Светочувствительные клетки палочки и колбочки находятся. Палочки и колбочки сетчатки глаза: строение

Основными светочувствительными элементами (рецепторами) являются два вида клеток: одни в виде стебелька - палочки 110-123 млн . (высота 30 мкм, толщина 2мкм), другие более короткие и более толстые -колбочки 6-7 млн . (высота 10мкм, толщина 6-7 мкм). Они распределены в сетчатке неравномерно. Центральная ямка сетчатки(fovea centralis) содержит только колбочки(до 140 тыс. на 1 мм). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает.

Каждый фоторецептор - палочка или колбочка состоит из чувствительного к действию света наружного сегмента содержащего зрительный пигмент и внутреннего сегмента, который содержит ядро и митохондрии обеспечивающие энергетические процессы в фоторецепторной клетке

Наружный сегмент светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал Электронно-микроскопические исследования выявили, что наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках , в каждом наружном сегменте, содержится 600-1000 дисков , которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше. Это частично объясняет более высокую чувствительность палочки к свету (палочку может возбудить всего один квант света , а для активации колбочки требуется больше сотни квантов).

Каждый диск представляет собой двойную мембрану, состоящую из двойного слоя молекул фосфолипидов , между которыми находятся молекулы белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрил . Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку

Наружные сегменты рецепторов обращены к пигментному эпителию, так что свет в начале проходит через 2 слоя нервных клеток и внутренние сегменты рецепторов, а потом достигает пигментного слоя.

Колбочки функционируют в условиях больших освещенностей - обеспечивают дневное и цветовое зрение , а палочки - отвечают за сумеречное зрение.

Видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны от 400нм) излучением, которое мы называем фиолетовым цветом и длинноволновым излучением (длина волны до 700 нм ) называемым красным цветом. В палочках находится особый пигмент- родопсин , (состоит из альдегида витамина А или ретиналя и белка) или зрительный пурпур, максимум спектра, поглощения которого находится в области 500 нанометров. Он ресинтезируется в темноте и выцветает на свету. При недостатке витамина А нарушается сумеречное зрение -"куриная слепота".

В наружных сегментах трех типов колбочек (сине-, зелено- и красно-чувствительных ) содержится три типа зрительных пигментов, максимум спектров поглощения которых находится в синей (420 нм ), зеленой(531 нм) и красной(558 нм ) частях спектра . Красный колбочковый пигмент получил название - "йодопсин" . Структура йодопсина близка к родопсину.

Рассмотрим последовательность изменений:

Молекулярная физиология фоторецепции: Внутриклеточные регистрации от колбочек и палочек животных показали, что в темноте вдоль фоторецептора течет темновой ток, выходящий из внутреннегосегмента и входящий в наружный сегмент. Освещение приводит к блокаде этого тока. Рецепторный потенциал модулирует выделение медиатора (глутамата) в синапсе фоторецептора. Было показано, что в темноте фоторецептор непрерывно выделяет медиатор, который действует деполяризующим образом на мембраны постсинаптических отростков горизонтальных и биполярных клеток.


Палочки и колбочки обладают уникальной среди всех рецепторов электрической активностью, их рецепторные потенциалы при действии света - гиперполяризующие, потенциалы действия под их влиянием не возникают.

{ При поглощении света молекулой зрительного пигмента - родопсина в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь превращается в транс-ретиналь. Вслед за за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метородопсина II В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим примембранным белком г уанозин трифосфат(ГТФ) - связывающим белком – трансдуцином (Т) .

В комплексе с метародопсином трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте ганозитдифосфат(ГДФ) на (ГТФ). Трансфдуцин + ГТФ, активируют молекулу другого примеммбранного белка - фермента фосфодиэстеразы(ФДЭ). Активированная ФДЭ разрушает несколько тысяч молекул цГМФ .

В результате падает концентрация цГМФ в цитоплазме наружного сегмента рецептора. Это приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na + и Ca . Ионные каналы закрываются вследствие того, что падает концентрация цГМФ, которая держала каналы открытыми. В настоящее время выяснено, что поры в рецепторе открываются благодаря цГМФ циклическому гуанозинмонофосфату .

Механизм восстановления исходного темного состояния фоторецептора связан с повышением концентрации цГМФ. (в темновую фазу с участием алкагольдегидрогеназы + НАДФ)

Т.о поглощение света, молекулами фотопигмента приводит к снижению проницаемости для Nа, что сопровождается гиперполяризацией, т.е. возникновением рецепторного потенциала. Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора - глутамата . Кроме глутамата нейроны сетчатки могут синтезировать и другие нейромедиаторы, такие как ацетилхолин, дофамин, глицин ГАМК .

Фоторецепторы связаны между собой - электрическими(щелевыми) контактами. Эта связь избирательная: палочки связаны с палочками и т.д.

Эти ответы от фоторецепторов сходятся на горизонтальные клетки, которые приводят к деполяризации в соседних колбочках возникает отрицательная обратная связь, которая повышает световой контраст.

На уровне рецепторов происходит торможение и сигнал колбочки перестает отражать число поглощенных фотонов, а несет информацию о цвете, распределении и интенсивности света, падающего на сетчатку в окрестностях рецептора.

Существует 3-и типа нейронов сетчатки - биполярные, горизонтальные и амакриновые клетки. Биполярные клетки непосредственно связывают фоторецепторы с ганглиозными клетками, т.е. осуществляют передачу информации через сетчатку в вертикальном направлении. Горизонтальные и амакриновые клетки передают информацию по горизонтали.

Биполярные клетки занимают в сетчатке стратегическую позицию, поскольку все сигналы, возникающие в рецепторах поступающие к ганглиозным клеткам, должны пройти через них.

Экспериментально было доказано, что биполярные клетки имеют рецептивные поля в которых выделяют центр и переферию (Джон Даулинг- и др. Гарвардская медицинская школа).

Рецептивное поле - совокупность рецепторов, посылающих данному нейрону сигналы через один или большее число синапсов.

Размер рецептивных полей: d=10 мкм или 0,01 мм - вне центральной ямки.

В самой ямке d=2,5мкм (благодаря этому мы способны различать 2-е точки при видимом расстоянии между ними лишь 0,5 угловых минут-2,5мкм - если сравнить, то это монета в 5 копеек на расстоянии около 150 метров)

Начиная с уровня биполярных клеток нейроны зрительной системы дифференцируются на две группы, противоположным образом реагирующие на освещение и затемнение:

1 - клетки, возбуждающиеся при освещении и тормозящиеся при затемнении "on"- нейроны и

    Клетки возбуждающиеся при затемнении и тормозящиеся при освещении - " off"- нейроны. Клетка с on-центром разряжается с заметно повышенной частотой.

Если слушать разряды такой клетки через громкоговоритель, то сначала вы услышите спонтанную импульсацию, отдельные случайные щелчки, а затем после включения света, возникает залп импульсов, напоминающий пулеметную очередь. Наоборот в клетках с off-реакцией (при выключении света - залп импульсов) Такое разделение сохраняется на всех уровнях зрительной системы, до коры включительно.

В пределах самой сетчатки передача информации осуществляется безимпульсным путем (распространением и транссинаптической передачей градуальных потенциалов).

В горизонтальных, биполярных и амокриновых клетках переработка сигнала происходит путем медленных изменений мембраны потенциалов(тонический ответ). ПД не генерируется.

Ответы палочек, колбочек и горизонтальных клеток являются гиперполяризующими, а ответы биполярных клеток могут быть как гиперполяризующие, так и деполяризующие. Амакриновые клетки создают деполяризующие потенциалы.

Чтобы понять, почему это так, следует представить себе влияние малого светлого пятна. Рецепторы активны в темноте, а свет, вызывая гиперполяризацию, уменьшает их активность. Если синапс возбуждающий, биполяр будет активироваться в темноте , а инактивироваться на свету ; если же синапс тормозной, биполяр в темноте тормозится, а на свету, выключая рецептор, снимает это торможение, т.е биполярная клетка активируется. Т.о. является ли рецепторно-биполярный синапс возбуждающим или тормозным, зависит от выделяемого рецептором медиатора.

В передаче сигналов от биполярных клеток на ганглиозные участвуют горизонтальные клетки которые, передают информацию от фоторецепторов к биполярным клеткам и далее к ганглиозным.

Горизонтальные клетки отвечают на свет гиперполяризацией с ярко выраженной пространственной суммацией.

Горизонтальные клетки не генерируют нервных импульсов, но мембрана обладает нелинейными свойствами, обеспечивающими безимпульсное проведение сигнала без затухания.

Клетки делятся на два типа: В и С. Клетки В-типа, или яркостные, всегда отвечают гиперполяризацией вне зависимости от длины волны света. Клетки С-типа, или хроматические делятся на двух- и трехфазные. Хроматические клетки отвечают или гипер, или деполяризацией в зависимости от длины стимулирующего света.

Двухфазные клетки бывают либо красно - зеленые (деполяризуются красным светом, гиперполяризуются зеленым), либо зелено-синие (деполяризуются зеленым светом, гиперполяризуются синим). Трехфазные клетки деполяризуются зеленым светом, а синий и красный свет вызывает гиперполяризацию мембраны. Амакриновые клетки, регулируют синаптическую передачу на следующем этапе от биполяров к ганглиозным клеткам.

Дендриты амакриновые клеток разветвляются во внутреннем слое, где контактируют с отростками биполяров и дендритами ганглиозных клеток. На амакриновые клетках оканчиваются центробежные волокна, идущие из головного мозга.

Амакриновые клетки генерируют градуальные и импульсные потенциалы (фазный характер ответа). Эти клетки отвечают быстротекущей деполяризацией на включение и выключение света и демонстрируют слабый

пространственный антагонизм между центром и периферией.

Сетчатка глаза представляет собой основной отдел зрительного анализатора. Здесь происходит восприятие электромагнитных световых волн, трансформация их в нервные импульсы и передача в зрительный нерв. Дневное (цветовое) и ночное зрение обеспечиваются особыми рецепторами сетчатки. Вместе они образуют так называемый фотосенсорный слой. В соответствии со своей формой эти рецепторы называются колбочки и палочки.

    Показать всё

    Общие понятия

    Микроскопическое строение глаза

    Гистологически на сетчатке глаза выделяют 10 клеточных слоев. Наружный светочувствительный слой состоит из фоторецепторов (палочек и колбочек), которые представляют собой особые образования нейроэпителиальных клеток. Они содержат зрительные пигменты, способные поглощать световые волны определенной длины. Палочки и колбочки расположены на сетчатке неравномерно. Основное количество колбочек располагается по центру, в то время как палочки находятся на периферии. Но это не единственное их различие:

    1. 1. Палочки обеспечивают ночное зрение. Это значит, что они ответственны за восприятие света в условиях пониженного освещения. Соответственно, при помощи палочек человек может увидеть предметы лишь в черно-белом изображении.
    2. 2. Колбочки обеспечивают остроту зрения в течение дня. С их помощью человек видит мир в цветном изображении.

    Палочки чувствительны лишь к коротким волнам, длина которых не превышает 500 нм (синяя часть спектра). Но они активны даже при рассеянном свете, когда плотность фотонного потока понижена. Колбочки более чувствительны и могут воспринимать все цветовые сигналы. Но для их возбуждения требуется свет гораздо большей интенсивности. В темноте зрительную работу осуществляют палочки. В результате в сумерках и ночью человек может видеть силуэты предметов, но не ощущает их цвета.

    Нарушения функций фоторецепторов сетчатки могут привести к различным патологиям зрения:

    • нарушение восприятия цвета (дальтонизм);
    • воспалительные заболевания сетчатки;
    • расслоение оболочки сетчатки;
    • нарушение сумеречного зрения (куриная слепота);
    • светобоязнь.

    Колбочки

    Люди с хорошим зрением имеют в каждом глазу около семи миллионов колбочек. Их длина составляет 0,05 мм, ширина – 0,004 мм. Чувствительность к потоку лучей у них невелика. Зато они качественно воспринимают всю гамму цветов, включая оттенки.

    Они же отвечают за возможность распознавать движущиеся объекты, поскольку лучше реагируют на динамику освещения.

    Строение колбочек

    Схематическое строение колбочки и палочки

    Колбочка имеет три основные сегмента и перетяжку:

    1. 1. Наружный сегмент. Именно он содержит чувствительный к свету пигмент йодопсин, который располагается в так называемых полудисках - складках плазматической мембраны. Этот участок фоторецепторной клетки постоянно обновляется.
    2. 2. Перетяжка, образованная плазматической мембраной, служит для передачи энергии из внутреннего сегмента вовне. Она представляет собой так называемые реснички, осуществляющие эту связь.
    3. 3. Внутренний сегмент – область активного обмена веществ. Здесь находятся митохондрии - энергетическая база клеток. В этом сегменте происходит интенсивное высвобождение энергии, необходимой для осуществления зрительного процесса.
    4. 4. Синаптическое окончание представляет собой область синапсов – контактов между клетками, передающих нервные импульсы в зрительный нерв.

    Трехкомпонентная гипотеза цветовосприятия

    Известно, что колбочки содержат специальный пигмент - йодопсин, позволяющий им воспринимать весь цветовой спектр. Согласно трехкомпонентной гипотезе цветного зрения существует три вида колбочек. Каждый из них содержит свой тип йодопсина и способен воспринимать лишь свою часть спектра.

    1. 1. L –тип содержит пигмент эритролаб и улавливает длинные волны, а именно красно-желтую часть спектра.
    2. 2. М-тип содержит пигмент хлоролаб и способен воспринимать средние волны, которые излучает зелено-желтая область спектра.
    3. 3. S-тип содержит пигмент цианолаб и реагирует на короткие волны, воспринимая синюю часть спектра.

    Многие ученые, занимающиеся проблемами современной гистологии, отмечают неполноценность трехкомпонентной гипотезы цветовосприятия, поскольку еще не найдено подтверждения существованию трех видов колбочек. К тому же до сих пор не обнаружен пигмент, которому заранее было присвоено название цианолаб.

    Двухкомпонентная гипотеза цветовосприятия

    В соответствии с этой гипотезой все колбочки сетчатки содержат в себе и эритолаб, и хлоролаб. Поэтому они могут воспринимать и длинную и среднюю часть спектра. А короткую его часть, в этом случае, воспринимает пигмент родопсин, содержащийся в палочках.

    В пользу этой теории говорит тот факт, что люди, не способные воспринимать короткие волны спектра (то есть синюю его часть), одновременно страдают и нарушениями зрения в условиях плохой освещенности. Иначе эта патология называется «куриной слепотой» и вызывается дисфункцией палочек сетчатки.

    Палочки

    Соотношение количества палочек (серые) и колбочек (зеленые) на сетчатке глаза

    Палочки имеют вид маленьких вытянутых цилиндров, длиной около 0,06 мм. Взрослый здоровый человек имеет в каждом глазу на сетчатке примерно 120 миллионов таких рецепторов. Они заполняют собой всю сетчатку, концентрируясь главным образом на периферии. Желтое пятно (область сетчатки, где зрение наиболее острое) палочек практически не содержит.

    Пигмент, обеспечивающий палочкам высокую чувствительность к свету, называется родопсин или зрительный пурпур . На ярком свету пигмент выцветает и теряет эту свою способность. В этот момент он восприимчив лишь к коротким световым волнам, которые составляют синюю область спектра. В темноте его цвет и качества постепенно восстанавливаются.

    Строение палочек

    Палочки имеют строение, аналогичное строению колбочек. Они состоят из четырех основных частей:

    1. 1. Наружный сегмент с мембранными дисками содержит пигмент родопсин.
    2. 2. Связующий сегмент или ресничка осуществляет контакт между наружным и внутренним отделом.
    3. 3. Внутренний сегмент содержит митохондрии. Здесь идет процесс выработки энергии.
    4. 4. Базальный сегмент содержит нервные окончания и осуществляет передачу импульсов.

    Исключительная чувствительность данных рецепторов к воздействию фотонов позволяет им преобразовать световое раздражение в нервное возбуждение и передать его в головной мозг. Так осуществляется процесс восприятия световых волн человеческим глазом – фоторецепция.

    Человек – единственное из живых существ, способное воспринимать мир во всем богатстве его красок и оттенков. Защита глаз от вредных воздействий и профилактика нарушений зрения помогут сохранить эту уникальную способность на многие годы.

З дравствуйте, уважаемые читатели! Все мы наслышаны о том, что здоровье глаз следует беречь смолоду, потому что утраченное зрение не всегда можно вернуть. А задумывались ли вы когда-либо о том, как устроен глаз? Если мы будем это знать, то нам легче будет разобраться в том, какие процессы обеспечивают зрительное восприятие окружающего мира.

Человеческий глаз имеет сложное строение. Пожалуй, самый загадочный и сложный элемент – сетчатка. Это тоненький слой, состоящий из нервной ткани и сосудов. Но именно на него возложена важнейшая функция по переработке полученной глазом информации в нервные импульсы, позволяющие мозгу создавать цветную объемную картинку.

Сегодня мы поговорим о рецепторах нервной ткани сетчатки – а именно о палочках. Какова светочувствительность у палочек рецепторов сетчатки глаза и что позволяет нам видеть в темноте?

Палочки и колбочки

Оба этих элемента с забавными названиями – фоторецепторы, дающие изображение, фиксируемое хрусталиком и участками роговицы.

И тех, и других очень много в глазу человека. Колбочек (они похожи на крошечные кувшинчики) – около 7 млн, а палочек («цилиндриков») еще больше – до 120 млн! Разумеется, размеры их ничтожно малы и насчитывают доли миллиметров (мкм). Длина одной палочки – 60 мкм. Колбочки еще меньше – 50 мкм.

Палочки получили свое название благодаря форме: они напоминают микроскопические цилиндрики.

Они состоят из:

  • мембранных дисков;
  • нервной ткани;
  • митохондрий.

А еще они обеспечены ресничками. Особый пигмент – белок родопсин – дает возможность клеткам «чувствовать» свет.

Родопсин (это белок плюс желтый пигмент) реагирует на луч света так: под действием световых импульсов он разлагается, таким образом вызывая раздражение зрительного нерва. Надо сказать, восприимчивость «цилиндриков» потрясающа: они улавливают информацию даже от 2 фотонов!

Различия между фоторецепторами глаза

Различия начинаются уже с места расположения. «Кувшинчики» «теснятся» ближе к центру. Они «отвечают» за центральное зрение. В центре сетчатки, в так называемом «желтом пятне», их особенно много.

Плотность скопления «цилиндриков», напротив, выше к периферии глаза.

А еще можно отметить следующие особенности:

  • колбочки содержат фотопигмент в меньшем количестве, нежели палочки;
  • общее число «цилиндриков» в 2 десятка раз больше;
  • палочки способны воспринять любой свет – рассеянный и прямой; а колбочки – исключительно прямой;
  • с помощью клеток, находящихся на периферии, мы воспринимаем черный и белый цвета (они ахроматичны);
  • с помощью собирающихся в центре – все цвета и оттенки (они хроматичны).

Каждый из нас способен благодаря «кувшинчикам» видеть до тысячи оттенков. А глаз художника еще более чувствителен: он видит даже до миллиона оттенков цветов!

Интересный факт: для того, чтобы осуществить передачу импульсов, нескольким палочкам требуется всего один нейрон. Колбочки «требовательнее»: для каждой нужен свой нейрон.

«Цилиндрики» отличаются высокой чувствительностью, «кувшинчикам» нужны более сильные световые импульсы, чтобы они могли их воспринимать и передавать.

По сути, благодаря им мы можем видеть в темноте. В условиях сниженной освещенности (поздно вечером, ночью) колбочки не могут «работать». Зато в полную силу начинают действовать палочки. А поскольку они расположены на периферии, в темноте мы лучше улавливаем движения не прямо перед нами, а по бокам.


Да, и еще один момент: палочки реагируют быстрее.

Возьмите на заметку: отправившись куда-либо в темноте, не пытайтесь пристально вглядываться в область прямо перед глазами. Вы все равно ничего не увидите, ведь «кувшинчики», находящиеся в центре сетчатки, сейчас бессильны. А вот если вы «включите» боковое зрение, то сможете гораздо лучше ориентироваться. Это «работают» «цилиндрики».

Несмотря на существенную разницу в выполнении поставленных природой задач, фоторецепторы нельзя рассматривать отдельно друг от друга. Лишь вместе они дают единую целостную картину.

Поглощая кванты света, клетки преобразуют энергию в нервный импульс. Он поступает в головной мозг. Результат – мы видим мир!

Почему кошки лучше нас видят в темноте

Теперь, изучив в общих чертах строение и функции фоторецепторов, мы можем дать ответ на вопрос, почему наши усатые питомцы гораздо лучше нас ориентируются в темноте.

Ларчик открывается просто: строение глаза этого млекопитающего похоже на человеческое. Но если у человека на 1 колбочку приходится около 4 палочек, то у кошки – 25! Неудивительно, что домашний хищник великолепно различает очертания предметов практически в полной тьме.


Палочки и колбочки – наши помощники

«Цилиндрики» и «кувшинчики» – удивительное изобретение природы. Если они функционируют правильно, человек хорошо видит на свету и может ориентироваться в темноте.

Если они перестают выполнять свои функции в полном объеме, наблюдаются:

  • световые блики перед глазами;
  • ухудшение видимости в темноте;
  • становятся уже поля зрения.

Со временем меняется в худшую сторону острота зрения. Дальтонизм, гемералопия (снижение ночного зрения), отслоение сетчатки – вот какие последствия влечет за собой нарушение работы фоторецепторов.

Но не будем заканчивать наш разговор на этой печальной ноте. Современная медицина научилась справляться с большинством заболеваний, которые раньше вызывали слепоту. От пациента требуется лишь ежегодное профилактическое обследование.

Нашли ли вы для себя пользу в нашей статье? Если у вас стало чуть меньше вопросов, связанных со строением и работой органов зрения, мы сможем полагать свою задачу выполненной. И еще: пожалуйста, делитесь полученной информацией со знакомыми, а нам можете присылать свои комментарии и замечания. Ждем откликов. Всегда рады вашим отзывам!

Благодаря зрению человек познаёт окружающую реальность и ориентируется в пространстве. Безусловно, без остальных органов чувств сложно составить целостную картину мира, но глаза воспринимают почти 90% от общей информации, которая поступает в головной мозг извне.

С помощью зрительной функции человек способен увидеть происходящие рядом с ним явления, может анализировать разные события, находить отличия одного предмета от другого, а также замечать надвигающуюся угрозу.

Органы зрения устроены таким образом, что различают не только сами объекты, но ещё и цветовое разнообразие живой и неживой природы. Ответственность за это лежит на особых микроскопических клетках - палочках и колбочках , присутствующих в сетчатке глаза. Именно они являются начальным звеном в цепочке по передаче информации об увиденном объекте в затылочную часть головного мозга.

В структурном строении сетчатки колбочкам и палочкам отведена вполне определённая область. Эти зрительные рецепторы, пронизывающие нервную ткань, которая образует глазную сетчатку, способствуют быстрому преобразованию получаемого светового потока в комбинацию импульсов.

В сетчатке формируется картинка, спроектированная при непосредственном участии глазного участка роговицы и хрусталика. На следующем этапе изображение перерабатывается, после чего нервные импульсы, перемещаясь по зрительному пути, доставляют информацию в нужный отдел головного мозга. Сложное и полностью сформированное устройство глаз даёт возможность моментально обрабатывать любую информацию.

Основная доля фотографических рецепторов концентрируется в так называемой макуле. Это область сетчатки, расположенная в её центральной зоне. Из-за соответствующего цвета макулу ещё называют жёлтым пятном глаза.

Колбочками называют зрительные рецепторы, которые реагируют на световые волны. Их функционирование напрямую связано со специальным пигментом - йодоспином. Этот многосоставной пигмент состоит из хлоролаба (отвечает за восприятие зелено-жёлтого спектра) и эритролаба (чувствителен к красно-жёлтому спектру). На сегодняшний день - это два досконально изученных пигмента.

У человека с идеальным зрением в сетчатке находится практически семь миллионов колбочек. Они микроскопического размера и в геометрических параметрах уступают палочкам. Длина отдельно взятой колбочки порядка пятидесяти микрометров, а диаметр около четырёх. Нужно отметить, что чувствительность колбочек к световым лучам приблизительно в сто раз ниже, чем у палочек. Однако благодаря им глаз может качественно воспринимать резкие перемещения объектов.

Колбочки образуют четыре отдельные зоны. Наружная область представлена полудисками. Перетяжка выступает в роли связующего отдела. Внутренняя область имеет в составе набор митохондрий. Наконец, четвёртая зона - это область нейронных контактов.

  1. Наружная область полностью образована полудисками, формирующимися из плазматической мембраны. Это мембранные складки микроскопических размеров, полностью покрытые чувствительными пигментами. Регулярный фагоцитоз этих образований, а также их постоянное обновление в рецепторном теле, позволяют обновляться наружной области колбочки. В этой области происходит продуцирование пигмента. За сутки может обновиться до ста полудисковых плазматических мембран. Для полноценного восстановления всего набора полудисков потребуется приблизительно две недели.
  2. Связующая область, выпячивая мембрану, создаёт мост между наружным и внутренним участком колбочек. Налаживание связи осуществляется при участии пары ресничек и внутреннего содержимого клеток. Реснички и цитоплазма могут переходить от одной области к другой.
  3. Внутренняя область - зона активного метаболизма. Митохондрии, которые заполняют эту зону, транспортируют энергетический субстрат для зрительной функции. В этой части располагается ядро.
  4. Синаптическая область. Здесь происходит энергетический контакт биполярных клеток.

Острота зрения находится в сфере влияния моносинаптических биполярных клеток, связывающих колбочки и ганглиозные клетки.

Существуют три типа колбочек в зависимости от восприимчивости к спектральным волнам:

  • S -типа . Демонстрируют чувствительность к коротким волнам сине-фиолетового цвета.
  • M -типа . Колбочки, улавливающие из средневолнового спектра. Это жёлто-зелёная цветовая гамма.
  • L -типа . Чувствительны к длинным волнам красно-жёлтого цветового исполнения.

Форма палочек схожа с цилиндром, имеющим равномерный диаметр по всей длине. Длина этих рецепторов глаз больше их диаметра почти в тридцать раз, поэтому форма палочек визуально вытянута. Палочки сетчатки состоят из четырёх элементов: мембранных дисков, ресничек, митохондрий и нервной ткани.

У палочек отмечается максимальная светочувствительность, что гарантирует их реагирование на самую незначительную световую вспышку. Рецепторный аппарат палочек будет активизирован даже при воздействии одного фотона энергии. Эта уникальная способность палочек помогает человеку ориентироваться в сумерках и обеспечивает максимальную чёткость объектов в тёмное время суток.

К сожалению, в своём составе палочки располагают лишь одним пигментным элементом, получившим название - родопсин. Его также обозначают как зрительный пурпур. Тот факт, что пигмент всего в единственном экземпляре, не даёт возможность этим зрительным рецепторам различать оттенки и цвета. Родопсин не имеет возможности мгновенно отвечать на внешний световой раздражитель, как это могут делать пигменты колбочек.

Являясь сложным белковым соединением, имеющим в составе набор зрительных пигментов, родопсин относят к группе хромопротеинов. Своим названием он обязан ярко-красной окраске. Пурпурный оттенок палочек сетчатки был обнаружен в результате многочисленных лабораторных исследований. Зрительный пурпур имеет в составе два компонента - жёлтый пигмент и бесцветный протеин.

Под действием лучей света родопсин начинает ускоренно разлагаться. Продукты его распада влияют на формирование зрительной возбудимости. Восстановившись, родопсин поддерживает сумеречное зрение. От яркого освещения белок разлагается, а его светочувствительность смещается синюю область зрения. Полное восстановление белка палочек у здорового человека может занять приблизительно полчаса. За этот промежуток времени ночное зрение достигает своего максимального уровня, и человек начинает просматривать очертания предметов.

Симптомы поражения палочек и колбочек глаз

Патологии, отмечающиеся повреждением этих зрительных рецепторов, сопровождаются следующими симптомами:

  • Теряется острота зрения.
  • Появляются внезапные вспышки и блики перед глазами.
  • Снижается способность видеть в темноте.
  • Человек не может найти отличия между разными цветами.
  • Сужается поля зрительного восприятия. В редких случаях формируется трубчатое зрение.

Болезни, которые связаны с нарушением фоторецепторных функций палочек и колбочек:

  • Дальтониз м. Наследственная врождённая патология, выражающаяся в неспособности различать цвета.
  • Гемералопия . Патология палочек, вызывает снижение остроты зрения в тёмное время суток.
  • Отслоение сетчатки глаза.
  • Макулодистрофия . Нарушение питание сосудов глаза, приводит к снижению центрального зрения.

Светочувствительная часть глаза представляет собой мозаику реагирующих на свет клеток (фоторецепторов), расположенных на сетчатке. Сетчатка глаза содержит два типа светочувствительных рецепторов, занимающих область с раствором около 170° относительно зрительной оси: 120…130 млн. палочек (длинные и тонкие рецепторы ночного зрения), 6.5…7,0 млн. колбочек (короткие и толстые рецепторы дневного зрения). Прежде чем попасть на сетчатку свет должен вначале пройти слой нерв­ной ткани и слой кровеносных сосудов. Такое расположение светочувствительных элементов с точки зрения здравого смысла не является оптимальным. Любой разработчик телевизионной камеры позаботился бы о монтаже соединительных проводов так, чтобы не мешать свету, падающему на фотоэлемен­ты. Сетчатка построена по другому принципу и причины для такого обратного устройства сетчатки не полностью поняты.

Палочки и кол­бочки плотно примыкают друг к другу удлиненными сторона­ми. Размеры их очень малы: длина палочек 0,06 мм,диаметр 0,002 мм,длина и диаметр колбочек соответственно 0,035 и 0,006 мм. Плотность размещения палочек и колбо­чек на различных участках сетчатки составляет от 20000 до 200000 на 1 мм 2 . При этом колбочки преобладают в цент­ре сетчатки, палочки – на пе­риферии. В центре сетчатки на­ходится так называемое жел­тое пятно овальной формы (длина 2 мм,ширина 0,8 мм).В этом месте находятся почти одни колбочки. «Желтое пят­но» является участком сетчат­ки, обеспечивающим наиболее отчетливое резкое зрение.

Палочки и колбочки разли­чаются между собой содержа­щимися в них светочувстви­тельными веществами. Вещест­во палочек – родопсин (зри­тельный пурпур). Максималь­ное светопоглощение родопсина соответствует длине волны при­мерно 510 нм(зеленый свет), т.е., палочки имеют максималь­ную чувствительность к излучению с λ = 510 нм. Светочувствительное вещество колбочек (йодопсин) бываетеси трех типов, каждое из которых имеет максимальное поглощение в различных зонах спектра.

Под действием света молекулы светочувствительных веществ диссоциируют (распадаются) на положительно и отрицательно заряженные частицы. Когда концентрация ионов и, следовательно, их суммарный электрический заряд достигают опре­деленной величины, под действием заряда в нервном волокне возникает импульс тока, который направляется в мозг.

Реакции светового распада родопсина и йодопсина обрати­мы, т. е. после того, как под действием света они были разло­жены на ионы и заряд ионов возбудил в нерве импульс тока, эти вещества снова восстанавливаются в своей первоначальной чув­ствительной к свету форме. Энергию для восстановления дают продукты, которые поступают в глаз через разветвленную сеть мельчайших кровеносных сосудов. Таким об­разом, в глазу устанавливается непрерывный цикл разрушения и последующего восстановления светочувствительных веществ.

Если уровень количества света, действующих на глаз, не из­меняется по времени, то между концентрациями веществ в со­стояниях распада и первоначальной светочувствительной формы устанавливается подвижное равновесие. Величина этой концентрации зависит от количеств света, действующих на глаз в данный или предшествующий моменты, т.е. световая чувствительность глаза изменяет­ся при различных уровнях действующего света.

Известно, что, если войти с яркого света в очень слабо осве­щенное помещение, сначала глаз ничего не различает. Постепен­но способность глаза различать предметы восстанавливается. После длительного пребывания в темноте (около 1 ч)чувстви­тельность глаза становится максимальной, так как концентра­ция светочувствительных веществ достигает своего верхнего предела. Если же после длительного пребывания в тем­ноте выйти на свет, то в первый момент глаз будет находиться в состоянии ослепления: восстановление светочувствительных веществ отстает от их распада. Постепенно глаз приспосабливается к уровню освещения и начинает рабо­тать нормально.

Напомним, что свойство глаза приспосабливаться к уровню количества дей­ствующего света, которое выражается изменением его световой чувствительности, называется адаптацией .

Палочки – ночное зрение. Палочки могут реагировать на самое малое количество света. Они ответственны за нашу способность видеть при лунном свете, свете звездного неба и даже в тех случаях, когда это звездное небо скрыто обла­ками. На рис. 2.2 пунктирная кривая отображает зависимость чувстви­тельности палочек от длины волны. Палочки обеспечивают только ахрома­тическое, или нейтральное в цветовом отношении восприятие в виде белого, серого и черного. Более того, каждая палочка не имеет непосредственной связи с мозгом. Они объединяются в груп­пы. Подобное устройство объясняет высокую чувствительность палочкового зрения, но препятствует различению с его помощью мельчайших деталей. Эти факты поясняют общую бесцветность и нечеткость ночного зрения и справедливость пословицы: «Ночью все кошки се


ры».

Рис. 2.2. Относительная спектральная чувствительность палочек и колбочек

Колбочки – дневное зрение. Реакция колбочек более сложна, чем у палочек. Вместо простого различения света и темноты, а также восприятия ряда различных серых цветов, колбочки обеспечивают восприятие хроматических цветов. Другими сло­вами, с помощью колбочкового зрения мы можем видеть различные цвета. Спектральное распределение чувствительности колбочкового зрения по длинам волн показано на рис. 2.2 сплошной линией. Эту кривую принято называть кривой видности, а также кривой спектральной чувствительности глаза. Палочковое зрение по сравнению с колбочковым гораздо более чувствительно к излучениям коротковолнового участ­ка видимого спектра, а чувствительность к излучениям длинно­волнового (красного) участка спектра примерно такая же, как у колбочек. Однако колбочки продолжают реагировать на малые увеличения интенсивности падающего света (формирующего изоб­ражение на сетчатке) даже тогда, когда плотность его потока на какое-то время становится столь велика, что палочки уже не реагируют на них – они насыщены. Иначе говоря, все палочки в таком случае дают максимально возможное количество нервных сигналов. Таким образом, наше дневное зрение обеспечивается почти полностью колбочками. Сдвиг чувствительности к воздей­ствию света по оси длин волн от колбочкового (дневного) зрения к палочковому (или ночному) зрению носит наиме­нование эффекта Пуркинье (правильнее Пуркине). Этот «сдвиг Пуркинье», названный так в честь впервые открывшего его в 1823 г. чешского ученого Пуркине, обусловливает тот факт, что объект, красный при дневном свете, воспринимается нами как черный при ночном или сумеречном освещении, в то время как объект, воспринимаемый днем как голубой, ночью кажется свет­ло-серым.

Наличие у человека двух типов светочувствительных приемников (палочек и колбочек) представляет собой большое преимущество. Не всем животным так повезло. Куры, например, имеют только колбочки и поэтому должны ложиться спать с заходом солнца. У сов же есть только палочки; они вынуждены весь день щурить глаза.

Палочки и колбочки – сумеречное зрение. В сумеречном зрении участвуют и палочки, и колбочки. Сумерки – это диапазон освещения, который простирается от освещения, создаваемого излучением от неба при солнце, опустившемся больше, чем на несколько градусов за горизонт, до освещения, которое дает поднявшаяся высоко в ясное небо луна в половинной фазе. К суме­речному зрению относится и видение в слабо освещенном (напри­мер, свечами) помещении. Поскольку в таких условиях относи­тельное участие палочкового и колбочкового зрений в общем зри­тельном восприятии непрерывно изменяется, суждения о цвете отличаются крайней ненадежностью. Тем не менее, имеется ряд продук­тов, цветовую оценку которых необходимо производить именно с помощью подобного смешанного зрения, так как они и предна­значены для потребления нами именно при тусклом свете. Приме­ром может служить фосфоресцирующая краска, используемая в дорожных знаках для условий затем­нения.

Работа мозга

Информация от рецепторов передается в мозг по зрительному нерву, содержащему около 800 тысяч волокон. Кроме такой прямой передачи возбуждения от сетчатки к мозговым центрам существует сложная обратная связь для управления, например, движениями глазных яблок.

Где-то в сетчатке происходит сложная переработка информации – логарифмирование плотности тока и преобразование логарифма в частоту импульсов. Далее информация о яркости, кодированная частотой импульсов, по волокну зрительного нерва передается в мозг. Однако по нерву проходит не просто ток, а сложный процесс возбуждения, некоторое сочетание электрических и химических явлений. Отличие от электрического тока подчеркивается тем, что скорость распространения сигнала по нерву очень мала. Она лежит в пределах от 20 до 70 м/с.

Поступающая от трех типов колбочек информация преобразуется в импульсы и до передачи в мозг кодируется в сетчатке. Эта закодированная информация посылается в виде сигнала о яркости от всех трех типов колбочек, а также в виде разностных сигналов каждых двух цветов (рис. 2.3). Сюда подключается также и второй яркостный канал, берущий начало, вероятно, от независимой палочковой системы.

Первый разностный цветовой сигнал представляет собой сигнал К-З. Он формируется красными и зелеными колбочками. Второй сигнал представляет собой сигнал Ж-С, который получается аналогичным образом, за исключением того, что информация о желтом цвете получается при сложении входных сиг


налов из К+З колбочек.

Рис.2.3. Модель зрительной системы

Мозг не раз уподобляли гигантскому центру, собираю­щему и перерабатывающему большой объем информации. Попытки разобраться в миллионах соединений этого неимо­верно сложного устройства были в значительной степени успешными. Мы знаем, например, что зрительный нерв одного глаза соединяется со зрительным нервом другого (перекрест зрительных нервов) таким образом, что нервные волокна правой половины одной сетчатки идут рядом с волокнами от правой половины другой сетчатки и после прохождения ретрансля­ционной станции (коленчатого тела) в среднем мозгу заканчивают свой путь почти в одном и том же месте в затылочной доле мозга, в задней его части. Возбуждения сетчаток проеци­руются в этой доле, причем часть их, соответствующая центру глаза (желтому пятну), в большой степени усилена по сравнению с возбуждениями других участков сетчатки. На ретрансляцион­ной станции имеется возможность для боковых соединений, да и сама затылочная часть имеет множество соединений со всеми другими участками мозга.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека