения определенной двигательной функции или умственной работы.

В исследовательских целях с помощью усилителя постоянного тока регистрируют активность, близкую к постоянному току или для которой характерны крайне медленные волны. Обычно такой сигнал не регистрируют в клинических условиях, поскольку сигнал с такими частотами крайне чувствителен к целому ряду артефактов.

Некоторые виды активности на ЭЭГ могут быть кратковременными и не повторяются. Пики и острые волны могут быть следствием приступа или интериктальной активности у пациентов, страдающих эпилепсией или предрасположенных к этому заболеванию. Другие временные явления (вертекс-потенциалы и сонные веретена) считаются вариантами нормы и наблюдается во время обычного сна.

Стоит отметить, что существуют некоторые типы активности, которые статистически очень редки, однако их проявление не связано с каким-либо заболеванием или нарушением. Это так называемые «нормальные варианты» ЭЭГ. Примером такого варианта служит мю-ритм.

Параметры ЭЭГ зависят от возраста. ЭЭГ новорожденного очень сильно отличается от ЭЭГ взрослого человека. ЭЭГ ребенка обычно включает более низкочастотные колебания по сравнению с ЭЭГ взрослого.

Также параметры ЭЭГ варьируют в зависимости от состояния. ЭЭГ регистрируется вместе с другими измерениями (электроокулограммой, ЭОГ и электромиограммой, ЭМГ) для определения стадий сна в ходе полисомнографического исследования. Первая стадия сна (дремота) на ЭЭГ характеризуется исчезновением затылочного основного ритма. При этом может наблюдаться увеличение количества тета-волн. Существует целый каталог различных вариантов ЭЭГ во время дремоты (Joan Santamaria, Keith H. Chiappa). Во второй стадии сна появляются сонные веретена — кратковременные серии ритмичной активности в диапазоне частот 12-14 Гц (иногда называемые «сигма-полоса»), которые легче всего регистрируются в лобной области. Частота большинства волн на второй стадии сна составляет 3-6 Гц. Третья и четвертая стадии сна характеризуются наличием дельта-волн и обычно обозначаются термином «медленный сон». Стадии с первой по четвертую составляют так называемый сон с медленным движением глазных яблок (NonRapid Eye Movements, non-REM, NREM). ЭЭГ во время сна с быстрым движением глазных яблок (Rapid Eye Movement, REM) по своим параметрам похожа на ЭЭГ в состоянии бодрствования.

Результаты ЭЭГ, проведенной под общим наркозом, зависят от типа использованного анестетика. При введении галогенсодержащих анестетиков, например, галотана, или веществ для внутривенного введения, например, пропофола, практически во всех отведениях, особенно в лобной области, наблюдается особый «быстрый» паттерн ЭЭГ (альфа и слабый бета-ритмы). Согласно прежней терминологии, такой вариант ЭЭГ назывался лобный, распространенный быстрый (Widespread Anterior Rapid, WAR) в противоположность распространенному медленному паттерну (Widespread Slow, WAIS), возникающему при введении больших доз опиатов. Только недавно ученые пришли к пониманию механизмов воздействия анестезирующих веществ на сигналы ЭЭГ (на уровне взаимодействия вещества с различными типами синапсов и понимания схем, благодаря которым осуществляется синхронизированная активность нейронов).

Артефакты

Биологические артефакты

Артефактами называют сигналы ЭЭГ, которые не связаны с активностью головного мозга. Такие сигналы практически всегда присутствуют на ЭЭГ. Поэтому правильная интерпретация ЭЭГ требует большого опыта. Наиболее часто встречаются следующие типы артефактов:

  • артефакты, вызванные движением глаз (включая глазное яблоко, глазные мышцы и веко);
  • артефакты от ЭКГ;
  • артефакты от ЭМГ;
  • артефакты, вызванные движением языка (глоссокинетические артефакты).

Артефакты, вызванные движением глаз, возникают из-за разности потенциалов между роговицей и сетчаткой, которая оказывается довольно большой по сравнению с потенциалами мозга. Никаких проблем не возникает, если глаз находится в состоянии полного покоя. Однако практически всегда присутствуют рефлекторные движения глаз, порождающие потенциал, который затем регистрируется лобнополюсным и лобным отведениями. Движения глаз — вертикальные или горизонтальные (саккады — быстрые скачкообразные движения глаз) — происходят из-за сокращения глазных мышц, которые создают электромиографический потенциал. Независимо от того, осознанное это моргание глаз или рефлекторное, оно приводит к возникновению электромиографических потенциалов. Однако в данном случае при моргании большее значение имеют именно рефлекторные движения глазного яблока, поскольку они вызывают появление ряда характерных артефактов на ЭЭГ.

Артефакты характерного вида, возникающие вследствие дрожания век, ранее называли каппа-ритмом (или каппа-волнами). Обычно они регистрируются предлобными отведениями, которые находятся непосредственно над глазами. Иногда их можно обнаружить во время умственной работы. Обычно они имеют частоту тета- (4-7 Гц) или альфа-ритма (8-13 Гц). Данному виду активности присвоили название, поскольку считалось, что она является результатом работы мозга. Позднее установили, что эти сигналы генерируются в результате движений век, иногда настолько тончайших, что их очень сложно заметить. На самом деле они не должны называться ритмом или волной, потому что представляют собой шум или «артефакт» ЭЭГ. Поэтому термин каппа-ритм в электроэнцефалографии больше не используется, а указанный сигнал должен описываться как артефакт, вызванный дрожанием век.

Однако некоторые из этих артефактов оказываются полезными. Анализ движения глаз крайне важен при проведении полисомнографии, а также полезен в традиционной ЭЭГ для оценки возможных изменений в состояниях тревоги, бодрствования или во время сна.

Очень часто встречаются артефакты ЭКГ, которые можно перепутать со спайковой активностью. Современный способ регистрации ЭЭГ обычно включает один канал ЭКГ, идущий от конечностей, что позволяет отличить ритм ЭКГ от спайк-волн. Такой способ позволяет также определить различные варианты аритмии, которые наряду с эпилепсией могут быть причиной синкопальных состояний (обмороков) или других эпизодических нарушений и приступов. Глоссокинетические артефакты вызваны разностью потенциалов между основанием и кончиком языка. Мелкие движения языка «засоряют» ЭЭГ, особенно у пациентов, страдающих паркинсонизмом и другими заболеваниями, для которых характерен тремор.

Артефакты внешнего происхождения

В дополнение к артефактам внутреннего происхождения существует множество артефактов, которые являются внешними. Перемещение около пациента и даже регулирование положения электродов может вызвать помехи на ЭЭГ, всплески активности, возникающие из-за кратковременного изменения сопротивления под электродом. Слабое заземление электродов ЭЭГ может вызвать значительные артефакты (50-60 Гц) в зависимости от параметров местной энергосистемы. Внутривенная капельница также может служить источником помех, поскольку такое устройство может вызывать ритмичные, быстрые, низковольтные вспышки активности, которые легко перепутать с реальными потенциалами.

Коррекция артефактов

Недавно для коррекции и устранения артефактов ЭЭГ использовали метод декомпозиции, заключающийся в разложении сигналов ЭЭГ на некоторое количество компонентов. Существует множество алгоритмов разложения сигнала на части. В основе каждого метода лежит следующий принцип: необходимо проводить такие манипуляции, которые позволят получить «чистую» ЭЭГ в результате нейтрализации (обнуления) нежелательных компонентов.

Патологическая активность

Патологическую активность можно грубо разделить на эпилептиформную и неэпилептиформную. Кроме того, ее можно разделить на локальную (очаговую) и диффузную (генерализованную).

Очаговая эпилептиформная активность характеризуется быстрыми, синхронными потенциалами большого числа нейронов в определенной области мозга. Она может возникать вне приступа и указывать на область коры (область повышенной возбудимости), которая предрасположена к возникновению эпилептических приступов. Регистрации интериктальной активности еще недостаточно ни для того, чтобы установить, действительно ли пациент страдает эпилепсией, ни для локализации области, в которой приступ берет свое начало в случае фокальной, или очаговой эпилепсии.

Максимальная генерализованная (диффузная) эпилептиформная активность наблюдается в лобной зоне, однако ее можно наблюдать и во всех остальных проекциях мозга. Присутствие на ЭЭГ сигналов такого характера дает основание предполагать наличие генерализованной эпилепсии.

Очаговая неэпилептиформная патологическая активность может наблюдаться в местах повреждения коры или белого вещества головного мозга. Она содержит больше низкочастотных ритмов и/или характеризуется отсутствием нормальных высокочастотных ритмов. Кроме того, такая активность может проявляться в виде очагового или одностороннего уменьшения амплитуды сигнала ЭЭГ. Диффузная неэпилептиформная патологическая активность может проявляться в виде рассеянных аномально медленных ритмов или билатерального замедления обычных ритмов.

