Цветовое зрение человека. Отклонения цветового зрения

Цветовое зрение

В глазу человека содержатся два типа светочувствительных клеток (фоторецепторов): высокочувствительные палочки и менее чувствительные колбочки. Палочки функционируют в условиях относительно низкой освещённости и отвечают за действие механизма ночного зрения, однако при этом они обеспечивают только нейтральное в цветовом отношении восприятие действительности, ограниченное участием белого, серого и чёрного цветов. Колбочки работают при более высоких уровнях освещённости, чем палочки. Они ответственны за механизм дневного зрения, отличительной особенностью которого является способность обеспечения цветового зрения.

У приматов (в том числе и человека) мутация вызвала появление дополнительного, третьего типа колбочек - цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» - плодов, цветов, листьев.

Видимый солнечный спектр

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Ещё в 1970-х годах было показано, что распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом, что было подтверждено более детальными исследованиями в начале XXI века. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета (эффект метамерии). Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета

Свет с разной длиной волны по-разному стимулирует разные типы колбочек. Например, желто-зелёный свет в равной степени стимулирует колбочки L и M-типов, но слабее стимулирует колбочки S-типа. Красный свет стимулирует колбочки L-типа намного сильнее, чем колбочки M-типа, а S-типа не стимулирует почти совсем; зелено-голубой свет стимулирует рецепторы M-типа сильнее, чем L-типа, а рецепторы S-типа - ещё немного сильнее; свет с этой длиной волны наиболее сильно стимулирует также палочки. Фиолетовый свет стимулирует почти исключительно колбочки S-типа. Мозг воспринимает комбинированную информацию от разных рецепторов, что обеспечивает различное восприятие света с разной длиной волны. За цветовое зрение человека и обезьян отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют двухцветное зрение. В том случае, если у человека два белка, кодируемые разными генами, оказываются слишком схожи или один из белков не синтезируется, развивается дальтонизм. Н. Н. Миклухо-Маклай установил, что у папуасов Новой Гвинеи, живущих в гуще зелёных джунглей, отсутствует способность различать зелёный цвет. Трёхсоставную теорию цветового зрения впервые высказал в 1756 году М. В. Ломоносов, когда он писал «о трёх материях дна ока». Сто лет спустя её развил немецкий учёный Г. Гельмгольц, который не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке.Параллельно существовала оппонентная теория цвета Эвальда Геринга. Её развили Дэвид Хьюбел (David H. Hubel) и Торстен Визел (Torsten N. Wiesel). Они получили Нобелевскую премию 1981 года за своё открытие. Они предположили, что в мозг поступает информация вовсе не о красном (R), зелёном (G) и синем (B) цветах (теория цвета Юнга-Гельмгольца). Мозг получает информацию о разнице яркости - о разнице яркости белого (Y мах) и чёрного (Y мин), о разнице зелёного и красного цветов (G - R), о разнице синего и жёлтого цветов (B - yellow), а жёлтый цвет (yellow = R + G) есть сумма красного и зелёного цветов, где R, G и B - яркости цветовых составляющих - красного, R, зелёного, G, и синего, B. Имеем систему уравнений - К ч-б = Y мах - Y мин; K gr = G - R; K brg = B - R - G, где К ч-б, K gr , K brg - функции коэффициентов баланса белого для любого освещения. Практически это выражается в том, что люди воспринимают цвет предметов одинаково при разных источниках освещения (цветовая адаптация). Оппонентная теория в целом лучше объясняет тот факт, что люди воспринимают цвет предметов одинаково при чрезвычайно разных источниках освещения (цветовая адаптация), в том числе при различном цвете источников света в одной сцене. Эти две теории не вполне согласованы друг с другом. Но несмотря на это, до сих пор предполагают, что на уровне сетчатки действует трёхстимульная теория, однако информация обрабатывается и в мозг поступают данные, уже согласующиеся с оппонентной теорией.

Это одна из важнейших функций глаза, которую обеспечивают колбочки. Палочки не способны воспринимать цвета.

Весь спектр цветов, существующий в окружающей среде, состоит из 7 основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового.

Любой цвет имеет такие характеристики:

1) цветовой тон – это главное качество цвета, которое определяется длиной волны. Это то, что мы называем «красный», «зеленый», и др.;

2) насыщенность - характеризуется наличием в основном цвете примеси другого цвета;

3) яркость - характеризует степень приближенности данного цвета к белому. Это то, что мы называем «светло-зеленый», «темно-зеленый» и др.

Всего глаз человека способен воспринимать до 13 000 цветов и их оттенков.

Способность глаза к цветовому зрению объясняется теорией Ломоносова – Юнга – Гельмгольца, в соответствии с которой все естественные цвета и их оттенки возникают в результате смешивания трех основных цветов: красного, зеленого и синего. В соответствии с этим допускается, что в глазу существуют три типа цветочувствительных колбочек: красночувствительные (в наибольшей степени раздражаются красными лучами, менее - зелеными и еще менее - синими), зеленочувствительные (в наибольшей степени раздражаются зелеными лучами, менее всего - синими) и синечувствительные (сильнее всего возбуждаются синими лучами, менее всего - красными). От суммарного возбуждения этих трех типов колбочек и появляется ощущение того или иного цвета.

Исходя из трехкомпонентной теории цветового зрения, люди, правильно различающие три основные цвета (красный, зеленый, синий), называются нормальными трихроматами.

Нарушения цветового зрения могут быть врожденными и приобретенными. Врожденными нарушениями (они всегда двусторонние) страдают около 8% мужчин и 0,5% женщин, которые, в основном, являются индукторами и передают врожденные нарушения по мужской линии. Приобретенные нарушения (могут быть как одно-, так и двусторонними) встречаются при заболеваниях зрительного нерва, хиазмы, центральной ямки сетчатки.

Все нарушения цветового зрения сгруппированы в классификации Криса-Нагеля-Рабкина, в соответствии с которой выделяют:

1. монохромазию - видение в одном цвете: ксантопсия (желтом), хлоропсия (зеленом), эритропсия (красном), цианопсия (синем). Последняя часто встречается после экстракции катаракты и имеет преходящий характер.

2. дихромазию - полное невосприятие одного из трех основных цветов: протанопсия (полностью выпадает восприятие красного цвета); дейтеранопсия (полностью выпадает восприятие зеленого цвета, дальтонизм); тританопсия (полное невосприятие синего цвета).


3. аномальную трихромазию - когда не выпадает, а только нарушается восприятие одного из основных цветов. При этом пациент основной цвет различает, но путается в оттенках: протаномалия - нарушается восприятие красного цвета; дейтераномалия – нарушается восприятие зеленого; тританомалия – нарушается восприятие синего цвета. Каждая разновидность аномальной трихромазии делится на три степени: А, В, С. Степень А близка к дихромазии, степень С - к норме, степень В занимает промежуточное положение.

4. ахромазия - видение в сером и черном цветах.

Из всех нарушений цветового зрения чаще всего встречается аномальная трихромазия. Следует отметить, что нарушение цветового зрения не является противопоказанием к службе в армии, но ограничивает выбор рода войск.

Диагностика расстройств цветового зрения осуществляется с помощью полихроматических таблиц Рабкина. В них на фоне кружков разного цвета, но одинаковой яркости, изображены цифры и фигуры, легко различаемые нормальными трихроматами, и скрытые цифры и фигуры, которые различают пациенты с тем или иным типом нарушений, но не различают нормальные трихроматы.

Для объективного исследования цветового зрения, в основном в экспертной практике, применяют аномалоскопы.

Цветовое зрение формируется параллельно с формированием остроты
зрения и появляется в первые 2 месяца жизни, причем сначала появляется восприятие длинноволновой части спектра (красной), позднее – средневолновой (желто-зеленой) и коротковолновой (синей) частей. В 4-5 лет цветовое зрение уже развито и совершенствуется далее.

Существуют законы оптического смешивания цветов, которые широко применяются в дизайне: все цвета, от красного до синего, со всеми переходными оттенками размещены в т.н. круге Ньютона. В соответствии с первым законом, если смешать между собой основной и дополнительный цвета (это цвета, лежащие на противоположных концах цветового круга Ньютона), то получается ощущение белого цвета. В соответствии со вторым законом, если смешать два цвета через один, образуется цвет, расположенный между ними.

Цветоощущение, как и острота зрения, является функцией колбочкового аппарата сетчатки .

Цветовое зрение это способность глаза воспринимать световые волны различной длины, измеряемой в нанометрах .

Цветовое зрение это способность зрительной системы воспринимать различные цвета и их оттенки . Ощущение цвета возникает в глазу при воздействии на фоторецепторы сетчатки электромагнитных колебаний в области видимой части спектра.

Всё многообразие цветовых ощущений образуется при смещении основных семи цветов спектра — красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового. Воздействие на глаз отдельных монохроматических лучей спектра вызывает ощущение того или иного хроматического цвета . Глазом человека воспринимается участок спектра между лучами с длиной волны от 383 до 770 нм. Лучи света с большой длиной волны вызывают ощущение красного, с малой длиной — синего и фиолетового цветов. Длины волн в промежутке между ними вызывают ощущение оранжевого, жёлтого, зелёного и голубого цветов.

Физиологию и патологию цветоощущения наиболее полно объясняет трёхкомпонентная теория цветового зрения Ломоносова-Юнга-Гельмгольца . Согласно этой теории, в сетчатке человека имеются три вида колбочек, каждый из которых воспринимает соответствующий основной цвет. Каждый из этих видов колбочек содержит различные цветочувствительные зрительные пигменты — одни — к красному цвету, другие — к зелёному, третьи — к синему. При полноценной функции всех трёх компонентов обеспечивается нормальное цветовое зрение, называемое нормальной трихромазией , а люди, обладающие им трихроматии .

Всё многообразие зрительных ощущений может быть разделено на две группы :

  • ахроматические — восприятие белого, чёрного, серого цветов, от самого светлого до самого тёмного;
  • хроматические — восприятие всех тонов и оттенков цветного спектра.

Хроматические цвета различают по цветовому тону, светлоте или яркости, и насыщенности.

Цветовой тон это признак каждого цвета, позволяющий отнести данный цвет к тому или иному цвету . Светлота цвета характеризуется степенью его близости к белому цвету.

Насыщенность цвета степень отличия от ахроматического такой же светлоты . Всё многообразие цветовых оттенков получают путём смешивания только трёх основных цветов: красного, зелёного, синего.

Законы смешения цветов действуют, если оба глаза раздражают разными цветами. Следовательно, бинокулярное смешивание цветов не отличается от монокулярного, что указывает на роль в этом процессе центральной нервной системы.

Различают приобретённые и врождённые нарушения цветоощущения . Врождённые расстройства зависят о трёх компонентов — такое зрение называется дихромазия . При выпадении двух компонентов зрение называется монохромазией .

Приобретённые встречаются нечасто : при заболеваниях зрительного нерва сетчатки и центральной нервной системы .

Оценка цветоощущения проводится в соответствии с классификацией Криса-Нагеля-Рабкина, в которой предусматривается :

  • нормальная трихромазия — цветовое зрение, при котором все эти рецепторы развиты и функционируют нормально;
  • аномальная трихромазия — один из трёх рецепторов функционирует неправильно. Она подразделяется на: протаномалию, характеризующуюся аномалией развития первого (красного) рецептора; дейтераномалию, характеризующуюся аномалией развития второго (зелёного) рецептора; — тританомалию, характеризующуюся аномалией развития третьего (синего) рецептора;
  • дихромазия — цветовое зрение, при котором один из трёх рецепторов не функционирует. Дихромазию подразделяют на :
  • протанопию — слепота преимущественно на красный цвет;
  • дейтеранопию — слепота преимущественно на зелёный цвет;
  • тританопию — слепота преимущественно на синий цвет.
  • монохромазия или ахромазия полное отсутствие цветного зрения.
  • Более значительные расстройства цветового зрения, именуемый частичной цветовой слепотой, наступают при полном выпадении восприятия одного цветового компонента . Считают, что страдающие этим расстройством — дихроматы — могут быть протанопами при выпадении красного, дейтеранопами — зелёного и тританопами — фиолетового компонента.

    См. функции зрительного анализатора и методы их исследования

    Саенко И. А.

    1. Справочник медицинской сестры по уходу/Н. И. Белова, Б. А. Беренбейн, Д. А. Великорецкий и др.; Под ред. Н. Р. Палеева.- М.: Медицина, 1989.
    2. Рубан Э. Д., Гайнутдинов И. К. Сестренское дело в офтальмологии. — Ростов н/Д: Феникс, 2008.

    Цветное зрение

    Феноменологию цветовосприятия описывают законы цветового зрения, выведенные по результатам психофизических экспериментов. На основе этих законов за период более 100 лет было разработано несколько теорий цветового зрения. И только в последние 25 лет или около того появилась возможность непосредственно проверить эти теории методами электрофизиологии путем регистрации электрической активности одиночных рецепторов и нейронов зрительной системы.

    Феноменология цветовосприятия

    Цветовые тона образуют “естественный” континуум. Количественно он может быть изображен как цветовой круг, на котором задана последовательность вида: красный, желтый, зеленый, голубой, пурпурный и снова красный. Тон и насыщенность вместе определяют цветность, или уровень цвета. Насыщенность определяется тем, каково в цвете содержание белого или черного. Например, если чистый красный смешать с белым, то получится розовый оттенок. Любой цвет может быть представлен точкой в трехмерном “цветовом теле”. Один из первых примеров “цветового тела” — цветовая сфера немецкого художника Ф. Рунге (1810). Каждому цвету здесь соответствует определенный участок, расположенный на поверхности или внутри сферы. Такое представление может быть использовано для описания следующих наиболее важных качественных законов цветовосприятия.

    1.

    2.

    3.

    В современных метрических цветовых системах цветовосприятие описывается на основе трех переменных — тона, насыщенности и светлоты. ??о делается для того, чтобы объяснить законы смещения цветов, которые обсудим ниже, и для того, чтобы определить уровни идентичного цветоощущения. В метрических трехмерных системах из обычной цветовой сферы посредством ее деформации образуется несферическое цветовое тело. Целью создания таких метрических цветовых систем (в Германии используется цветовая система DIN, разработанная Рихтером) является не физиологическое объяснение цветового зрения, а скорее однозначное описание особенностей цветовосприятия. Тем не менее, когда выдвигается исчерпывающая физиологическая теория цветового зрения (пока такой теории еще нет), она должна обладать способностью объяснить структуру цветового пространства.

    Теории цветового зрения

    Трехкомпонентная теория цветового зрения

    Цветовое зрение основано на трех независимых физиологических процессах. В трехкомпонентной теории цветового зрения (Юнг, Максвелл, Гельмгольц) постулируется наличие трех различных типов колбочек, которые работают как независимые приемники, если освещенность имеет фотопический уровень.

    Комбинации получаемых от рецепторов сигналов обрабатываются в нейронных системах восприятия яркости и цвета. Правильность данной теории подтверждается законами смешения цветов, а также многими психофизиологическими факторами. Например, на нижней границе фотопической чувствительности в спектре могут различаться только три составляющие — красный, зеленый и синий.

    Теория оппонентных цветов

    Если яркое зеленое кольцо окружает серый круг, то последний в результате одновременного цветового контраста приобретает красный цвет. Явления одновременного цветового контраста и последовательного цветового контраста послужили основой для теории оппонентных цветов, предложенной в XIX в. Герингом. Геринг предполагал, что имеются четыре основных цвета — красный, желтый, зеленый и синий — и что они попарно связаны с помощью двух антагонистических механизмов — зелено-красного механизма и желто-синего механизма. Постулировался также третий оппонентный механизм для ахроматически дополнительных цветов белого и черного. Из-за полярного характера восприятия этих цветов Геринг назвал эти цветовые пары “оппонентными цветами”. Из его теории следует, что не может быть таких цветов, как “зеленовато-красный” и “синевато — желтый”.

    Зонная теория

    Нарушения цветового зрения

    Различные патологические изменения, нарушающие цветовосприятие, могут происходить на уровне зрительных пигментов, на уровне обработки сигналов в фоторецепторах или в высоких отделах зрительной системы, а также в самом диоптрическом аппарате глаза. Ниже описываются нарушения цветового зрения, имеющие врожденный характер и почти всегда поражающие оба глаза. Случаи нарушения цветовосприятия только одним глазом крайне редки. В последнем случае больной имеет возможность описывать субъективные феномены нарушенного цветового зрения, поскольку может сравнивать свои ощущения, полученные с помощью правого и левого глаза.

    Аномалии цветового зрения

    Аномалиями обычно называют те или иные незначительные нарушения цветовосприятия. Они передаются по наследству как рецессивный признак, сцепленный с X-хромосомой. Лица с цветовой аномалией все являются трихроматами, т.е. им, как и людям с нормальным цветовым зрением, для полного описания видимого цвета необходимо использовать три основных цвета. Однако аномалы хуже различают некоторые цвета, чем трихроматы с нормальным зрением, а в тестах на сопоставление цветов они используют красный и зеленый цвет в других пропорциях. Тестирование на аномалоскопе показывает, что если в цветовой смеси больше красного цвета, чем в норме, а при дейтераномалии в смеси больше, чем нужно, зеленого. В редких случаях тританомалии нарушается работа желто-синего канала.

    Дихроматы

    Различные формы дихроматопсии также наследуются как рецессивные сцепленные с Х-хромосомой признаки. Дихроматы могут описывать все цвета, которые видят, только с помощью двух чистых цветов. Как у протанопов, так и у дейтеранопов нарушена работа красно-зеленого канала. Протанопы путают красный цвет с черным, темно-серым, коричневым и в некоторых случаях, подобно дейтеранопам, с зеленым. Определенная часть спектра кажется им ахроматической. Для протанопа эта область между 480 и 495 нм, для дейтеранопа между 495 и 500 нм. Редко встречающиеся тританопы путают желтый цвет и синий. Сине-фиолетовый конец спектра кажется им ахроматическим — как переход от серого к черному. Область спектра между 565 и 575 нм тританопы также воспринимают как ахроматический.

    Полная цветовая слепота

    Менее 0,01% всех людей страдают полной цветовой слепотой. Они монохроматы видят окружающий мир как черно-белый фильм, т.е. различают только градации серого. У таких монохроматов обычно отмечается нарушение световой адаптации при фотопическом уровне освещения. Из-за того, что глаза монохроматов легко ослепляются, они плохо различают форму при дневном свете, что вызывает фотофобию. Поэтому они носят темные солнцезащитные очки даже при нормальном дневном освещении. В сетчатке монохроматов при гистологическом исследовании обычно не находят никаких аномалий. Считается, что в их колбочках вместо зрительного пигмента содержится родопсин.

    Нарушения палочкового аппарата

    Диагностика нарушений цветового зрения

    Поскольку существует целый ряд профессий, при которых необходимо нормальное цветовое зрение (например, шоферы, летчики, машинисты, художники-модельеры), у всех детей следует проверять цветовое зрение, чтобы впоследствии учесть наличие аномалий при выборе профессии. В одном из простых тестов используются “псевдоизохроматические” таблицы Ишихары. На этих таблицах нанесены пятна разных размеров и цветов, расположенные так, что они образуют буквы, знаки или цифры. Пятна разного цвета имеют одинаковый уровень светлоты. Лица с нарушенным цветовым зрением не способны увидеть некоторые символы (это зависит от цвета пятен, из которых они образованы). Используя различные варианты таблиц Ишихары, можно достаточно надежно выявить нарушения цветового зрения. Точная диагностика возможна с помощью тестов на смешение цветов.

    Литература:
    1. Дж. Дудел, М. Циммерман, Р. Шмидт, О. Грюссер и др. Физиология человека, 2 том, перевод с английского, “Мир”, 1985
    2. Гл. Ред. Б. В. Петровский. Популярная медицинская энциклопедия, ст. “Зрение”, “Цветовое зрение”,” Советская энциклопедия”, 1988
    3. В. Г.

    Цветное зрение

    Елисеев, Ю. И. Афанасьев, Н. А. Юрина. Гистология, “Медицина”, 1983

    Зрительное ощущение — индивидуальное восприятие зрительного раздражителя, возникающее при попадании прямых и отраженных от предметов лучей света, достигающих определенной пороговой интенсивности. Реальный зрительный объект, находящийся в поле зрения, вызывает комплекс ощущений, интеграция которых формирует восприятие объекта.

    Восприятие зрительных раздражителей . Восприятие света осуществляется с участием фоторецепторов, или нейросенсорных клеток, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализиро-ванные клетки, передающие информацию о квантах света на нейроны сетчатки, в том числе вначале на биполярные нейроны, затем на ганглиозные клетки, аксоны которых составляют волокна зрительного нерва; информация затем поступает на нейроны подкоровых (таламус и передние бугры четверохолмия) и корковых центров (первичное проекционное поле 17, вторичнные проекционные поля 18 и 19) зрения. Кроме того, в процессах передачи и пе-реработки информации в сетчатке участвуют также гори-зонтальные и амакриновые клетки. Все нейроны сетчатки образуют нервный аппарат глаза, который не только пе-редает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию.

    Более 100 лет назад на основании морфологических признаков Макс Шультце разделил фоторецепторы на два типа - палочки (длинные тонкие клетки, имеющие ци-линдрический наружный сегмент и равный ему по диа-метру внутренний) и колбочки (обладающие более корот-ким и толстым внутренним сегментом). Он обратил внима-ние на то, что у ночных животных (летучая мышь, сова, крот, кошка, еж) в сетчатке преобладали палочки, а у дневных (голуби, куры, ящерицы) - колбочки. На осно-вании этих данных Шультце предложил теорию двойствен-ности зрения, согласно которой палочки обеспечивают скотопическое зрение, или зрение при низком уровне осве-щенности, а колбочки реализуют фотопическое зрение и работают при более ярком освещении. Следует, однако, отметить, что кошки прекрасно видят днем, а содержащие-ся в неволе ежи легко приспосабливаются к дневному об-разу жизни; змеи, в сетчатке которых находятся главным образом колбочки, хорошо ориентируются в сумерках.

    Морфологические особенности палочек и колбочек. В сетчатке человека в каждом глазу содержится около 110-123 млн. палочек и примерно 6-7 млн. колбочек, т.е. 130 млн. фоторецепторов. В области желтого пятна имеются главным образом колбочки, а на периферии - палочки.

    Построение изображения. Глаз имеет несколько преломляющих сред: роговицу, жидкость передней и задней камер глаза, хруст лик и стекловидное тело. Построение изображения в такой системе очень сложно, ибо каждая преломляющая среда имеет свой радиус кривизны и показатель преломления. Специальные расчеты показали, что можно пользоваться упрощенной моделью - редуцированным глазом и считать, что имеется только одна преломляющая поверхность - роговица и одна узловая точка (через нее луч пролетит без преломления), находящаяся на расстоянии 17 мм спереди от сетчатки (рис. 60).

    Рис. 60. Расположение узловой точки Рис. 61. Построение изображения, и заднего фокуса глаза.

    Для построения изображения предмета АБ из каждой ограничивающей его точки берется два луча: один луч после преломлен проходит через фокус, а второй идет без преломления через узловую точку (рис. 61). Место схождения этих лучей дает изображение точек А и Б - точки А1 и Б2 и соответственно предмет А1Б1. Изображение получается действительным, обратным и уменьшенным. Зная расстояние от предмета до глаза ОД, величин предмета АБ и расстояние от узловой точки до сетчатки (17 мм), можно вычислить величину изображения. Для этого из подобия треугольников АОБ и Л1Б1О1 выводится равенство отношений:

    Преломляющую силу глаза выражают в диоптриях. Прелом-ляющей силой в одну диоптрию обладает линза с фокусным рас-стоянием в 1 м. Для определения преломляющей силы линзы в диоптриях следует единицу разделить на фокусное расстояние в центрах. Фокус - это точка схождения после преломления параллельно падающих на линзу лучей. Фокусным расстоянием называют расстояние от центра линзы (для глаза от узловой точки) ho фокуса.

    Глаз человека установлен на рассматривание дальних предметов: параллельные лучи, идущие от сильно удаленной светящейся точки, сходятся на сетчатке, и, следовательно, на ней находится фокус. Поэтому расстояние OF от сетчатки до узловой точки О является для глаза фокусным расстоянием. Если принять его равным17 мм, то преломляющая сила глаза будет равна:

    Цветовое зрение. Большинство людей способно раз-личать основные цвёта и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы раз-личных по длине волны электромагнитных колебаний, в том числе дающих ощущение фиолетового цвета (397-424 нм), синего (435 нм), зеленого (546 нм), желтого (589 нм) и красного (671-700 нм). Сегодня ни у кого не вызывает сомнения, что для нормального цветового зре-ния человека любой заданный цветовой тон может быть получен путем аддитивного смешения 3 основных цвето-вых тонов - красного (700 нм), зеленого (546 нм) и синего (435 нм). Белый цвет дает смешение лучей всех цветов, либо смешение трех основных цветов (красного, зеленого и синего), либо при смешении двух так называемых парных дополнительных цветов: красного и си-него, желтого и синего.

    Световые лучи с длиной волны от 0,4 до 0,8 мкм, вызывая возбуждение в колбочках сетчатки, обусловли-вают возникновение ощущения цветности предмета. Ощущение красного цвета возникает при действии лучей с наибольшей длиной волны, фиолетового - с наименьшей.

    В сетчатке имеются три типа колбочек, реагирующих по-раз-ному на красный, зеленый и фиолетовый цвет. Одни колбочки реагируют главным образом на красный цвет, другие - на зеленый, третьи - на фиолетовый. Эти три цвета были названы основными. Запись потенциалов действия от одиночных ганглиозных клеток сетчатки показала, что при освещении глаза лучами различной длины волны возбуждение в одних клетках - доминаторах - возникает при действии любого цвета, в других - модуляторах - только на определенную длину волны. При этом было выделено 7 различных модуляторов, реагирующих на длину волны от 0,4 до 0,6 мкм.

    Оптическим смешением основных цветов можно получить все остальные цвета спектра и все оттенки. Иногда наблюдаются нарушения цветовосприятия, в связи, с чем человек не различает тех или иных цветов. Такое отклонение отме-чается у 8% мужчин и у 0,5% женщин. Человек может не разли-чать один, два, а в более редких случаях все три основных цвета, так что вся окружающая среда воспринимается в серых тонах.

    Адаптация. Чувствительность фоторецепторов сетчатки к дей-ствию световых раздражителей чрезвычайно высока. Одна палоч-ка сетчатки может быть возбуждена при действии 1-2 квантов света. Чувствительность может меняться при изменении освещенности. В темноте она повышается, а на свету - уменьшается.

    Темновая адаптация, т.е. значительное повышение чувствительности глаза наблюдается при переходе из светлого помещения в темное. В первые десять минут пребывания в темноте чувствительность глаза к свету увеличивается в десятки раз, а затем в течение часа - в десятки тысяч раз. В основе темновой адаптации лежат два основных процесса - вос-становление зрительных пигментов и увеличение площади рецептивного поля. В первое время происходит восста-новление зрительных пигментов колбочек, что, однако, не приводит к большим изменениям чувствительности глаза, так как абсолютная чувствительность колбочкового аппа-рата невелика. К концу первого часа пребывания в тем-ноте восстанавливается родопсин палочек, что в 100000-200000 раз повышает чувствительность палочек к свету (и, следовательно, повышает периферическое зрение). Кроме того, в темноте вследствие ослабления или снятия латерального торможения (в этом процессе принимают участие нейроны подкоровых и корковых центров зре-ния), существенно увеличивается площадь возбудительно-го центра рецептивного поля ганглиозной клетки (при этом возрастает конвергенция фоторецепторов на бипо-лярные нейроны, а биполярных нейронов - на ганглиозную клетку). В результате этих событий за счет про-странственной суммации на периферии сетчатки световая чувствительность в темноте возрастает, но при этом сни-жается острота зрения. Активация симпатической нервной системы и рост продукции катехоламинов повышают ско-рость темновой адаптации.

    Опыты показали, что адаптация зависит от влияний, приходящих из центральной нервной системы. Так, освещение одного глаза вызывает падение чувствительности к свету второго глаза, не подвергавшегося освещению.

    цветовое зрение и методы его определения

    Предполагают, что импульсы, приходящие из центральной нервной системы, вызывают изменение числа функционирующих горизонтальных клеток. При увеличении их количества возрастает число фоторецепторов, соединенных с одно ганглиозной клеткой, т. е. возрастает рецептивное поле. Это и обеспечивает реакцию при меньшей интенсивности светового раздражения. При увеличении освещенности число возбужденных горизонтальных клеток уменьшается, что сопровождается падением чувствительности.

    При переходе от темноты к свету наступает времен-ное ослепление, затем чувствительность глаза постепенно снижается, т.е. происходит световая адаптация. Она свя-зана, главным образом, с уменьшением площади рецеп-тивных полей сетчатки.

    Биофизика цветового зрения

    ЦВЕТ И ИЗМЕРЕНИЕ ЦВЕТА

    Различные феномены цветового зрения особенно ясно показывают, что зрительное восприятие зависит не только от вида стимулов и работы рецепторов, но также и от характера переработки сигналов в нервной системе. Различные участки видимого спектра кажутся нам по-разному окрашенными, причем отмечается непрерывное изменение ощущений при переходе от фиолетового и синего через зеленый и желтый цвета — к красному. Вместе с тем мы можем воспринимать цвета, отсутствующие в спектре, например, пурпурный тон, который получается при смешении красного и синего цветов. Совершенно различные физические условия зрительной стимуляции могут приводить к идентичному восприятию цвета. Например, монохроматический желтый цвет невозможно отличить от определенной смеси чисто зеленого и чисто красного.

    Феноменологию цветовосприятия описывают законы цветового зрения, выведенные по результатам психофизических экспериментов. На основе этих законов за период более 100 лет было разработано несколько теорий цветового зрения. И только в последние 25 лет или около того появилась возможность непосредственно проверить эти теории методами электрофизиологии — путем регистрации электрической активности одиночных рецепторов и нейронов зрительной системы.

    Феноменология цветовосприятия

    Зрительный мир человека с нормальным цветовым зрением чрезвычайно насыщен цветовыми оттенками. Человек может различать примерно 7 миллионов различных цветовых оттенков. Сравните — в сетчатке глаза насчитывается тоже около 7 миллионов колбочек. Впрочем, хороший монитор в состоянии отобразить около 17 миллионов оттенков (точнее, 16’777’216).

    Весь этот набор можно разбить на два класса — хроматические и ахроматические оттенки. Ахроматические оттенки образуют естественную последовательность от самого яркого белого к глубокому черному, который соответствует ощущению черного в явлении одновременного контраста (серая фигура на белом фоне кажется темнее, чем та же самая фигура на темном). Хроматические оттенки связаны с окраской поверхности предметов и характеризуются тремя феноменологическими качествами: цветовым тоном, насыщенностью и светлотой. В случае светящихся световых стимулов (например, цветной источник света) признак “светлота” заменяется на признак “освещенность” (яркость). Монохроматические световые стимулы с одинаковой энергией, но разной длиной волны вызывают различное ощущение яркости. Кривые спектральной яркости (или кривые спектральной чувствительности) как для фотопического, так и для скотопического зрения строятся на основании систематических измерений излучаемой энергии, которая необходима для того, чтобы световые стимулы с разной длиной волны (монохроматические стимулы) вызывали равное субъективное ощущение яркости.

    Цветовые тона образуют “естественный” континуум. Количественно он может быть изображен как цветовой круг, на котором задана последовательность вида: красный, желтый, зеленый, голубой, пурпурный и снова красный. Тон и насыщенность вместе определяют цветность, или уровень цвета. Насыщенность определяется тем, каково в цвете содержание белого или черного. Например, если чистый красный смешать с белым, то получится розовый оттенок. Любой цвет может быть представлен точкой в трехмерном “цветовом теле”. Один из первых примеров “цветового тела” — цветовая сфера немецкого художника Ф.Рунге (1810). Каждому цвету здесь соответствует определенный участок, расположенный на поверхности или внутри сферы. Такое представление может быть использовано для описания следующих наиболее важных качественных законов цветовосприятия.

    1. Воспринимаемые цвета образуют континуум; иными словами, близкие цвета переходят один в другой плавно, без скачка.
    2. Каждая точка в цветовом теле может быть точно определена тремя переменными.
    3. В структуре цветового тела имеются полюсные точки — такие дополнительные цвета, как черный и белый, зеленый и красный, голубой и желтый, расположены на противоположных сторонах сферы.

    В современных метрических цветовых системах цветовосприятие описывается на основе трех переменных — тона, насыщенности и светлоты. Это делается для того, чтобы объяснить законы смещения цветов, которые обсудим ниже, и для того, чтобы определить уровни идентичного цветоощущения. В метрических трехмерных системах из обычной цветовой сферы посредством ее деформации образуется несферическое цветовое тело. Целью создания таких метрических цветовых систем (в Германии используется цветовая система DIN, разработанная Рихтером) является не физиологическое объяснение цветового зрения, а скорее однозначное описание особенностей цветовосприятия. Тем не менее, когда выдвигается исчерпывающая физиологическая теория цветового зрения (пока такой теории еще нет), она должна обладать способностью объяснить структуру цветового пространства.

    Смешение цветов

    Аддитивное смешение цветов производится тогда, когда световые лучи с разной длиной волны падают на одну и ту же точку сетчатки. Например, в аномалоскопе — приборе, который используется для диагностики нарушений цветового зрения, — один световой стимул (например, чисто желтый с длиной волны 589 нм) проецируется на одну половину круга, тогда как некоторая смесь цветов (например, чисто красный с длиной волны 671 нм и чисто зеленый с длиной волны 546 нм) — на другую его половину. Аддитивная спектральная смесь, которая дает ощущение, идентичное чистому цвету, может быть найдена из следующего “уравнения смешения цветов”:

    а (красный, 671) + b (зеленый, 546) c (желтый, 589)(1)

    Символ означает эквивалентность ощущения и не имеет математического смысла, a, b и c — коэффициенты освещенности. Для человека с нормальным цветовым зрением для красной составляющей коэффициент должен быть взят примерно равным 40, а для зеленой составляющей — примерно 33 относительным единицам (если за 100 единиц взять освещенность для желтой составляющей).

    Если взять два монохроматических световых стимула, один в диапазоне от 430 до 555 нм, а другой в диапазоне от 492 до 660 нм, и смешать их аддитивно, то цветовой тон получившейся цветовой смеси либо будет белым, либо будет соответствовать чистому цвету с длиной волны между длинами волн смешиваемых цветов. Однако, если длина волны одного из монохроматических стимулов превышает 660, а другого — не достигает 430 нм, то получаются пурпурные цветовые тона, которых в спектре нет.

    Белый цвет. Для каждого цветового тона на цветовом круге имеется такой другой цветовой тон, который при смешении дает белый цвет. Константы (весовые коэффициенты a и b) уравнения смешения

    a {F 1 } + b {F 2 }K {белый} (2)

    зависят от определения понятия “белый”.

    Цвет и зрение

    Любую пару цветовых тонов F1, F2, которая удовлетворяет уравнению (2), называют дополнительными цветами.

    Субтрактивное смешение цветов. Оно отличается от аддитивного смешения цветов тем, что является чисто физическим процессом. Если белый цвет пропустить через два фильтра с широкой полосой пропускания — сначала через желтый, а затем через голубой, — то получившаяся в результате субтрактивная смесь будет иметь зеленый цвет, поскольку световые лучи только зеленого цвета могут пройти через оба фильтра. Художник, смешивая краски, производит субтрактивное смешение цветов, поскольку отдельные гранулы красок действуют как цветные фильтры с широкой полосой пропускания.

    ТРИХРОМАТИЧНОСТЬ

    Для нормального цветового зрения любой заданный цветовой тон (F4) может быть получен путем аддитивного смешения трех определенных цветовых тонов F1-F3 . Это необходимое и достаточное условие описывается следующим уравнением цветоощущения:

    a {F 1 } + b {F 2 } + c {F 3 } d {F 4 } (3)

    Согласно международной конвенции, в качестве первичных (главных) цветов F1,F2,F3, которые могут использоваться для построения современных цветовых систем, выбраны чистые цвета с длинами волн 700 нм (красный цвет), 546 нм (зеленый цвет) и 435 нм (голубой). Для получения белого цвета при аддитивном смешивании весовые коэффициенты этих основных цветов (a, b и c) должны быть связаны следующим соотношением:

    a + b + c + d = 1 (4)

    Результаты физиологических экспериментов по цветовосприятию, описываемые уравнениями (1) — (4), могут быть представлены в виде диаграммы цветности, (“цветового треугольника”), которая слишком сложна для изображения в данной работе. Такая диаграмма отличается от трехмерного представления цветов тем, что здесь отсутствует один параметр — “светлота”. Согласно этой диаграмме, при смешении двух цветов получаемый цвет лежит на прямой, соединяющей два исходных цвета. Для того, чтобы по этой диаграмме найти пары дополнительных цветов, необходимо провести прямую через “белую точку”.

    Цвета, используемые в цветном телевидении, получаются путем аддитивного смешения трех цветов, выбранных по аналогии с уравнением (3).

    ТЕОРИИ ЦВЕТОВОГО ЗРЕНИЯ

    Трехкомпонентная теория цветового зрения

    Из уравнения (3) и диаграммы цветности следует, что цветовое зрение основано на трех независимых физиологических процессах. В трехкомпонентной теории цветового зрения (Юнг, Максвелл, Гельмгольц) постулируется наличие трех различных типов колбочек, которые работают как независимые приемники, если освещенность имеет фотопический уровень. Комбинации получаемых от рецепторов сигналов обрабатываются в нейронных системах восприятия яркости и цвета. Правильность данной теории подтверждается законами смешения цветов, а также многими психофизиологическими факторами. Например, на нижней границе фотопической чувствительности в спектре могут различаться только три составляющие — красный, зеленый и синий.

    Первые объективные данные, подтверждающие гипотезу о наличии трех типов рецепторов цветового зрения, были получены с помощью микроспектрофотометрических измерений одиночных колбочек, а также посредством регистрации цветоспецифичных рецепторных потенциалов колбочек в сетчатках животных, обладающих цветовым зрением.

    Теория оппонентных цветов

    Если яркое зеленое кольцо окружает серый круг, то последний в результате одновременного цветового контраста приобретает красный цвет. Явления одновременного цветового контраста и последовательного цветового контраста послужили основой для теории оппонентных цветов, предложенной в XIX в. Герингом. Геринг предполагал, что имеются четыре основных цвета — красный, желтый, зеленый и синий — и что они попарно связаны с помощью двух антагонистических механизмов — зелено-красного механизма и желто-синего механизма. Постулировался также третий оппонентный механизм для ахроматически дополнительных цветов — белого и черного. Из-за полярного характера восприятия этих цветов Геринг назвал эти цветовые пары “оппонентными цветами”. Из его теории следует, что не может быть таких цветов, как “зеленовато-красный” и “синевато — желтый”.

    Таким образом, теория оппонентных цветов постулирует наличие антагонистических цветоспецифических нейронных механизмов. Например, если такой нейрон возбуждается под действием зеленого светового стимула, то красный стимул должен вызывать его торможение. Предложенные Герингом оппонентные механизмы получили частичную поддержку после того, как научились регистрировать активность нервных клеток, непосредственно связанных с рецепторами. Так, у некоторых позвоночных, обладающих цветовым зрением, были обнаружены “красно-зеленые” и “желто-синие” горизонтальные клетки. У клеток “красно-зеленого” канала мембранный потенциал покоя изменяется и клетка гиперполяризуется, если на ее рецептивное поле падает свет спектра 400-600 нм, и деполяризуется при подаче стимула с длиной волны больше 600 нм. Клетки “желто-синего” канала гиперполяризуются при действии света с длиной волны меньше 530 нм и деполяризуются в интервале 530-620 нм.

    На основании таких нейрофизиологических данных можно составить несложные нейронные сети, которые позволяют объяснить, как осуществить взаимную связь между тремя независимыми системами колбочек, чтобы вызвать цветоспецифическую реакцию нейронов на более высоких уровнях зрительной системы.

    Зонная теория

    В свое время между сторонниками каждой из описанных теорий велись жаркие споры. Однако сейчас эти теории можно считать взаимно дополняющими интерпретациями цветового зрения. В зонной теории Крисса, предложенной 80 лет назад, была сделана попытка синтетического объединения этих двух конкурирующих теорий. Она показывает, что трехкомпонентная теория пригодна для описания функционирования уровня рецепторов, а оппонентная теория — для описания нейронных систем более высокого уровня зрительной системы.

    НАРУШЕНИЯ ЦВЕТОВОГО ЗРЕНИЯ

    Различные патологические изменения, нарушающие цветовосприятие, могут происходить на уровне зрительных пигментов, на уровне обработки сигналов в фоторецепторах или в высоких отделах зрительной системы, а также в самом диоптрическом аппарате глаза.

    Ниже описываются нарушения цветового зрения, имеющие врожденный характер и почти всегда поражающие оба глаза. Случаи нарушения цветовосприятия только одним глазом крайне редки. В последнем случае больной имеет возможность описывать субъективные феномены нарушенного цветового зрения, поскольку может сравнивать свои ощущения, полученные с помощью правого и левого глаза.

    Аномалии цветового зрения

    Аномалиями обычно называют те или иные незначительные нарушения цветовосприятия. Они передаются по наследству как рецессивный признак, сцепленный с X-хромосомой. Лица с цветовой аномалией все являются трихроматами, т.е. им, как и людям с нормальным цветовым зрением, для полного описания видимого цвета необходимо использовать три основных цвета (ур.3).

    Однако аномалы хуже различают некоторые цвета, чем трихроматы с нормальным зрением, а в тестах на сопоставление цветов они используют красный и зеленый цвет в других пропорциях. Тестирование на аномалоскопе показывает, что при протаномалии в соответствии с ур. (1) в цветовой смеси больше красного цвета, чем в норме, а при дейтераномалии в смеси больше, чем нужно, зеленого. В редких случаях тританомалии нарушается работа желто-синего канала.

    Дихроматы

    Различные формы дихроматопсии также наследуются как рецессивные сцепленные с Х-хромосомой признаки. Дихроматы могут описывать все цвета, которые видят, только с помощью двух чистых цветов (ур.3). Как у протанопов, так и у дейтеранопов нарушена работа красно-зеленого канала. Протанопы путают красный цвет с черным, темно-серым, коричневым и в некоторых случаях, подобно дейтеранопам, с зеленым. Определенная часть спектра кажется им ахроматической. Для протанопа эта область между 480 и 495 нм, для дейтеранопа — между 495 и 500 нм. Редко встречающиеся тританопы путают желтый цвет и синий. Сине-фиолетовый конец спектра кажется им ахроматическим — как переход от серого к черному. Область спектра между 565 и 575 нм тританопы также воспринимают как ахроматический.

    Полная цветовая слепота

    Менее 0,01% всех людей страдают полной цветовой слепотой. Эти монохроматы видят окружающий мир как черно-белый фильм, т.е. различают только градации серого. У таких монохроматов обычно отмечается нарушение световой адаптации при фотопическом уровне освещения. Из-за того, что глаза монохроматов легко ослепляются, они плохо различают форму при дневном свете, что вызывает фотофобию. Поэтому они носят темные солнцезащитные очки даже при нормальном дневном освещении. В сетчатке монохроматов при гистологическом исследовании обычно не находят никаких аномалий. Считается, что в их колбочках вместо зрительного пигмента содержится родопсин.

    Нарушения палочкового аппарата

    Люди с аномалиями палочкового аппарата воспринимают цвет нормально, однако у них значительно снижена способность к темновой адаптации. Причиной такой “ночной слепоты”, или никталопии, может быть недостаточное содержание в употребляемой пище витамина А1, который является исходным веществом для синтеза ретиналя.

    Диагностика нарушений цветового зрения

    Так как нарушения цветового зрения наследуются как признак, сцепленный с Х-хромосомой, то они гораздо чаще встречаются у мужчин, чем у женщин. Частота протаномалии у мужчин составляет примерно 0,9%, протанопии — 1,1%, дейтераномалии 3-4% и дейтеранопии — 1,5%. Тританомалия и тританопия встречаются крайне редко. У женщин дейтераномалия встречается с частотой 0,3%, а протаномалии — 0,5%.

    Поскольку существует целый ряд профессий, при которых необходимо нормальное цветовое зрение (например, шоферы, летчики, машинисты, художники-модельеры), у всех детей следует проверять цветовое зрение, чтобы впоследствии учесть наличие аномалий при выборе профессии. В одном из простых тестов используются “псевдоизохроматические” таблицы Ишихары. На этих таблицах нанесены пятна разных размеров и цветов, расположенные так, что они образуют буквы, знаки или цифры. Пятна разного цвета имеют одинаковый уровень светлоты. Лица с нарушенным цветовым зрением не способны увидеть некоторые символы (это зависит от цвета пятен, из которых они образованы). Используя различные варианты таблиц Ишихары, можно достаточно надежно выявить нарушения цветового зрения.Точная диагностика возможна с помощью тестов на смешение цветов, построенных на основе уравнений (1)-(3).

    Литература

    Дж. Дудел, М. Циммерман, Р. Шмидт, О. Грюссер и др. Физиология человека, 2 том, перевод с английского, “Мир”, 1985

    Гл. Ред. Б.В. Петровский. Популярная медицинская энциклопедия, ст.. “Зрение” “Цветовое зрение”, ”Советская энциклопедия”, 1988

    В.Г. Елисеев, Ю.И. Афанасьев, Н.А. Юрина. Гистология, “Медицина”, 1983 Добавить документ в свой блог или на сайтВаша оценка этого документа будет первой. Ваша оценка:

    В зрительном анализаторе допускается существование преимущественно трех видов цветовых приемников, или цветоощущающих компонентов (рис. 35). Первый (протос) возбуждается сильнее всего длинными световыми волнами, слабее — средними и еще слабее — короткими. Второй (дейтерос) сильнее возбуждается средними, слабее — длинными и короткими световыми волнами. Третий (тритос) слабо возбуждается длинными, сильнее — средними и более всего — короткими волнами. Следовательно, свет любой длины волны возбуждает все три цветовых приемника, но в различной степени.


    Рис. 35. Трехкомпонентность цветового зрения (схема); буквами обозначены цвета спектра.


    Цветовое зрение в норме называют трихроматичным, ибо для получения более 13 000 различных тонов и оттенков нужны лишь 3 цвета. Имеются указания на четырехкомпонентную и полихроматическую природу цветового зрения.

    Расстройства цветового зрения могут быть врожденные и приобретенные.

    Врожденные расстройства цветового зрения носят характер дихромазии и зависят от ослабления или полного выпадения функции одного из трех компонентов (при выпадении компонента, воспринимающего красный цвет, — протанопия, зеленый — дейтеранопия и синий — тританопия).

    Наиболее частая форма дихромазии — смешение красного и зеленого цветов. Впервые дихромазию описал Дальтон, и поэтому этот вид расстройства цветового зрения носит название дальтонизм. Врожденная тританопия (слепота на синий цвет) почти не встречается.

    Понижение цветоощущения встречается у мужчин в 100 раз чаще, чем у женщин. Среди мальчиков школьного возраста расстройство цветового зрения обнаруживается примерно в 5%, а среди девочек — только в 0,5% случаев. Расстройства цветоощущения передаются по наследству.

    Приобретенные расстройства цветового зрения характеризуются видением всех предметов в какомглибо одном цвете. Такая патология объясняется разными причинами. Так, эритропсия (видение всего в красном свете) возникает после ослепления глаз светом при расширенном зрачке. Цианопсия (видение в синем цвете) развивается после экстракции катаракты, когда в глаз попадает много коротковолновых лучей света вследствие удаления задерживающего их хрусталика.

    Хлоропсия (видение в зеленом цвете) и ксантопсия (видение в желтом цвете) возникают вследствие окраски прозрачных сред глаза при желтухе, отравлении акрихином, сантонином, никотиновой кислотой и т. д. Нарушения цветового зрения возможны при воспалительной и дистрофической патологии собственно сосудистой оболочки и сетчатки. Особенность приобретенных нарушений цветовосприятия состоит прежде всего в том, что чувствительность глаза снижается в отношении всех основных цветов, так как эта чувствительность изменчива, лабильна.

    Цветовое зрение исследуют чаще всего с помощью специальных полихроматических таблиц Рабкина (гласный метод).

    Существуют и немые методы определения цветового зрения. Мальчикам лучше предлагать отбор одинаковой по тону мозаики, а девочкам — отбор ниток.

    Применение таблиц особенно ценно в детской практике, когда многие субъективные исследования вследствие малого возраста пациентов невыполнимы. Цифры на таблицах доступны, а для самого младшего возраста можно ограничиться тем, что ребенок водит кисточкой ими указкой по цифре, которую он различает, но не знает, как ее назвать.

    Необходимо помнить, что развитие цветоощущения задерживается, если новорожденного содержат в помещении с плохой освещенностью. Кроме того, становление цветового зрения обусловлено развитием условнорефлекторных связей. Следовательно, для правильного развития цветового зрения необходимо создать детям условия хорошей освещенности и с раннего возраста привлекать их внимание к ярким игрушкам, располагая эти игрушки на значительном расстоянии от глаз (50 см и более) и меняя их цвета. При выборе игрушек следует учитывать, что центральная ямка более всего чувствительна к желто-зеленой и оранжевой части спектра и мало чувствительна к синей. С усилением освещенности все цвета, кроме синего, сине-зеленого, желтого и пурпурно-малинового, в связи с изменением яркости воспринимаются как желто-белые цвета.

    Детские гирлянды должны иметь в центре желтые, оранжевые, красные и зеленые шары, а шары с примесью синего, синие, белые, темные необходимо помещать по краям.

    Цветоразличительная функция зрительного анализатора человека подвержена суточному биоритму с максимумом чувствительности к 13—15 ч в красном, желтом, зеленом и синем участках спектра.

    Ковалевский Е.И.

    Способность человека различать цвета имеет значение для многих сторон его жизни, часто придавая ей эмоциональную окраску. Гете писал: «Желтый цвет радует глаз, расширяет сердце, бодрит дух и мы сразу ощущаем тепло. Синий цвет, наоборот, представляет все в печальном виде». Созерцание многообразия красок природы, картин замечательных художников, цветных фотографий и художественных цветных кинокартин, цветное телевидение доставляют человеку эстетическое наслаждение.

    Велико практическое значение цветового зрения. Различение цветов позволяет лучше познавать окружающий мир, производить тончайшие цветные химические реакции, управлять космическими кораблями, движением железно-дорожного, авто- и авиатранспорта, ставить диагноз по изменениям цвета кожи, слизистых оболочек, глазного дна, воспалительных или опухолевых очагов и т. д. Без цветового зрения невозможна работа дерматологов, педиатров, глазных врачей и других, кому приходится иметь дело с различной окраской объектов. Даже работоспособность человека зависит от цветности и освещенности помещения, в котором он работает. Например, розоватый и зеленый цвет окружающих стен и предметов успокаивает, желтоватый, оранжевый — бодрит, черный, красный, синий — утомляет и т. д. С учетом воздействия цветов на психоэмоциональное состояние решаются вопросы окраски стен и потолка в помещениях различного назначения (спальня, столовая и др.), игрушек, одежды и т. п.

    Развитие цветового зрения идет параллельно развитию остроты зрения, но судить о его наличии удается значительно позже. Первая более или менее отчетливая реакция на яркие красные, желтые и зеленые цвета появляется у ребенка к первому полугодию его жизни. Нормальное формирование цветового зрения зависит от интенсивности света.

    Доказано, что свет распространяется в виде волн различной длины, измеряемой в нанометрах (нм). Участок видимого глазом спектра лежит между лучами с длинами волн от 393 до 759 нм. Это видимый спектр можно разделить на участки с различной цветностью. Лучи света с большой длиной волны вызывают ощущение красного, с малой — синего и фиолетового цветов. Лучи света, длина которого лежит в промежутке между ними, вызывает ощущение оранжевого, желтого, зеленого и голубого цветов (табл. 4).

    Все цвета делятся на ахроматические (белые, черные и все промежуточные между ними, серые) и хроматические (остальные). Хроматические цвета отличаются друг от друга по трем основным признакам: цветовому тону, светлоте и насыщенност и.
    Цветовой тон — это основное количество каждого хроматического цвета, признак, позволяющий отнести данный цвет по сходству к тому или иному цвету спектра (ахроматические цвета цветового тона не имеют). Глаз человека может различать до 180 цветовых тонов.
    Светлота, или яркость, цвета характеризуется степенью его близости к белому цвету. Яркость — субъективное наиболее простое ощущение интенсивности света, доходящего до глаза. Человеческий глаз может отличать до 600 градаций каждого цветового тона по его светлоте, яркости.

    Насыщенность хроматического цвета — это степень его отличия от ахроматического такой же светлоты. Это как бы «густота» основного цветового тона и различных примесей к нему. Человеческий глаз может отличать приблизительно 10 градаций различной насыщенности цветовых тонов.

    Если перемножить число различимых градаций цветовых тонов, светлоты и насыщенности хроматических цветов (180x600x10 « 1 080 000)» то окажется, что глаз человека может различать свыше миллиона цветовых оттенков, В действительности же глаз человека различает только около 13 000 цветовых оттенков.

    Зрительный анализатор человека обладает синтетической способностью, заключающейся в оптическом смешении цветов. Это проявляется, например, в том, что сложный дневной свет ощущается как белый. Оптическое смешение цветов вызывается одновременным возбуждением глаза разными цветами и вместо нескольких составляющих цветов получается один результирующий.

    Смешение цветов получается не только тогда, когда оба цвета посылаются в один глаз, но также и тогда, когда в один глаз направляют монохроматический свет одного тона, а во второй — другого. Такое бинокулярное смешение цветов говорит о том, что основную роль в его осуществлении играют центральные (в головном мозге), а не периферические (в сетчатке) процессы.

    М. В. Ломоносов в 1757 г. впервые показал, что если в цветовом круге считать 3 цвета основными, то их попарным смешением (3 пары) можно создать любые другие (промежуточные в этих парах в цветовом круге). Это подтвердили Томас Юнг в Англии (1802), позднее — Гельмгольц в Германии. Таким образом были заложены основы трехкомпонентной теории цветового зрения, которая схематично заключается в следующем.
    В зрительном анализаторе допускается существование преимущественно трех видов цветовых приемников, или цветоощущающих компонентов (рис. 35). Первый (протос) возбуждается сильнее всего длинными световыми волнами, слабее — средними и еще слабее — короткими. Второй (дейтерос) сильнее возбуждается средними, слабее — длинными и короткими световыми волнами. Третий (тритос) слабо возбуждается длинными, сильнее — средними и более всего — короткими волнами. Следовательно, свет любой длины волны возбуждает все три цветовых приемника, но в различной степени.

    Цветовое зрение в норме называют трихроматичным, ибо для получения более 13 000 различных тонов и оттенков нужны лишь 3 цвета. Имеются указания на четырехкомпонентную и полихроматическую природу цветового зрения.
    Расстройства цветового зрения могут быть врожденные и приобретенные.

    Врожденные цветового зрения носят характер дихромазии и зависят от ослабления или полного выпадения функции одного из трех компонентов (при вы-падении компонента, воспринимающего красный цвет, — протанопия, зеленый — дейтеранопия и синий — тританопия). Наиболее частая форма дихромазии — смешение красного и зеленого цветов. Впервые дихромазию описал Дальтон, и поэтому этот вид расстройства цветового зрения носит название дальтонизм. Врожден паи тританопия (слепота на синий цвет) почти не встречается.

    Понижение цветоощущения встречается у мужчин в 100 раз чаще, чем у женщин. Среди мальчиков школьного возраста расстройство цветового зрения обнаруживается примерно в 5%, а среди девочек — только в 0,5% случаев. Расстройства цветоощущения передаются по наследству.
    Приобретенные расстройства цветового зрения характеризуются видением всех предметов в какомглибо одном цвете. Такая патология объясняется разными причинами. Так, эритропсия (видение всего в красном свете) возникает после ослепления глаз светом при расширенном зрачке. Цианопсия (видение в синем цвете) развивается после экстракций катаракты, когда в глаз попадает много коротко-волновых лучей света вследствие удаления задерживающего их хрусталика. Хлоропсия (видение в зеленом цвете) и ксантопсия (видение в желтом цвете) возникают вследствие окраски прозрачных сред глаза при желтухе, отравлении акрихином, сантонином, никотиновой кислотой и т. д. Нарушения цветового зрения возможны при воспалительной и дистрофической патологии собственно сосудистой оболочки и сетчатки. Особенность приобретенных нарушений цветовосприятия состоит прежде всего в том, что чувствительность глаза снижается в отношении всех основных цветов, так как эта чувствительность изменчива, лабильна.

    Цветовое зрение исследуют чаще всего с помощью специальных полихроматических таблиц Рабкина (гласный метод).
    Существуют и немые методы определения цветового зреия. Мальчикам лучше предлагать отбор одинаковой по тону мозаики, а девочкам — отбор ниток.

    Применение таблиц особенно ценно в детской практике, когда многие субъективные исследования вследствие малого возраста пациентов невыполнимы. Цифры на таблицах доступны, а для самого младшего возраста можно ограничиться тем, что ребенок водит кисточкой ими указкой по цифре, которую он различает, но не знает, как ее назвать.

    Необходимо помнить, что развитие цветоощущения задерживается, если новорожденного содержат в помещении с плохой освещенностью. Кроме того, становление цветового зрения обусловлено развитием условнорефлекторных связей. Следовательно, для правильного развития цветового зрения необходимо создать детям условия хорошей освещенности и с раннего возраста привлекать их внимание к ярким игрушкам, располагая эти игрушки на значительном расстоянии от глаз (50 см и более) и меняя их цвета. При выборе игрушек следует учитывать, что центральная ямка более всего чувствительна к желто-зеленой и оранжевой части спектра и мало чувствительна к синей. С усилением освещенности все цвета, кроме синего, сине-зеленого, желтого и пурпурно-малинового, в связи с изменением яркости воспринимаются как желто-белые цвета.
    Детские гирлянды должны иметь в центре желтые, оранжевые, красные и зеленые шары, а шары с примесью синего, синие, белые, темные необходимо помещать по краям.

    Цветоразличительная функция зрительного анализатора человека подвержена суточному биоритму с максимумом чувствительности к 13—15 ч в красном, желтом, зеленом и синем участках спектра.

    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «kingad.ru» — УЗИ исследование органов человека