Преимущества метода

У ЭЭГ как инструмента для исследования мозга существует несколько значимых преимуществ, например ЭЭГ характеризуется очень высоким разрешением по времени (на уровне одной миллисекунды). Для других методов изучения активности мозга, таких как позитронно-эмиссионная томография (positron emission tomography, PET) и функциональная МРТ (ФМРТ, или Functional Magnetic Resonance Imaging, fMRI), разрешение по времени находится на уровне между секундами и минутами.

Методом ЭЭГ измеряют электрическую активность мозга напрямую, тогда как другие методы фиксируют изменения в скорости кровотока (например, однофотонная эмиссионная компьютерная томография, ОФЭКТ, или Single-Photon Emission Computed Tomography, SPECT; а также ФМРТ), которые являются непрямыми индикаторами активности мозга. ЭЭГ можно проводить одновременно с ФМРТ, чтобы совместно регистрировать данные как с высоким разрешением по времени, так и с высоким пространственным разрешением. Тем не менее, поскольку события, зарегистрированные в результате исследования каждым из методов, происходят в различные периоды времени, вовсе не обязательно, что набор данных отражает одну и ту же активность мозга. Существуют технические трудности комбинирования двух указанных методов, к которым относятся необходимость устранить с ЭЭГ артефакты радиочастотных импульсов и движения пульсирующей крови. Кроме того, в проводах электродов ЭЭГ могут возникнуть токи вследствие магнитного поля, создаваемого МРТ.

ЭЭГ может регистрироваться одновременно с проведением магнитоэнцефалографии, поэтому результаты этих комплементарных методов исследования с высоким разрешением по времени можно сравнить друг с другом.

Ограничения метода

Метод ЭЭГ имеет несколько ограничений, самое важное из которых — это слабое пространственное разрешение. ЭЭГ особенно чувствительна к определенному набору постсинаптических потенциалов: к тем, что формируются в верхних слоях коры, на вершинах извилин, непосредственно примыкающих к черепу, направленных радиально. Дендриты, расположенные глубже в коре, внутри борозд, находящиеся в глубоких структурах (например, поясной извилине или гиппокампе) или токи которых направлены по касательной к черепу, оказывают на сигнал ЭЭГ существенно меньшее влияние.

Оболочки головного мозга, цереброспинальная жидкость и кости черепа «смазывают» сигнал ЭЭГ, затеняя его интракраниальное происхождение.

Невозможно математически воссоздать единственный внутричерепной источник тока для заданного сигнала ЭЭГ, поскольку некоторые токи создают потенциалы, которые компенсируют друг друга. Ведется большая научная работа по локализации источников сигналов.

Клиническое применение

Стандартная запись ЭЭГ обычно занимает от 20 до 40 минут. Помимо состояния бодрствования, исследование может проводиться в состоянии сна или под воздействием на исследуемого разного рода раздражителей. Это способствует возникновению ритмов, отличных от тех, которые можно наблюдать в состоянии расслабленного бодрствования. К таким действиям относят периодическое световое раздражение вспышками света (фотостимуляция), усиленное глубокое дыхание (гипервентиляция) и открывание и закрывание глаз. Когда проводится исследование пациента, страдающего эпилепсией или находящегося в группе риска, энцефалограмму всегда просматривают на наличие интериктальных разрядов (то есть ненормальной активности, возникающей вследствие «эпилептической активности мозга», которая указывает на предрасположенность к эпилептическим приступам, лат. inter — между, среди, ictus — припадок, приступ).

В некоторых случаях проводят видео-ЭЭГ-мониторинг (одновременная запись ЭЭГ и видео-/аудиосигналов), при этом пациента госпитализируют на срок от нескольких дней до нескольких недель. Во время нахождения в стационаре пациент не принимает противоэпилептические препараты, что дает возможность записать ЭЭГ в приступный период. Во многих случаях запись начала приступа сообщает специалисту гораздо больше конкретной информации о заболевании пациента, чем межприступная ЭЭГ. Непрерывный ЭЭГ мониторинг включает использование портативного электроэнцефалографа, подсоединенного к пациенту в палате интенсивной терапии, для наблюдения за судорожной активностью, которая клинически неочевидна (то есть не определяется при наблюдении за движениями пациента или его психическим состоянием). Когда пациент вводится в состояние искусственной, индуцированной лекарствами комы, по паттерну ЭЭГ можно судить о глубине комы, и в зависимости от показателей ЭЭГ титруются препараты. В «амплитудно-интегрированной ЭЭГ» используют особый тип представления сигнала ЭЭГ, она используется совместно с непрерывным мониторингом функционирования мозга новорожденных, находящихся в реанимационном отделении.

Различные виды ЭЭГ используется в следующих клинических ситуациях:

  • для того, чтобы отличить эпилептический припадок от других видов приступов, например, от психогенных приступов неэпилептического характера, синкопальных состояний (обмороков), двигательных расстройств и вариантов мигрени;
  • для описания характера приступов с целью подбора лечения;
  • для локализации участка мозга, в котором зарождается приступ, для осуществления хирургического вмешательства;
  • для мониторинга бессудорожных приступов/бессудорожного варианта эпилепсии;
  • для дифференциации энцефалопатии органического характера или делирия (острого психического расстройства с элементами возбуждения) от первичных психических заболеваний, например кататонии;
  • для мониторинга глубины анестезии;
  • в качестве непрямого индикатора перфузии головного мозга в ходе каротидной эндартерэктомии (удаление внутренней стенки сонной артерии);
  • как дополнительное исследование с целью подтверждения смерти мозга;
  • в некоторых случаях с прогностической целью у пациентов в коме.

Использование количественной ЭЭГ (математической интерпретации сигналов ЭЭГ) для оценки первичных психических, поведенческих нарушений и нарушений обучения представляется довольно спорным.

Использование ЭЭГ в научных целях

Использование ЭЭГ в ходе нейробиологических исследований имеет целый ряд преимуществ перед другими инструментальными методами. Во-первых, ЭЭГ представляет собой неинвазивный способ исследования объекта. Во-вторых, нет такой жесткой необходимости оставаться в неподвижном состоянии, как при проведении функциональной МРТ. В-третьих, в ходе ЭЭГ регистрируется спонтанная активность мозга, поэтому от субъекта не требуется взаимодействия с исследователем (как, например, это требуется в поведенческом тестировании в рамках нейропсихологического исследования). Кроме того, ЭЭГ обладает высоким разрешением во времени по сравнению с такими методами, как функциональная МРТ, и может использоваться для идентификации миллисекундных колебаний электрической активности мозга.

Во многих исследованиях когнитивных способностей с помощью ЭЭГ используются потенциалы, связанные с событиями (event-related potential, ERP). Большинство моделей такого типа исследования базируется на следующем утверждении: при воздействии на субъект он реагирует либо в открытой, явной форме, либо завуалированно. В ходе исследования пациент получает какие-либо стимулы, и при этом ведется запись ЭЭГ. Потенциалы, связанные с событиями, выделяют путем усреднения сигнала ЭЭГ для всех исследований в определенном состоянии. Затем средние значения для различных состояний могут сравниваться между собой.

Другие возможности ЭЭГ

ЭЭГ проводят не только в ходе традиционного обследования для клинической диагностики и изучения работы мозга с точки зрения нейробиологии, но и для многих других целей. Вариант нейротерапии с биологической обратной связью (Neurofeedback) до сих пор остается важным дополнительным способом применения ЭЭГ, который в своей наиболее совершенной форме рассматривается в качестве основы для разработки интерфейса «мозг-компьютер» (Brain Computer Interfaces). Существует целый ряд коммерческих изделий, которые в основном базируются на ЭЭГ. Например, 24 марта 2007 г. американская компания (Emotiv Systems) представила видеоигровое устройство, управляемое с помощью мыслей, созданное на основе метода электроэнцефалографии.

Электроэнцефалография (ЭЭГ) - это метод исследования активности головного мозга путем записи электрических импульсов, исходящих из различных его областей. Осуществляется этот диагностический метод посредством специального прибора, электроэнцефалографа, и является высокоинформативным в отношении множества заболеваний центральной нервной системы. О принципе электроэнцефалографии, показаниях и противопоказаниях к ее проведению, а также о правилах подготовки к исследованию и методике его проведения вы и узнаете из нашей статьи.

Каждому известно, что наш головной мозг состоит из миллионов нейронов, каждый из которых способен самостоятельно генерировать нервные импульсы и передавать их на соседние нервные клетки. На самом деле, электрическая активность мозга очень мала и составляет миллионные доли вольта. Поэтому, чтобы оценить ее, необходимо использовать усилитель, чем и является электроэнцефалограф.

В норме импульсы, исходящие из разных отделов мозга, являются согласованными в пределах небольших его участков, в разных условиях они ослабляют или усиливают друг друга. Амплитуда и сила их также варьируются в зависимости от внешних условий или состояния активности и здоровья обследуемого.

Все эти изменения вполне под силу зарегистрировать прибору электроэнцефалографу, который состоит из определенного числа электродов, соединенных с компьютером. Электроды, установленные на кожу головы пациента, улавливают нервные импульсы, передают их на компьютер, который, в свою очередь, усиливает эти сигналы и отображает их на мониторе или же на бумаге в виде нескольких кривых, так называемых волн. Каждая волна является отображением функционирования определенного отдела головного мозга и обозначается первой буквой его латинского названия. В зависимости от частоты, амплитуды и формы колебаний кривые делят на α- (альфа), β- (бета), δ- (дельта), θ- (тета) и μ- (мю) волны.

Электроэнцефалографы бывают стационарные (позволяющие проводить исследование исключительно в специально оборудованном кабинете) и портативные (дают возможность диагностики непосредственно у постели больного). Электроды в свою очередь делят на пластинчатые (имеют вид металлических пластин диаметром 0.5-1 см) и игольчатые.


Зачем делать ЭЭГ

Электроэнцефалография регистрирует некоторые состояния и дает специалисту возможность:

  • обнаружить и оценить характер нарушения функционирования головного мозга;
  • определить, в какой области мозга расположен патологический очаг;
  • обнаружить в том или ином отделе мозга;
  • оценить функционирование мозга в период между приступами судорог;
  • выяснить причины обмороков и панических атак;
  • провести дифференциальную диагностику между органической патологией мозга и функциональными его нарушениями в случае наличия у пациента симптомов, характерных для этих состояний;
  • оценить эффективность терапии в случае ранее установленного диагноза путем сравнивания ЭЭГ до лечения и на фоне него;
  • оценить динамику процесса реабилитации после того или иного заболевания.


Показания и противопоказания

Электроэнцефалография позволяет прояснить множество ситуаций, связанных с диагностикой и дифференциальной диагностикой неврологических заболеваний, поэтому этот метод исследования широко применяется и положительно оценивается врачами-неврологами.

Итак, ЭЭГ назначают при:

  • расстройствах засыпания и сна (бессонница, синдром обструктивного сонного апноэ, частые пробуждения во сне);
  • приступах судорог;
  • частых головных болях и головокружениях;
  • заболеваниях оболочек головного мозга: , ;
  • восстановлении после нейрохирургических операций;
  • обмороках (более 1 эпизода в анамнезе);
  • постоянном чувстве усталости;
  • диэнцефальных кризах;
  • аутизме;
  • задержке развития речи;
  • задержке психического развития;
  • заикании;
  • тиках у детей;
  • синдроме Дауна;
  • подозрении на смерть мозга.

Как таковых противопоказаний к проведению электроэнцефалографии не существует. Ограничивает проведение диагностики наличие в области предполагаемой установки электродов дефектов кожи (открытых ран), травматических повреждений, недавно наложенных, незаживших послеоперационных швов, высыпаний, инфекционных процессов.

Электроэнцефалогр а фия (от электро..., греч. enkephalos - головной мозг и...графия), метод исследования деятельности головного мозга животных и человека; основан на суммарной регистрации биоэлектрической активности отдельных зон, областей, долей мозга.

В 1929 г. Бергер (Н. Berger), применив струнный гальванометр, зарегистрировал биоэлектрическую активность коры головного мозга человека. Показав возможность отводить биоэлектрическую активность от неповрежденной поверхности головы, он открыл перспективность использования этого метода при обследовании больных с нарушениями деятельности головного мозга. Однако электрическая активность головного мозга является очень слабой (величина биопотенциалов составляет в среднем 5-500 мкВ). Дальнейшее развитие этих исследований и их практическое использование стало возможным после создания усилительной электронной аппаратуры. Она дала возможность получить значительное усиление биопотенциалов и вследствие своей безинерционности позволила наблюдать колебания без искажения их формы.

Для регистрации биоэлектрической активности используют электроэнцефалограф , содержащий электронные усилители с достаточно высоким коэффициентом усиления, низким уровнем собственных шумов и полосой частот от 1 до 100 Гц или выше. Кроме этого, в электроэнцефалограф входит регистрирующая часть, представляющая осциллографическую систему с выходом на чернильное перо, электроннолучевой или шлейфный осциллографы. Отводящие электроды, соединяющие исследуемый объект со входом усилителя, могут быть наложены на поверхность головы или вживлены на более или менее длительный срок в исследуемые участки головного мозга. В настоящее время начинает развиваться телеэлектроэнцефалография, которая позволяет регистрировать электрическую активность головного мозга на расстоянии от объекта. В этом случае биоэлектрическая активность модулирует частоту передатчика ультракоротких волн, расположенного на голове человека или животного, а входное устройство электроэнцефалографа принимает эти сигналы. Запись биоэлектрической активности головного мозга называют электроэнцефалограммой (ЭЭГ), если она зарегистрирована от неповрежденного черепа, и электрокортикограммой (ЭКоГ) при регистрации непосредственно от коры головного мозга. В последнем случае метод регистрации биотоков мозга называют электрокортикографией . ЭЭГ представляют собой суммарные кривые изменений во времени разностей потенциалов, возникающих под электродами. Для оценки ЭЭГ разработаны приборы - анализаторы, автоматически разлагающие эти сложные кривые на составляющие их частоты. Большинство анализаторов содержит ряд узкополосных фильтров, настроенных на определенные частоты. На эти фильтры с выхода электроэнцефалографа подается биоэлектрическая активность. Результаты частотного анализа представляются регистрирующим прибором обычно параллельно ходу эксперимента (анализаторы Уолтера и Кожевникова). Для анализа ЭЭГ и ЭКоГ используют также интеграторы, дающие суммарную оценку интенсивности колебаний за некоторый промежуток времени. Их действие основано на измерении потенциалов конденсатора, который заряжается током, пропорциональным мгновенным значениям исследуемого процесса.

Цель ЭЭГ:

    Выявление эпилептической активности и определение типа эпилептических припадков.

    Диагностика интракраниальных очагов поражения (абсцесс, опухоли).

    Оценка электрической активности головного мозга при болезнях обмена веществ, ишемии мозга, его травмах, менингите, энцефалите, нарушении умственного развития, психических заболеваниях и лечении различными препаратами.

    Оценка степени активности головного мозга, диагностика смерти мозга.

Подготовка пациента:

    Следует объяснить пациенту, что исследование позволяет оценить электрическую активность головного мозга.

    Следует объяснить суть исследования пациенту и его родным и ответить на их вопросы.

    Перед исследованием пациент должен воздержаться от употребления напитков, содержащих кофеин; других ограничений в диете и режиме питания не требуется. Следует предупредить пациента, что если он не позавтракает перед исследованием, то у него возникнет гипогликемия, которая скажется на результате исследования.

    Пациенту следует тщательно помыть и высушить волосы для удаления остатков спреев, кремов, масел.

    ЭЭГ регистрируют в положении пациента полулежа или лежа на спине. Электроды прикрепляют к коже головы с помощью специальной пасты. Следует успокоить пациента, объяснив ему, что электроды не ударяют током.

    Пластинчатые электроды используются чаще, но если исследование проводят с помощью игольчатых электродов, следует предупредить пациента, что он будет чувствовать уколы при введении электродов.

    Следует по возможности устранить страх и тревогу у пациента, так как они существенно влияют на ЭЭГ.

    Следует выяснить, какие препараты пациент принимает. Например, прием противосудорожных, транквилизаторов, барбитуратов и других седативных препаратов следует прекратить за 24-48 ч до исследования. Детям, которые часто плачут во время исследования, и беспокойным пациентам желательно назначить седативные средства, хотя они могут повлиять на результат исследования.

    У пациента с эпилепсией может потребоваться ЭЭГ сна. В таких случаях накануне исследования он должен провести бессонную ночь, а перед исследованием ему дают седативный препарат (например, хлоралгидрат), чтобы он заснул во время регистрации ээг.

    Если ЭЭГ записывают для подтверждения диагноза смерти мозга, следует поддержать родственников пациента психологически.

Процедура и последующий уход:

    Пациента укладывают в положение лежа на спине или полулежа и прикрепляют электроды к коже головы.

    Перед тем как начать регистрацию ЭЭГ, пациента просят расслабиться, закрыть глаза и не двигаться. В процессе регистрации следует отмечать на бумаге момент, когда пациент моргнул, сделал глотательное или другие движения, так как это отражается на ЭЭГ и может явиться причиной неправильной ее интерпретации.

    Регистрацию при необходимости можно приостановить, чтобы дать пациенту передохнуть, устроиться поудобнее. Это важно, так как беспокойство и усталость пациента могут отрицательно сказаться на качестве ЭЭГ.

    После начального периода регистрации базальной ЭЭГ запись продолжают на фоне различных нагрузочных проб, т.е. действий, которые он не выполняет обычно в спокойном состоянии. Так, пациента просят быстро и глубоко дышать в течение 3 мин, что вызывает гипервентиляцию, которая может спровоцировать у него типичный эпилептический припадок или другие расстройства. Эту пробу обычно используют для диагностики припадков типа абсанса. Аналогично фотостимуляция позволяет исследовать реакцию головного мозга на яркий свет, она усиливает патологическую активность при эпилептических припадках типа абсанса или при миоклонических судорогах. Фотостимуляцию осуществляют с помощью стробоскопического источника света, мигающего с частотой 20 в секунду. ЭЭГ регистрируют при закрытых и открытых глазах пациента.

    Необходимо проследить за тем, чтобы пациент возобновил прием противосудорожных и других препаратов, который был прерван перед исследованием.

    После исследования возможны эпилептические припадки, поэтому пациенту предписывают щадящий режим и обеспечивают внимательный уход за ним.

    Следует помочь пациенту удалить остатки пасты для электродов с кожи головы.

    Если пациент перед исследованием принял седативные препараты, следует обеспечить его безопасность, например поднять борта кровати.

    Если на ЭЭГ выявлена смерть мозга, следует поддержать морально родственников пациента.

    Если припадки оказываются неэпилептическими, пациента должен обследовать психолог.

Данные ЭЭГ оказываются различными у здорового и больного человека. В состоянии покоя на ЭЭГ взрослого здорового человека видны ритмические колебания биопотенциалов двух типов. Более крупные колебания, со средней частотой 10 в 1 сек. и с напряжением, равным 50 мкв, называются альфа-волнами . Другие, более мелкие колебания, со средней частотой 30 в 1 сек. и напряжением, равным 15-20 мкв, называются бета-волнами . Если мозг человека переходит от состояния относительного покоя к состоянию деятельности, то альфа-ритм ослабевает, а бета-ритм усиливается. Во время сна как альфа-ритм, так и бета-ритм уменьшаются и появляются более медленные биопотенциалы с частотой 4-5 или 2-3 колебания в 1 сек. и частотой 14-22 колебания в 1 сек. У детей ЭЭГ отличается от результатов исследования электрической активности головного мозга у взрослых и приближается к ним по мере полного созревания мозга, т. е. к 13- 17 годам жизни. При различных заболеваниях мозга на ЭЭГ возникают разнообразные нарушения. Признаками патологии на ЭЭГ покоя считаются : стойкое отсутствие альфа-активности (десинхронизация альфа-ритма) или, наоборот, резкое ее усиление (гиперсинхронизация); нарушение регулярности колебаний биопотенциалов; а также появление патологических форм биопотенциалов - высокоамплитудных медленных (тета- и дельта-волн, острых волн, комплексов пик-волна и пароксизмальных разрядов и т. д. По этим нарушениям врач-невропатолог может определить тяжесть и до известной степени характер мозгового заболевания. Так, например, если в головном мозге имеется опухоль или произошло кровоизлияние в мозг, электроэнцефалографические кривые дают врачу указание, где (в какой части мозга) это повреждение находится. При эпилепсии на ЭЭГ даже в межприпадочном периоде можно наблюдать возникновение на фоне обычной биоэлектрической активности острых волн или комплексов пик-волна. Особенно важна электроэнцефалография когда встает вопрос о необходимости операции на мозге для удаления у больного опухоли, абсцесса или инородного тела. Данные электроэнцефалографии в сочетании с другими методами исследования используют, намечая план будущей операции. Во всех тех случаях, когда при осмотре больного с заболеванием ЦНС у врача-невропатолога возникают подозрения о структурных поражениях головного мозга, целесообразно электроэнцефалографическое исследование, С этой целью рекомендуется направлять больных в специализированные учреждения, где работают кабинеты электроэнцефалографии.

Факторы, влияющие на результат исследования

    Наводки от электрических приборов, движения глаз, головы, языка, тела (наличие артефактов на ЭЭГ).

    Прием противосудорожных и седативных препаратов, транквилизаторов и барбитуратов может маскировать судорожную активность. Острое отравление наркотическими препаратами или выраженная гипотермия вызывают снижение уровня сознания.

Другие методы

Компьютерная томография головного мозга .

КТ головного мозга позволяет получить на экране монитора с помощью компьютера серийные срезы (томограммы) головного мозга в различных плоскостях: горизонтальной, сагиттальной и фронтальной. Для получения изображения анатомических срезов различной толщины используется информация, получаемая от облучения ткани головного мозга на сотне тысяч уровнях. Специфичность и достоверность исследования повышаются с увеличением степени разрешения, которая зависит от рассчитываемой на компьютере плотности облучения нервной ткани. Несмотря на то что, МРТ превосходит КТ по качеству визуализации структур головного мозга в норме и при патологии, КТ нашла более широкое применение, особенно в острых случаях, и экономически более выгодна.

Цель

    Диагностика поражений головного мозга.

    Контроль эффективности хирургического лечения, лучевой и химиотерапии опухолей головного мозга.

    Выполнение операций на головном мозге под контролем КТ.

Оборудование

КТ-сканер, осциллоскоп, контрастное вещество (меглумина йоталамат или диатризоат натрия), 60-милли-литровый шприц, игла 19-го или 21-го калибра, внутривенный катетер и система для внутривенных вливаний на случай необходимости.

Процедура и последующий уход

    Пациента укладывают на спину на рентгеновский стол, голову при необходимости фиксируют ремешками и просят пациента не двигаться.

    Головной конец стола вдвигают в сканер, который вращается вокруг головы пациента, производя рентгенографию с шагом 1 см по дуге 180°.

    После получения этой серии срезов внутривенно вводят от 50 до 100 мл контрастного вещества в течение 1-2 мин. Внимательно следят за пациентом, с тем чтобы своевременно выявить признаки аллергической реакции (крапивница, затруднение дыхания), которая обычно появляется в течение первых 30 мин.

    После введения контрастного вещества делают другую серию срезов. Информация о срезах хранится на магнитных лентах, которую вводят в компьютер, преобразующий эту информацию в изображения, выводимые на осциллоскоп. При необходимости отдельные срезы фотографируют для изучения после исследования.

    Если была выполнена контрастная КТ, смотрят, нет ли у пациента остаточных проявлений непереносимости контрастного вещества (головная боль, тошнота, рвота), и напоминают ему, что он может перейти на обычный для него режим питания.

Меры предосторожности

    КТ головного мозга с контрастированием противопоказана пациентам с непереносимостью йода или контрастного вещества.

    Введение йодсодержащего контрастного вещества может оказать повреждающее действие на плод, особенно в I триместре беременности.

Нормальная картина

Количество радиации, проникающей через ткани, зависит от ее плотности. Плотность ткани выражается белым и черным цветом и различными оттенками серого цвета. Кость как наиболее плотная ткань имеет на компьютерной томограмме белый цвет. Спинномозговая жидкость, заполняющая желудочки гловного мозга и субарахноидальное пространство, как наименее плотная имеет на снимках черный цвет. Вещество головного мозга имеет различные оттенки серого цвета. Оценка состояния структур головного мозга производится исходя из их плотности, размеров, формы и расположения.

Отклонение от нормы

Изменение плотности в виде более светлых или темных участков на снимках, смещение сосудов и других структур наблюдаются при опухолях головного мозга, внутричерепных гематомах, атрофии, инфаркте, отеке, а также врожденных аномалиях развития мозга, в частности водянке головного мозга.

Опухоли головного мозга значительно отличаются друг от друга по своим особенностям. Метастазы обычно вызывают значительный отек на ранней стадии и могут быть распознаны при контрастной КТ.

В норме сосуды головного мозга на компьютерных томограммах не видны. Но при артериовенозной мальформации сосуды могут иметь повышенную плотность. Введение контрастного вещества позволяет лучше разглядеть пораженную область, однако в настоящее время более предпочтительным методом диагностики сосудистых поражений головного мозга является МРТ. Другим методом визуализации головного мозга является позитронно-эмиссионная томография.

ТКЭАМ - топографическое картирование электрической активности мозга - область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов (см. Видео). Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ-метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности. Однако, следует подчеркнуть, что метод картирования мозга является не более чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП.

    Сам метод картирования мозга можно разложить на три основные составляющие:

    • регистрацию данных;

      анализ данных;

      представление данных.

Регистрация данных. Используемое число электродов для регистрации ЭЭГ и ВП, как правило, варьирует в диапазоне от 16 до 32, однако в некоторых случаях достигает 128 и даже больше. При этом большее число электродов улучшает пространственное разрешение при регистрации электрических полей мозга, но сопряжено с преодолением больших технических трудностей. Для получения сравнимых результатов используется система "10-20", при этом применяется в основном монополярная регистрация. Важно, что при большом числе активных электродов можно использовать лишь один референтный электрод, т.е. тот электрод, относительно которого регистрируется ЭЭГ всех остальных точек постановки электродов. Местом приложения референтного электрода служат мочки ушей, переносица или некоторые точки на поверхности скальпа (затылок, вертекс). Существуют такие модификации этого метода, которые позволяют вообще не использовать референтный электрод, заменяя его значениями потенциала, вычисленными на компьютере.

Анализ данных. Выделяют несколько основных способов количественного анализа ЭЭГ:временной,частотныйипространственный. Временный представляет собой вариант отражения данных ЭЭГ и ВП на графике, при этом время откладывается по горизонтальной оси, а амплитуда - по вертикальной. Временной анализ применяют для оценки суммарных потенциалов, пиков ВП, эпилептических разрядов. Частотный анализ заключается в группировке данных по частотным диапазонам: дельта,тета,альфа,бета. Пространственный анализ сопряжен с использованием различных статистических методов обработки при сопоставлении ЭЭГ из разных отведений. Наиболее часто применяемый способ - это вычисление когерентности.

Способы представления данных. Самые современные компьютерные средства картирования мозга позволяют легко отражать на дисплее все этапы анализа: "сырые данные" ЭЭГ и ВП, спектры мощности, топографические карты - как статистические, так и динамические в виде мультфильмов, различные графики, диаграммы и таблицы, а также, по желанию исследователя, - различные комплексные представления. Следует особо указать на то, что применение разнообразных форм визуализации данных позволяет лучше понять особенности протекания сложных мозговых процессов.

Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга. При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях. Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры ) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее. С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока. В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Электроэнцефалография (ЭЭГ - диагностика) - метод исследования функциональной активности мозга, заключается в измерении электропотенциалов клеток головного мозга, которые впоследствии подвергаются компьютерному анализу.

Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей, также существенно помогает в диагностике эпилепсии, опухолевых, ишемических, дегенеративных и воспалительных заболеваний головного мозга. Электроэнцефалография позволяет оценить эффективность проводимого лечения при уже установленном диагнозе.

Метод ЭЭГ перспективен и показателен, что позволяет рассматривать его в области диагностики психических расстройств. Применение математических методов анализа ЭЭГ и внедрение их в практику позволяет автоматизировать и упростить работу врачей. ЭЭГ является составной частью объективных критериев течения исследуемой болезни в общей системе оценок, разработанных для персонального компьютера.

1. Метод электроэнцефалографии

Использование электроэнцефалограммы для изучения функций мозга и целей диагностики основано на знаниях, накопленных при наблюдениях за пациентами с различными поражениями мозга, а также на результатах экспериментальных исследованиях на животных. Весь опыт развития электроэнцефалографии, начиная с первых исследований Ханса Бергера в 1933 г., свидетельствует о том, что определенным электроэнцефалографическим феноменам или паттернам соответствуют определенные состояния мозга и его отдельных систем. Суммарная биоэлектрическая активность, регистрируемая с поверхности головы, характеризует состояние коры головного мозга, как в целом, так и ее отдельных областей, а также функциональное состояние глубинных структур разного уровня.

В основе колебаний потенциалов, регистрируемых с поверхности головы в виде ЭЭГ, лежат изменения внутриклеточных мембранных потенциалов (МП) корковых пирамидных нейронов. При изменении внутриклеточного МП нейрона во внеклеточном пространстве, где расположены глиальные клетки, возникает разность потенциалов - фокальный потенциал. Потенциалы, возникающие во внеклеточном пространстве в популяции нейронов, представляют собой сумму таких отдельных фокальных потенциалов. Суммарные фокальные потенциалы могут быть зарегистрированы с помощью электропроводных датчиков от разных структур мозга, от поверхности коры или с поверхности черепа. Напряжение токов головного мозга составляет порядка 10-5 Вольта. ЭЭГ представляет собой запись суммарной электрической активности клеток полушарий мозга.

1.1 Отведение и запись электроэнцефалограммы

Регистрирующие электроды располагают так, чтобы на многоканальной записи были представлены все основные отделы мозга, обозначаемые начальными буквами их латинских названий. В клинической практике используют две основные системы отведений ЭЭГ: международную систему "10-20" (рис. 1) и модифицированную схему с уменьшенным количеством электродов (рис. 2). При необходимости получения более детальной картины ЭЭГ предпочтительна схема "10-20".

Рис. 1. Международная схема расположения электродов "10-20". Буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; т - височное отведение. Цифровые индексы уточняют положение электрода внутри соответствующей области.

Рис. 2. Схема регистрации ЭЭГ при монополярном отведении (1) с референтным электродом (R) на мочке уха и при биполярных отведениях (2). В системе с уменьшенным количеством отведений буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; Та - переднее височное отведение, Тр - заднее височное отведение. 1: R - напряжение под референтным ушным электродом; О - напряжение под активным электродом, R-O - запись, получаемая при монополярном отведении от правой затылочной области. 2: Тр - напряжение под электродом в области патологического очага; Та - напряжение под электродом, стоящим над нормальной мозговой тканью; Та-Тр, Тр-О и Ta-F - записи, получаемые при биполярном отведении от соответствующих пар электродов

Референтным называют такое отведение, когда на "вход 1" усилителя подаётся потенциал от электрода, стоящего над мозгом, а на "вход 2" - от электрода на удалении от мозга. Электрод, расположенный над мозгом, чаще всего называют активным. Электрод, удалённый от мозговой ткани, носит название референтного.

В качестве такового используют левую (A1) и правую (А2) мочки уха. Активный электрод подсоединяют к "входу 1" усилителя, подача на который отрицательного сдвига потенциала вызывает отклонение регистрирующего пера вверх.

Референтный электрод подключают к "входу 2" . В некоторых случаях в качестве референтного электрода используют отведение от двух закороченных между собой электродов (АА), расположенных на мочках ушей. Поскольку на ЭЭГ регистрируется разность потенциалов между двумя электродами, на положение точки на кривой будут в равной мере, но в противоположном направлении влиять изменения потенциала под каждым из пары электродов. В референтном отведении под активным электродом генерируется переменный потенциал мозга. Под референтным электродом, находящимся вдали от мозга, имеется постоянный потенциал, который не проходит в усилитель переменного тока и не влияет на картину записи.

Разность потенциалов отражает без искажения колебания электрического потенциала, генерируемого мозгом под активным электродом. Однако область головы между активным и референтным электродами составляет часть электрической цепи "усилитель-объект", и наличие на этом участке достаточно интенсивного источника потенциала, расположенного асимметрично относительно электродов, будет существенно отражаться на показаниях. Следовательно, при референтном отведении суждение о локализации источника потенциала не вполне надёжно.

Биполярным называют отведение, при котором на "вход 1" и "вход 2" усилителя подсоединяют электроды, стоящие над мозгом. На положение точки записи ЭЭГ на мониторе в одинаковой мере влияют потенциалы под каждым из пары электродов, и регистрируемая кривая отражает разность потенциалов каждого из электродов.

Поэтому суждение о форме колебания под каждым из них на основе одного биполярного отведения оказывается невозможным. В то же время анализ ЭЭГ, зарегистрированных от нескольких пар электродов в различных комбинациях, позволяет выяснить локализацию источников потенциалов, составляющих компоненты сложной суммарной кривой, получаемой при биполярном отведении.

Например, если в задней височной области присутствует локальный источник медленных колебаний (Тр на рис. 2) , при подсоединении к клеммам усилителя переднего и заднего височных электродов (Та, Тр) получается запись, содержащая медленную составляющую, соответствующую медленной активности в задней височной области (Тр) , с наложенными на неё более быстрыми колебаниями, генерируемыми нормальным мозговым веществом передней височной области (Та).

Для выяснения вопроса о том, какой же электрод регистрирует эту медленную составляющую, на двух дополнительных каналах коммутированы пары электродов, в каждой из которых один представлен электродом из первоначальной пары, то есть Та или Тр, а второй соответствует какому-либо не височному отведению, например F и О.

Понятно, что во вновь образуемой паре (Тр-О), включающей задний височный электрод Тр, находящийся над патологически изменённым мозговым веществом, опять будет присутствовать медленная составляющая. В паре, на входы которой подана активность от двух электродов, стоящих над относительно интактным мозгом (Та-F), будет регистрироваться нормальная ЭЭГ. Таким образом, в случае локального патологического коркового фокуса подключение электрода, стоящего над этим фокусом, в паре с любым другим приводит к появлению патологической составляющей на соответствующих каналах ЭЭГ. Это и позволяет определить локализацию источника патологических колебаний.

Дополнительный критерий определения локализации источника интересующего потенциала на ЭЭГ - феномен извращения фазы колебаний.

Рис. 3. Фазовое соотношение записей при различной локализации источника потенциала: 1, 2, 3 - электроды; А, Б - каналы электроэнцефалографа; 1 - источник регистрируемой разности потенциалов находится под электродом 2 (записи по каналам А и Б в противофазе); II - источник регистрируемой разности потенциалов находится под электродом I (записи синфазны)

Стрелки указывают направление тока в цепях каналов, определяющее соответствующие направления отклонения кривой на мониторе.

Если подсоединить на входы двух каналов электроэнцефалографа три электрода следующим образом (рис. 3): электрод 1 - к "входу 1 " , электрод 3 - к "входу 2" усилителя Б, а электрод 2 - одновременно к "входу 2" усилителя А и "входу 1" усилителя Б; предположить, что под электродом 2 происходит положительное смещение электрического потенциала по отношению к потенциалу остальных отделов мозга (обозначено знаком "+") , то очевидно, что электрический ток, обусловленный этим смещением потенциала, будет иметь противоположное направление в цепях усилителей А и Б, что отразится в противоположно направленных смещениях разности потенциалов - противофазах - на соответствующих записях ЭЭГ. Таким образом, электрические колебания под электродом 2 в записях по каналам А и Б будут представлены кривыми, имеющими одинаковые частоты, амплитуды и форму, но противоположными по фазе. При коммутации электродов по нескольким каналам электроэнцефалографа в виде цепочки противофазные колебания исследуемого потенциала будут регистрироваться по тем двум каналам, к разноимённым входам которых подключён один общий электрод, стоящий над источником этого потенциала.

1.2 Электроэнцефалограмма. Ритмы

Характер ЭЭГ определяется функциональным состоянием нервной ткани, а также протекающими в ней обменными процессами. Нарушение кровоснабжения приводит к подавлению биоэлектрической активности коры больших полушарий. Важной особенностью ЭЭГ является ее спонтанный характер и автономность. Электрическая активность мозга может быть зафиксирована не только в период бодрствования, но и во время сна. Даже при глубокой коме и наркозе наблюдается особая характерная картина ритмических процессов (волн ЭЭГ). В электроэнцефалографии различают четыре основных диапазона: альфа-, бета-, гамма - и тета - волны (рис. 4).

Рис. 4. Волновые процессы ЭЭГ

Существование характерных ритмических процессов определяется спонтанной электрической активностью мозга, которая обусловлена суммарной активностью отдельных нейронов. Ритмы электроэнцефалограммы отличаются друг от друга по длительности, амплитуде и форме. Основные компоненты ЭЭГ здорового человека приведены в таблице 1. Разбиение на группы является более или менее произвольным, оно не соответствует каким-либо физиологическим категориям.

Таблица 1 - Основные компоненты электроэнцефалограммы

· Альфа(б) -ритм: частота 8-13 Гц, амплитуда до 100 мкВ. Регистрируется у 85-95% здоровых взрослых. Лучше всего выражен в затылочных отделах. Наибольшую амплитуду б-ритм имеет в состоянии спокойного расслабленного бодрствования при закрытых глазах. Помимо изменений, связанных с функциональным состоянием мозга, в большинстве случаев наблюдают спонтанные изменения амплитуды б-ритма, выражающиеся в чередующемся нарастании и снижении с образованием характерных "Веретён", продолжительностью 2-8 с. При повышении уровня функциональной активности мозга (напряжённое внимание, страх) амплитуда б-ритма уменьшается. На ЭЭГ появляется высокочастотная низко амплитудная нерегулярная активность, отражающая десинхронизацию активности нейронов. При кратковременном, внезапном внешнем раздражении (особенно вспышке света) эта десинхронизация возникает резко, и в случае если раздражение не носит эмоциогенного характера, достаточно быстро (через 0,5-2 с) восстанавливается б-ритм. Этот феномен называется "реакция активации", "ориентировочная реакция", "реакция угасания б-ритма", "реакция десинхронизации".

· Бета(в)-ритм: частота 14-40 Гц, амплитуда до 25 мкВ. Лучше всего в-ритм регистрируется в области центральных извилин, однако распространяется и на задние центральные и лобные извилины. В норме он выражен весьма слабо и в большинстве случаев имеет амплитуду 5-15 мкВ. в-Ритм связан с соматическими сенсорными и двигательными корковыми механизмами и даёт реакцию угасания на двигательную активацию или тактильную стимуляцию. Активность с частотой 40-70 Гц и амплитудой 5-7 мкВ иногда называют г-ритмом, клинического значения он не имеет.

· Мю(м) -ритм: частота 8-13 Гц, амплитуда до 50 мкВ. Параметры м-ритма аналогичны таковым нормального б-ритма, но м-ритм отличается от последнего физиологическими свойствами и топографией. Визуально м-ритм наблюдают только у 5-15% испытуемых в роландической области. Амплитуда м-ритма (в редких случаях) нарастает при двигательной активации или соматосенсорной стимуляции. При рутинном анализе м-ритм клинического значения не имеет.

· Тета(И) -активность: частота 4-7 Гц, амплитуда патологической И-активности?40 мкВ и чаще всего превышает амплитуду нормальных ритмов мозга, достигая при некоторых патологических состояниях 300 мкВ и более.

· Дельта (д) -активность: частота 0,5-3 Гц, амплитуда такая же, как у И-активности. И- и д-колебания могут в небольшом количестве присутствовать на ЭЭГ взрослого бодрствующего человека и в норме, но их амплитуда при этом не превышает таковую б-ритма. Патологической считают ЭЭГ, содержащую и- и д-колебания амплитудой?40 мкВ и занимающие более 15% общего времени регистрации.

Эпилептиформная активность - феномены, типично наблюдаемые на ЭЭГ больных эпилепсией. Они возникают в результате высокосинхронизованных пароксизмальных деполяризационных сдвигов в больших популяциях нейронов, сопровождающихся генерацией потенциалов действия. В результате этого возникают высокоамплитудные острой формы потенциалы, имеющие соответствующие названия.

· Спайк (англ. spike - остриё, пик) - негативный потенциал острой формы, длительностью менее 70 мс, амплитудой?50 мкВ (иногда до сотен или даже тысяч мкВ).

· Острая волна отличается от спайка растянутостью во времени: её длительность 70-200 мс.

· Острые волны и спайки могут комбинироваться с медленными волнами, образуя стереотипные комплексы. Спайк-медленная волна - комплекс из спайка и медленной волны. Частота комплексов спайк-медленная волна составляет 2,5-6 Гц, а период, соответственно, - 160-250 мс. Острая-медленная волна комплекс из острой волны и следующей за ней медленной волны, период комплекса 500-1300 мс (рис. 5).

Важная характеристика спайков и острых волн - их внезапное появление и исчезновение, и чёткое отличие от фоновой активности, которую они превышают по амплитуде. Острые феномены с соответствующими параметрами, нечётко отличающиеся от фоновой активности, не обозначаются как острые волны или спайки.

Рис. 5 . Основные типы эпилептиформной активности: 1- спайки; 2 - острые волны; 3 - острые волны в Р-диапазоне; 4 - спайк-медленная волна; 5 - полиспайк-медленная волна; 6 - острая-медленная волна. Значение калибровочного сигнала для "4" - 100 мкВ, для остальных записей - 50 мкВ.

Вспышка - термин, обозначающий группу волн с внезапным возникновением и исчезновением, чётко отличающихся от фоновой активности частотой, формой и/или амплитудой (рис. 6).

Рис. 6. Вспышки и разряды: 1 - вспышки б-волн высокой амплитуды; 2 - вспышки в-волн высокой амплитуды; 3 - вспышки (разряды) острых волн; 4 - вспышки полифазных колебаний; 5 - вспышки д-волн; 6 - вспышки и-волн; 7 - вспышки (разряды) комплексов спайк-медленная волна

· Разряд - вспышка эпилептиформной активности.

· Паттерн эпилептического припадка - разряд эпилептиформной активности, типично совпадающей с клиническим эпилептическим приступом.

2. Электроэнцефалография при эпилепсии

Эпилепсия - заболевание, проявляющееся двумя и более эпилептическими приступами (припадками). Эпилептический приступ - короткое, обычно не спровоцированное стереотипное нарушение сознания, поведения, эмоций, моторных или сенсорных функций, которое даже по клиническим проявлениям можно связать с разрядом избыточного количества нейронов в коре мозга. Определение эпилептического припадка через понятие разряда нейронов определяет важнейшее значение ЭЭГ в эпилептологии.

Уточнение формы эпилепсии (более 50 вариантов) включает обязательным компонентом описание характерной для данной формы картины ЭЭГ. Ценность ЭЭГ определяется тем, что эпилептические разряды, а, следовательно, и эпилептиформную активность, на ЭЭГ наблюдают и вне эпилептического приступа.

Надёжными признаками эпилепсии являются разряды эпилептиформной активности и паттерны эпилептического припадка. Кроме того, характерны высокоамплитудные (более 100-150 мкВ) вспышки б-, И-, и д-активности, однако сами по себе они не могут считаться доказательством наличия эпилепсии и оцениваются в контексте клинической картины. Помимо диагноза эпилепсии, ЭЭГ играет важную роль в определении формы эпилептического заболевания, от чего зависит прогноз и выбор препарата. ЭЭГ позволяет подобрать дозу препарата по оценке уменьшения эпилептиформной активности и предсказать побочные эффекты по появлению дополнительной патологической активности.

Для выявления эпилептиформной активности на ЭЭГ используют световую ритмическую стимуляцию (в основном при фото генных припадках), гипервентиляцию или другие воздействия, исходя из сведений о провоцирующих приступы факторах. Долгосрочная регистрация, особенно во время сна, способствует выявлению эпилептиформных разрядов и паттернов эпилептического припадка.

Провокации эпилептиформных разрядов на ЭЭГ или самого припадка способствует депривация сна. Эпилептиформная активность подтверждает диагноз эпилепсии, однако возможна и при других состояниях, в то же время у части больных эпилепсией зарегистрировать её не удаётся.

Долгосрочная регистрация электроэнцефалограммы и ЭЭГ-видеомониторинг, как и эпилептические припадки, эпилептиформная активность на ЭЭГ регистрируется не постоянно. При некоторых формах эпилептических расстройств она наблюдается только во время сна, иногда провоцируется определёнными жизненными ситуациями или формами активности пациента. Следовательно, надёжность диагностики эпилепсии прямо зависит от возможности длительной регистрации ЭЭГ в условиях достаточно свободного поведения обследуемого. Для этой цели разработаны специальные портативные системы долгосрочной (12-24 ч и более) записи ЭЭГ в условиях, приближенных к обычной жизнедеятельности.

Регистрирующая система состоит из эластичной шапочки с вмонтированными в неё электродами специальной конструкции, позволяющими долговременно получать качественное отведение ЭЭГ. Отводимая электрическая активность мозга усиливается, оцифровывается и регистрируется на флеш-картах рекордером размером с портсигар, помещающимся в удобной сумке на пациенте. Пациент может выполнять обычные домашние действия. По завершении записи информация с флеш-карты в лаборатории переводится в компьютерную систему регистрации, просмотра, анализа, хранения и распечатки электроэнцефалографических данных и обрабатывается как обычная ЭЭГ. Наиболее надёжную информацию даёт ЭЭГ -видеомониторинг одновременная регистрация ЭЭГ и видеозаписи пациента во время при ступа. Использование этих методов требуется при диагностике эпилепсии, когда рутинная ЭЭГ не выявляет эпилептиформной активности, а также при определении формы эпилепсии и типа эпилептического припадка, для дифференциальной диагностики эпилептических и неэпилептических приступов, уточнения целей операции при хирургическом лечении, диагноза эпилептических непароксизмальных расстройств, связанных с эпилептиформной активностью во сне, контроля правильности выбора и дозы препарата, побочных эффектов терапии, надёжности ремиссии.

2.1. Характеристики электроэнцефалограммы при наиболее распространённых формах эпилепсии и эпилептических синдромов

· Доброкачественная эпилепсия детского возраста с центро-темпоральными спайками (доброкачественная роландическая эпилепсия).

Рис. 7. ЭЭГ пациента 6 лет с идиопатической детской эпилепсией с центро-темпоральными спайками

Видны регулярные комплексы острая-медленная волна амплитудой до 240 мкВ в правой центральной (С4) и передневисочной области (Т4), формирующие извращение фазы в соответствующих отведениях, свидетельствующее о генерации их диполем в нижних отделах прецентральной извилины на границе с верхней височной.

Вне приступа: фокальные спайки, острые волны и/или комплексы спайк-медленная волна в одном полушарии (40-50%) или в двух с односторонним преобладанием в центральных и средневисочных отведениях, формирующие противофазы над роландической и височной областью (рис. 7).

Иногда эпилептиформная активность во время бодрствования отсутствует, но появляется во время сна.

Во время приступа: фокальный эпилептический разряд в центральных и средневисочных отведениях в виде высокоамплитудных спай ков и острых волн, комбинирующихся с медленными волнами, с возможным распространением за пределы начальной локализации.

· Доброкачественная затылочная эпилепсия детского возраста с ранним началом (форма Панайотопулоса).

Вне приступа: у 90% пациентов наблюдают в основном мультифокальные высоко или низкоамплитудные комплексы острая-медленная волна, нередко билатерально-синхронные генерализованные разряды. В двух третях случаев наблюдают затылочные спайки, в трети случаев - экстраокципитальные.

Комплексы возникают сериями при закрывании глаз.

Отмечают блокирование эпилептиформной активности открыванием глаз. Эпилептиформная активность на ЭЭГ и иногда приступы провоцируются фото стимуляцией.

Во время приступа: эпилептический разряд в виде высокоамплитудных спайков и острых волн, комбинирующихся с медленными волнами, в одном или обоих затылочных и заднетеменных отведениях, обычно с распространением за пределы начальной локализации.

Идиапатические генерализованные эпилепсии. Паттерны ЭЭГ, характерные для детской и юношеской идиопатических эпилепсий с

· абсансами, а также для идиопатической юношеской миоклонической эпилепсии, приведены выше.

Характеристики ЭЭГ при первично генерализованной идиопатической эпилепсии с генерализованными тонико-клоническими приступами следующие.

Вне приступа: иногда в пределах нормы, но обычно с умеренными или выраженными изменениями с И-, д-волнами, вспышками билатеральносинхронных или асимметричных комплексов спайк-медленная волна, спайков, острых волн.

Во время приступа: генерализованный разряд в виде ритмической активности 10 Гц, постепенно нарастающей по амплитуде и уменьшающейся по частоте в клонической фазе, острые волны 8-16 Гц, комплексы спайк-медленная волна и полиспайк-медленная волна, группы высокоамплитудных И- и д-волн, нерегулярных, асимметричных, в тонической фазе И- и д-активность, завершающаяся иногда периодами отсутствия активности или низкоамплитудной медленной активности.

· Симптоматические фокальные эпилепсии: характерные эпилептиформные фокальные разряды наблюдают менее регулярно, чем при идиопатических. Даже припадки могут проявляться не типичной эпилептиформной активностью, а вспышками медленных волн или даже десинхронизацией и связанным с припадком уплощением ЭЭГ.

При лимбических (гиппокампальных) височных эпилепсиях в межприступный период изменения могут отсутствовать. Обычно наблюдают фокальные комплексы острая-медленная волна в височных отведениях, иногда билатерально-синхронные с односторонним амплитудным преобладанием (рис. 8.). Во время приступа - вспышки высокоамплитудных ритмичных "крутых" медленных волн, или острых волн, или комплексов острая-медленная волна в височных отведениях с распространением на лобные и задние. В начале (иногда во время) припадка может наблюдаться одностороннее уплощение ЭЭГ. При латерально-височных эпилепсиях со слуховыми и реже зрительными иллюзиями, галлюцинациями и сноподобными состояниями, нарушениями речи и ориентации эпилептиформная активность на ЭЭГ наблюдается чаще. Разряды локализуются в средне- и задневисочных отведениях.

При бессудорожных височных приступах, протекающих по типу автоматизмов, возможна картина эпилептического разряда в виде ритмичной первично- или вторично-генерализованной высокоамплитудной И-активности без острых феноменов, и в редких случаях - в виде диффузной десинхронизации, проявляющейся полиморфной активностью амплитудой меньше 25 мкВ.

Рис. 8. Височно-долевая эпилепсия у больного 28 лет с комплексными парциальными приступами

Билатерально-синхронные комплексы острая-медленная волна в передних отделах височной области с амплитудным преобладанием справа (электроды F8 и Т4), свидетельствуют о локализации источника патологической активности в передних медиобазальных отделах правой височной доли.

ЭЭГ при лобнодолевых эпилепсиях в межприпадочном периоде в двух третях случаев фокальной патологии не выявляет. При наличии эпилептиформных колебаний они регистрируются в лобных отведениях с одной или с двух сторон, наблюдаются билатерально-синхронные комплексы спайк-медленная волна, часто с латеральным преобладанием в лобных отделах. Во время припадка могут наблюдаться билатерально-синхронные разряды спайк-медленная волна или высокоамплитудные регулярные И- или д-волны, преимущественно в лобных и/или височных отведениях, иногда внезапная диффузная десинхронизация. При орбитофронтальных фокусах трёхмерная локализация выявляет соответственное расположение источников начальных острых волн паттерна эпилептического припадка.

2.2 Интерпретация результатов

Анализ ЭЭГ проводят в ходе записи и окончательно по её завершении. Во время записи оценивают наличие артефактов (наводка полей сетевого тока, механические артефакты движения электродов, электромиограмма, электрокардиограмма и др.), принимают меры к их устранению. Проводят оценку частоты и амплитуды ЭЭГ, выделяют характерные графоэлементы, определяют их пространственное и временное распределение. Завершают анализ физиологической и патофизиологической интерпретацией результатов и формулированием диагностического заключения с клинико-электроэнцефалографической корреляцией.

Рис. 9. Фотопароксизмальный ответ на ЭЭГ при эпилепсии с генерализованными приступами

Фоновая ЭЭГ в пределах нормы. При нарастающей по частоте от 6 до 25 Гц световой ритмической стимуляции наблюдается увеличение амплитуды ответов на частоте 20 Гц с развитием генерализованных разрядов спайков, острых волн и комплексов спайк-медленная волна. d - правое полушарие; s - левое полушарие.

Основной медицинский документ по ЭЭГ - клинико-электроэнцефалографическое заключение, написанное специалистом на основе анализа "сырой" ЭЭГ.

Заключение по ЭЭГ должно быть сформулировано в соответствии с определёнными правилами и состоять из трёх частей:

1) описание основных типов активности и графоэлементов;

2) резюме описания и его патофизиологическая интерпретация;

3) корреляция результатов предыдущих двух частей с клиническими данными.

Базовый описательный термин в ЭЭГ - "активность", определяющая любую последовательность волн (б-активность, активность острых волн и др.).

· Частота определяется количеством колебаний в секунду; её записывают соответствующим числом и выражают в герцах (Гц). В описании приводят среднюю частоту оцениваемой активности. Обычно берут 4-5 отрезков ЭЭГ длительностью 1 с и высчитывают количество волн на каждом из них (рис. 10).

· Амплитуда - размах колебаний электрического потенциала на ЭЭГ; измеряют от пика предшествующей волны до пика последующей волны в противоположной фазе, выражают в микровольтах (мкВ). Для измерения амплитуды используют калибровочный сигнал. Так, если калибровочный сигнал, соответствующий напряжению 50 мкВ, имеет на записи высоту 10 мм, то, соответственно, 1 мм отклонения пера будет означать 5 мкВ. Для характеристики амплитуды активности в описании ЭЭГ принимают наиболее характерно встречающиеся максимальные её значения, исключая выскакивающие.

· Фаза определяет текущее состояние процесса и указывает направление вектора его изменений. Некоторые феномены на ЭЭГ оценивают количеством фаз, которые они содержат. Монофазным называется колебание в одном направлении от изоэлектрической линии с возвратом к исходному уровню, двухфазным - такое колебание, когда после завершения одной фазы кривая переходит исходный уровень, отклоняется в противоположном направлении и возвращается к изоэлектрической линии. Полифазными называют колебания, содержащие три фазы и более. в более узком смысле термином "полифазная волна" определяют последовательность б- и медленной (обычно д) волны.

Рис. 10. Измерение частоты (1) и амплитуды (II) на ЭЭГ

Частота измеряется как количество волн в единицу времени (1 с). А - амплитуда.

Заключение

электроэнцефалография эпилептиформный мозговой

С помощью ЭЭГ получают информацию о функциональном состоянии мозга при разных уровнях сознания пациента. Достоинством этого метода являются его безвредность, безболезненность, неинвазивность.

Электроэнцефалография нашла широкое применение в неврологической клинике. Особенно значимы данные ЭЭГ в диагностике эпилепсии, возможна их определенная роль в распознавании опухолей внутричерепной локализации, сосудистых, воспалительных, дегенеративных заболеваний головного мозга, коматозных состояний. ЭЭГ с применением фотостимуляции или стимуляции звуком может помочь отдифференцировать истинные и истерические расстройства зрения и слуха или симуляцию таких расстройств. ЭЭГ может быть использована при мониторном наблюдении за больным. Отсутствие на ЭЭГ признаков биоэлектрической активности головного мозга является одним из важнейших критериев его смерти.

ЭЭГ проста в использовании, дешева и не связана с воздействием на испытуемого, т.е. неинвазивна. ЭЭГ может быть зарегистрирована около кровати пациента и использоваться для контроля стадии эпилепсии, длительного мониторинга мозговой активности.

Но имеется еще одно, не такое очевидное, но очень ценное преимущество ЭЭГ. Фактически, ПЭТ и фМРТ основаны на измерении вторичных метаболических изменений в ткани мозга, а не первичных (то есть электрических процессов в нервных клетках). ЭЭГ может показать один из основных параметров работы нервной системы - свойство ритмичности, которое отражает согласованность работы разных структур мозга. Следовательно, при записи электрической (а также магнитной) энцефалограммы, нейрофизиолог имеет доступ к фактическим механизмам обработки информации мозга. Это помогает обнаружить схему процессов, задействованных мозгом, показывая не только «где», но и «как» информация обработана в мозге. Именно эта возможность делает ЭЭГ уникальным и, безусловно, ценным методом диагностики.

Электроэнцефалографические обследования позволяют раскрыть, как человеческий мозг использует свои функциональные резервы.

Список литературы

1. Зенков, Л.Р.Клиническая электроэнцефалография (с элементами эпилептологии). Руководство для врачей - 3-е изд. - М.: МЕДпресс-информ, 2004. - 368с.

2. Чебаненко А.П., Учебное пособие для студентов физического факультета отделения "Медицинская физика", Прикладная термо- и электродинамика в медицине - Одесса.- 2008. - 91с.

3. Кратин Ю.Г., Гусельников, В.Н. Техника и методы электроэнцефалографии. - Л.: Наука, 1971, с. 71.

Размещено на Allbest.ru

...

Подобные документы

    Начало изучения электрических процессов мозга Д. Реймоном, открывшим его электрогенные свойства. Электроэнцефалография как современный неинвазивный метод исследования функционального состояния головного мозга путем регистрации биоэлектрической активности.

    презентация , добавлен 05.09.2016

    Исследование функционального состояния центральной нервной системы методом электроэнцефалографии. Формирование протокола обследования. Картирование электрической активности мозга. Исследование мозгового и периферического кровообращения методом реографии.

    курсовая работа , добавлен 12.02.2016

    Понятие и принципы электроэнцефалография (ЭЭГ). Возможности использования ЭЭГ в изучении адаптационных процессов человека. Индивидуально-типологические особенности регуляторных процессов ЦНС у лиц с начальными признаками нейроциркуляторной дистонии.

    презентация , добавлен 14.11.2016

    Оценка функционального состояния мозга новорожденных детей из групп риска. Графоэлементы неонатальной электроэнцефалографии, нормативный и патологический онтогенез. Развитие и исход паттернов: вспышка-подавление, тета, дельта-"щетки", пароксизмы.

    статья , добавлен 18.08.2017

    Общие представления об эпилепсии: описание болезни в медицине, особенности личности больного. Нейропсихология детского возраста. Когнитивные нарушения у детей, больных эпилепсией. Нарушение опосредствованной памяти и мотивационного компонента у больных.

    курсовая работа , добавлен 13.07.2012

    Сущностные характеристики нейрональной активности и исследование активности нейронов головного мозга. Анализ электроэнцефалографии, которая занимается оценкой биопотенциалов, возникающих при возбуждении мозговых клеток. Процесс магнитоэнцефалографии.

    контрольная работа , добавлен 25.09.2011

    Оценка активности киллерных лимфоцитов. Определение функциональной активности фагоцитов, концентрации иммуноглобулинов, компонентов комплемента. Иммунологические методы, основанные на реакции антиген-антитело. Области использования иммунодиагностики.

    учебное пособие , добавлен 12.04.2014

    Этиология, патогенез и лечение панкреонекроза. Нейтрофилы: жизненный цикл, морфология, функции, метаболизм. Биолюминесцентный метод определения активности НАД(Ф)-зависимых дегидрогеназ в нейтрофилах. Активность лактатдегидрогеназы нейтрофилов крови.

    курсовая работа , добавлен 08.06.2014

    Характеристика методов исследования механической активности сердца - апекскардиографии, баллистокардиографии, рентгенокимографии и эхокардиографии. Их основное значение, точность измерения и особенности применения. Принцип и режимы работы УЗ прибора.

    презентация , добавлен 13.12.2013

    Патофизиологические особенности, у нейрохирургических больных и больных с черепно-мозговой травмой. Нарушение кровообращения в головном мозге. Терапевтические аспекты в инфузионной терапии. Особенности питания больных с черепно-мозговой травмой.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека