Используя следующие данные постройте уравнение парной регрессии. Уравнение парной регрессии

Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Важным и нетривиальным этапом построения регрессионной модели является выбор уравнения регрессии. Этот выбор основывается на теоретических данных об изучаемом явлении и предварительном анализе имеющихся статистических данных.

Уравнение парной линейной регрессии имеет вид:

где - теоретические значения результативного признака, полученные по уравнению регрессии; - коэффициенты (параметры) уравнения регрессии.

Модель регрессии строится на основании статистических данных, причем могут использоваться как индивидуальные значения признака, так и сгруппированные данные. Для выявления связи между признаками по достаточно большому числу наблюдений статистические данные предварительно группируют по обоим признакам и строят корреляционную таблицу. При помощи корреляционной таблицы отображается только парная корреляционная связь, т.е. связь результативного признака с одним фактором. Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и требование минимальности суммы квадратов отклонений эмпирических данных от выровненных значений результативного фактора :

.

Для линейного уравнения регрессии имеем:

Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

где - объем исследуемой совокупности (число единиц наблюдения).

Решение системы нормальных уравнений позволяет найти параметры уравнения регрессии .

Коэффициент парной линейной регрессии является средним значением в точке , поэтому его экономическая интерпретация затруднена. Смысл этого коэффициента можно трактовать как усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов. Коэффициент показывает, на сколько в среднем изменяется значение результативного признака при изменении факторного признака на единицу.

После получения уравнения регрессии необходимо проверить его адекватность, то есть соответствие фактическим статистическим данным. С этой целью производится проверка значимости коэффициентов регрессии: выясняется, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом случайного стечения обстоятельств.

Для проверки значимости коэффициентов простой линейной регрессии при объеме совокупности меньше 30 единиц используется критерий Стьюдента. Сопоставляя значение параметра с его средней ошибкой, определяют величину критерия:


где - средняя ошибка параметра .

Средняя ошибка параметров и рассчитываются по следующим формулам:

; ,

– объем выборки;

Среднеквадратическое отклонение результативного признака от выровненных значений ;

Среднеквадратическое отклонение факторного признака от общей средней :

или

Тогда расчетные (фактические) значения критерия соответственно равны:

- для параметра ;

- для параметра .

Вычисленные значения критерия сравниваются с критическими значениями , которые определяют по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы , где - объем выборки, -1 ( - число факторных признаков). В социально-экономических исследованиях уровень значимости обычно принимают 0.05 или 0.01. Параметр признается значимым, если (отклоняется гипотеза о том, что параметр лишь в силу случайных обстоятельств оказался равным полученной величине, а в действительности равен нулю).

Адекватность регрессионной модели может быть оценена при помощи -критерия Фишера. Расчетное значение критерия определяется по формуле ,

где - число параметров модели;

Объем выборки.

По таблице определяется критическое значение -критерия Фишера для принятого уровня значимости и числа степеней свободы , . Если , то модель регрессии признается адекватной по этому критерию (отвергается гипотеза о несоответствии заложенных в уравнении и реально существующих связей).

Вторая задача корреляционно-регрессионного анализа – измерение тесноты зависимости результативного и факторного признака.

Для всех видов связи задача измерения тесноты зависимости может быть решена с помощью исчисления теоретического корреляционного отношения:

,

где - дисперсия в ряду выровненных значений результативного признака , обусловленная факторным признаком ;

- дисперсия в ряду фактических значений . Это общая дисперсия, которая слагается из дисперсии, обусловленной фактором (т.е. факторной дисперсии), и дисперсии остатка (отклонение эмпирических значений признака от выровненных теоретических).

На основании правила сложения дисперсий теоретическое корреляционное отношение может быть выражено через остаточную дисперсию :

.

Так как дисперсия отражает вариацию в ряду только за счет вариации фактора , а дисперсия отражает вариацию за счет всех факторов, то их отношение, именуемое теоретическим коэффициентом детерминации , показывает, какой удельный вес в общей дисперсии ряда занимает дисперсия, вызываемая вариацией фактора . Квадратный корень из отношения этих дисперсий дает теоретическое корреляционное отношение. При нелинейных связях теоретическое корреляционное отношение называют индексом корреляции и обозначают .

Если , то это означает, что роль других факторов в вариации отсутствует, остаточная дисперсия равна нулю и отношение означает полную зависимость вариации от . Если , то это означает, что вариация никак не влияет на вариацию , и в этом случае . Следовательно, корреляционное отношение принимает значения от 0 до 1. Чем ближе корреляционное отношение к 1, тем теснее связь между признаками.

Кроме того, при линейной форме уравнения связи применяется другой показатель тесноты связи – линейный коэффициент корреляции:

.

Линейный коэффициент корреляции принимает значения от –1 до 1. Отрицательные значения указывают на обратную зависимость, положительные – на прямую. Чем ближе модуль коэффициента корреляции к единице, тем теснее связь между признаками.

Приняты следующие граничные оценки линейного коэффициента корреляции:

Связи нет;

Связь слабая;

Связь посредственная;

Связь сильная;

Связь очень сильная.

Квадрат линейного коэффициента корреляции называют линейным коэффициентом детерминации.

Факт совпадения или несовпадения теоретического корреляционного отношения и линейного коэффициента корреляции используется для оценки формы зависимости. Их значения совпадают только при наличии линейной связи. Несовпадение этих величин свидетельствует о нелинейности связи между признаками. Принято считать, что если , то гипотезу о линейности связи можно считать подтвержденной.

Показатели тесноты связи, особенно исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки их надежности (значимости), дающей возможность распространять выводы, полученные по выборочным данным, на генеральную совокупность.

Для этого рассчитывается средняя ошибка коэффициента корреляции:

Где - число степеней свободы при линейной зависимости.

Затем находится отношение коэффициента корреляции к его средней ошибке, то есть , которое сравнивается с табличным значением критерия Стьюдента.

Если фактическое (расчетное) значение больше табличного (критического, порогового), то линейный коэффициент корреляции считается значимым, а связь между и - реальной.

После проверки адекватности построенной модели (уравнения регрессии) ее необходимо проанализировать. Для удобства интерпретации параметра используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле:

Точность полученной модели может быть оценена на основании значения средней ошибки аппроксимации:

Кроме того, в некоторых информативными являются данные об остатках, характеризующих отклонение -х наблюдений от расчетных значений . Особый экономический интерес представляют значения, остатки которых имеют наибольшие положительные или отрицательные отклонения от ожидаемого уровня анализируемого показателя.

Наиболее простой с точки зрения понимания, интерпретации и техники расчетов является линейная форма регрессии .

Уравнение линейной парной регрессии , где

a 0 , a 1 - параметры модели, ε i - случайная величина (величина остатка).

Параметры модели и их содержание:


Уравнение регрессии дополняется показателем тесноты связи. В качестве такого показателя выступает линейный коэффициент корреляции , который рассчитывают по формуле:

или .

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:

,

где

.

Соответственно величина характеризует долю дисперсии , вызванную влиянием остальных, неучтенных в модели, факторов.

После того как уравнение регрессии построено, выполняется проверка его адекватности и точности.Эти свойства модели исследуются на основе анализа ряда остатков ε i (отклонений расчетных значений от фактических).

Уровень ряда остатков

Корреляционный и регрессионный анализ проводится для ограниченной по объему совокупности. В связи с этим показатели регрессии, корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенной модели.

Проверка адекватности модели заключается в определении значимости модели и установление наличия или отсутствия систематической ошибки.

Значения у 1 соответствующие данным х i при теоретических значениях а 0 и а 1 , случайные. Случайными будут и рассчитанные по ним значения коэффициентов а 0 и а 1 .

Проверка значимостиотдельных коэффициентов регрессии проводится по t-критерию Стьюдента путем проверки гипотезы равенстве нулю каждого коэффициента регрессии. При этом выясняют, насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатом действия случайных величин. Для соответствующих коэффициентов регрессии применяют соответствующие формулы.

Формулы для определения t- критерия Стьюдента

где

S a 0 ,S a 1 - стандартные отклонения свободного члена и коэффициента регрессии. Определяются по формулам

где

S ε - стандартное отклонение остатков модели (стандартная ошибка оценки), которая определяется по формуле

Расчетные значения t-критерия сравнивают с табличным значением критерия t αγ , .которое определяется при (n — k — 1) степенях свободы и соответствующем уровне значимости α. Если расчетное значение t -критерия превосходит его табличное значение t αγ ,то параметр признается значимым. В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Оценка значимости уравнения регрессии в целом производится на основе - критерия Фишера , которому предшествует дисперсионный анализ.

Общая сумма квадратов отклонений переменной от среднего значения раскладывается на две части - «объясненную» и «необъясненную»:

Общая сумма квадратов отклонений;

Сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений);


- остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов.

Схема дисперсионного анализа имеет вид, представленный в таблице 35 ( - число наблюдений, - число параметров при переменной ).

Таблица 35 - Схема дисперсионного анализа

Компоненты дисперсии Сумма квадратов Число степеней свободы Дисперсия на одну степень свободы
Общая
Факторная
Остаточная

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину -критерия Фишера:

Для проверки значимости уравнения регрессии в целом используют F-критерий Фишера . В случае парной линейной регрессии значимость модели регрессии определяется по следующей формуле: .

Если при заданном уровне значимости расчетное значение F -критерия с γ 1 =k, γ 2 =(п - k - 1) степенями свободы больше табличного, то модель считается значимой, гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Проверка наличия или отсутствия систематической ошибки (выполнения предпосылок метода наименьших квадратов — МНК) осуществляется на основе анализа ряда остатков. Расчет случайных ошибок параметров линейной регрессии и коэффициента корреляции производят по формулам

,

Для проверки свойства случайности ряда остатков можно использовать критерий поворотных точек (пиков). Точка считается поворотной, если выполняются следующие условия: ε i -1 < ε i > ε i +1 или ε i -1 > ε i < ε i +1

Далее подсчитывается число поворотных точек р. Критерием случайности с 5 % уровнем значимости, т.е. с доверительной вероятностью 95%, является выполнение неравенства:

Квадратные скобки означают, что берется целая часть числа, заключенного в скобки. Если неравенство выполняется, то модель считается адекватной.

Для проверки равенства математического ожидания остаточной последовательности нулю вычисляется среднее значение ряда остатков:

Если = 0, то считается, что модель не содержит постоянной систематической ошибки и адекватна по критерию нулевого среднего.

Если ≠ 0, то проверяется нулевая гипотеза о равенстве нулю математического ожидания. Для этого вычисляют t -критерий Стьюдента по формуле:

где S ε — стандартное отклонение остатков модели (стандартная ошибка).

Значение t -критерий сравнивают с табличным t αγ . Если выполняется неравенство t > t αγ , то модель неадекватна по данному критерию

Дисперсия уровней ряда остатков должна быть одинаковой для всех значений х (свойство гомоскедастичности ).Если это условие не соблюдается, то имеет место гетероскедастичность .

Для оценки гетероскедастичности при малом объеме выборки можно использовать метод Гольдфельда—Квандта , суть которого заключается в том, что необходимо:

Расположить значения переменной х в порядке возрастания;

Разделить совокупность упорядоченных наблюдений на две группы;

По каждой группе наблюдений построить уравнения регрессии;

Определить остаточные суммы квадратов для первой и второй групп по формулам: ; , где

n 1 - число наблюдений в первой группе;

n 2 - число наблюдений во второй группе.

Рассчитать критерий или (в числителе должна быть большая сумма квадратов). При выполнении нулевой гипотезы о гомоскедастичности критерий F расч будет удовлетворять F-критерию со степенями свободы γ 1 =n 1 -m, γ 2 =n - n 1 - m) для каждой остаточной суммы квадратов (где mчисло оцениваемых параметров в уравнении регрессии). Чем больше величина F расч превышает табличное значение F- критерия, тем больше нарушена предпосылка о равенстве дисперсий остаточных величин.

Проверку независимости последовательности остатков (отсутствие автокорреляции) осуществляют с помощью d-критерия Дарбина—Уотсона . Он определяется по формуле:

Расчетное значение критерия сравнивается с нижним d 1 и верхним d 2 критическими значениями статистики Дарбина—Уотсона. Возможны следующие случаи:

1) если d < d 1 , то гипотеза о независимости остатков отвергается и модель признается неадекватной по критерию независимости остатков;

2) если d 1 < d < d 2 (включая сами эти значения), то считается, что нет достаточных оснований сделать тот или иной вывод. Необходимо использовать дополнительный критерий, например первый коэффициент автокорреляции:

Если расчетное значение коэффициента по модулю меньше табличного значения г 1кр, то гипотеза об отсутствии автокорреляции принимается; в противном случае эта гипотеза отвергается;

3) если d 2 < d < 2, то гипотеза о независимости остатков принимается и модель признается адекватной по данному критерию;

4) если d> 2, то это свидетельствует об отрицательной автокорреляции остатков. В этом случае расчетное значение критерия необходимо преобразовать по формуле d′= 4 - dи сравнивать с критическим значением d′, а не d.

Проверку соответствия распределения остаточной последовательности нормальному закону распределенияможно осуществить с помощью R/S - критерия, который определяется по формуле:

где S ε — стандартное отклонение остатков модели (стандартная ошибка). Расчетное значение R/S - критерия сравнивают с табличными значениями (нижней и верхней границами данного отношения), и если значение не попадает в интервал между критическими границами, то с заданным уровнем значимости гипотеза о нормальности распределения отвергается; в противном случае гипотеза принимается

Для оценки качества регрессионных моделей целесообразно также использовать индекс корреляции (коэффициент множественной корреляции).

Формула определения индекса корреляции

где

Общая сумма квадратов отклонений зависимой переменной от ее среднего значения. Определяется по формуле:

Сумма квадратов отклонений, объясненная регрессией. Определяется по формуле:

Остаточная сумма квадратов отклонений. Вычисляется по формуле:

Уравнение можно представить следующим образом:

Индекс корреляции принимает значение от 0 до 1. Чем выше значение индекса, тем ближе расчетные значения результативного признака к фактическим. Индекс корреляции используется при любой форме связи переменных; при парной линейной регрессии он равен парному коэффициенту корреляции.

В качестве меры точности модели применяют точностные характеристики: Для определения меры точности модели рассчитывают:

- максимальная ошибка - соответствует отклонению расчетному отклонению расчетных значений от фактических

- средняя абсолютная ошибка - ошибка показывает, насколько в среднем отклоняются фактические значения от модели

- дисперсия ряда остатков (остаточная дисперсия)

где - среднее значение ряда остатков. Определяется по формуле

- средняя квадратическая ошибка . Представляет собой корень квадратный из дисперсии: , чем меньше значение ошибки, тем точнее модель

- средняя относительная ошибка аппроксимации .

Средняя ошибка аппроксимации не должна превышать 8-10%.

Если модель регрессии признана адекватной, а параметры модели значимы, то переходят к построению прогноза.

Прогнозируемое значение переменной у получается при подстановке в уравнение регрессии ожидаемой величины независимой переменной х прогн.

Данный прогноз называется точечным. Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большой надежностью.

Доверительные интервалы прогноза зависят от стандартной ошибки, удаления х прогн от своего среднего значения , количества наблюдений n и уровня значимости прогноза α. Доверительные интервалы прогноза рассчитывают по формуле: или

где

t табл - определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы γ=n-k-1.

Пример13 .

По данным проведенного опроса восьми групп семей известны данные связи расходов населения на продукты питания с уровнем доходов семьи (таблица 36).

Таблица 36 - Связи расходов населения на продукты питания с уровнем доходов семьи

Расходы на продукты питания, , тыс. руб. 0,9 1,2 1,8 2,2 2,6 2,9 3,3 3,8
Доходы семьи, , тыс. руб. 1,2 3,1 5,3 7,4 9,6 11,8 14,5 18,7

Предположим, что связь между доходами семьи и расходами на продукты питания линейная. Для подтверждения нашего предположения построим поле корреляции (рисунок 8).

По графику видно, что точки выстраиваются в некоторую прямую линию.

Для удобства дальнейших вычислений составим таблицу 37.

Рассчитаем параметры линейного уравнения парной регрессии . Для этого воспользуемся формулами:

Рисунок 8 - Поле корреляции.

Получили уравнение:

Т.е. с увеличением дохода семьи на 1000 руб. расходы на питание увеличиваются на 168 руб.

Расчет линейного коэффициента корреляции .

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Парной регрессией называется уравнение связи двух переменных

у и х Вида y = f (x ),

где у - зависимая переменная (результативный признак);

х - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Метод наименьших квадратов МНК

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

5. Оценка статистической значимости показателей корреляции, параметров уравнения парной линейной регрессии, уравнения регрессии в целом.

6. Оценка степени тесноты связи между количественными переменными. Коэффициент ковариации. Показатели корреляции: линейный коэффициент корреляции, индекс корреляции (= теоретическое корреляционное отношение).

Коэффициент ковариации

Мч(у) - Т.е. получим корреляционную зависимость.

Наличие корреляционной зависимости не может ответить на вопрос о причине связи. Корреляция устанавливает лишь меру этой связи, т.е. меру согласованного варьирования.

Меру взаимосвязи му 2 мя переменными можно найти с помощью ковариации.

, ,

Величина показателя ковариации зависит от единиц в γ измеряется переменная. Поэтому для оценки степени согласованного варьирования используют коэффициент корреляции - безразмерную характеристику имеющую определенный пределы варьирования..

7. Коэффициент детерминации. Стандартная ошибка уравнения регрессии.

Коэффициент детерминации (rxy2) - характеризует долю дисперсии результативного признака y, объясняемую дисперсией, в общей дисперсии результативного признака. Чем ближе rxy2 к 1, тем качественнее регрессионная модель, то есть исходная модель хорошо аппроксимирует исходные данные.

8. Оценка стат значимости показателей корр-ии, параметров уравнения парной линейной регрессии, уравнения регрессии в целом: t -критерий Стьюдента, F -критерий Фишера.

9. Нелинейные модели регрессии и их линеаризация.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно исключенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным , но линейных по оцениваемым параметрам:


Нелинейные модели регрессии и их линеаризация

При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются по МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

,

мы преобразовываем ее в линейный вид:

где переменные выражены в логарифмах.

Далее обработка МНК та же: строится система нормальных уравнений и определяются неизвестные параметры. Потенцируя значение , находим параметр a и соответственно общий вид уравнения степенной функции.

Вообще говоря, нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Эта оценка определяется, как и в линейной регрессии, МНК. Так, в двухфакторном уравнении нелинейной регрессии

может быть проведена линеаризация, введением в него новых переменных . В результате получается четырехфактороное уравнение линейной регрессии

10.Мультиколлинеарность. Методы устранения мультиколлинеарности.

Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью . Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности.

Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК).

Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам:

ü затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

ü оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений, что делает модель непригодной для анализа и прогнозирования

Методы устранения мультиколлинеарности

- исключение переменной (ых) из модели;

Однако нужна определенная осмотрительность при применении данного метода. В этой ситуации возможны ошибки спецификации.

- получение дополнительных данных или построение новой выборки;

Иногда для уменьшения мультиколлинеарности достаточно величить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных уменьшает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серъезными издержками. Кроме того, такой подход может увеличить

автокорреляцию.

- изменение спецификации модели;

В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо меняется форма модели, либо добавляются новые объясняющие переменные, не учтенные в модели.

- использование предварительной информации о некоторых параметрах;

11.Классическая линейная модель множественной регр-ии (КЛММР). Определение параметров ур-я множественной регр-ии методом наим квадратов.

1. Основные определения и формулы

Парная регрессия - регрессия (связь) между двумя переменными и т.е. модель вида:

где - зависимая переменная (результативный признак);

- независимая объясняющая переменная (признак-фактор);

Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов.

Практически в каждом отдельном случае величина складывается из двух слагаемых:

где - фактическое значение результативного признака;

Теоретическое значение результативного признака, найденное исходя из уравнения регрессии. Знак «^» означает, что между переменными и нет строгой функциональной зависимости.

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением прямой

Нелинейные регрессии делятся на два класса:

1) регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам , например:

Полиномы разных степеней

Равносторонняя гипербола

2) регрессии, нелинейные по оцениваемым параметрам , например:

Степенная

Показательная

Экспоненциальная

Для построения парной линейной регрессии вычисляют вспомогательные величины ( - число наблюдений).

Выборочные средние : и

Выборочная ковариация между и

или

Ковариация - это числовая характеристика совместного распределения двух случайных величин.

Выборочная дисперсия для

или

Выборочная дисперсия для

или

Выборочная дисперсия характеризует степень разброса значений случайной величины вокруг среднего значения (вариабельность, изменчивость).

Тесноту связи изучаемых явлений оценивает выборочный коэффициент корреляции между и

Коэффициент корреляции изменяется в пределах от -1 до +1. Чем ближе от по модулю к 1, тем ближе статистическая зависимость между и к линейной функциональной.

Если =0, то линейная связь между и отсутствует; <0,3 - связь слабая; 0,3<0,7 - связь умеренная; 0,7<0,9 - связь сильная; 0,9<0,99 - связь весьма сильная.

Положительное значение коэффициента свидетельствует о том, то связь между признаками прямая (с ростом увеличивается значение ), отрицательное значение - связь обратная (с ростом значение уменьшается).

Построение линейной регрессии сводится к оценке ее параметров и Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от теоретических минимальна, т.е.

Для линейной регрессии параметры и находятся из системы нормальных уравнений:

Решая систему, находим в на

и параметр

Коэффициент при факторной переменной показывает, насколько изменится в среднем величина при изменении фактора на единицу измерения.

Параметр когда Если не может быть равен 0, то не имеет экономического смысла. Интерпретировать можно только знак при если то относительное изменение результата происходит медленнее, чем изменение фактора, т.е. вариация результата меньше вариации фактора и наоборот.

Для оценки качества построенной модели регрессии можно использовать коэффициент детерминации либо среднюю ошибку аппроксимации .

К оэффициент детерминации

Или

показывает долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака Соответственно, величина характеризует долю дисперсии показателя вызванную влиянием неучтенных в модели факторов и прочих причин.

Чем ближе к 1, тем качественнее регрессионная модель, т.е. построенная модель хорошо аппроксимирует исходные данные.

Средняя ошибка аппроксимации - это среднее относительное отклонение теоретических значений от фактических т.е.

Построенное уравнение регрессии считается удовлетворительным, если значениене превышает 10-12%.

Для линейной регрессии средний коэффициент эластичности находится по формуле:

Средний коэффициент эластичности показывает на сколько процентов в среднем по совокупности изменится результат от своей величины при изменении фактора на 1% от своего значения.

Оценка з начимост и уравнения регрессии в целом дается с помощью -критерия Фишера, который заключается в проверке гипотезы о статистической незначимости уравнения регрессии. Для этого выполняется сравнениефактич е ского и критического (табличного) значений - критерия Фишера.

определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы, т.е.

- максимально возможное значение критерия под влиянием случайных факторов при степенях свободы =1, =-2 и уровне значимости находится из таблицы -критерия Фишера (таблица 1 приложения).

Уровень значимости - это вероятность отвергнуть правильную гипотезу при условии, что она верна.

Если то гипотеза об отсутствии связи изучаемого показателя с фактором отклоняется и делается вывод о существенности этой связи с уровнем значимости (т.е. уравнение регрессии значимо).

Если то гипотеза принимается и признается статистическая незначимость и ненадежность уравнения регрессии.

Для линейной регрессии значимость коэффициентов регрессии оценивают с помощью - критерия Стьюдента, согласно которому выдвигается гипотеза о случайной природе показателей, т.е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия для каждого из оцениваемых коэффициентов регрессии, т.е.

где и - стандартные ошибки параметров линейной регрессии определяются по формулам:

- максимально возможное значение критерия Стьюдента под влиянием случайных факторов при данной степени свободы =-2 и уровне значимости находится из таблицы критерия Стьюдента (таблица 2 приложения).

Если то гипотеза о несущественности коэффициента регрессии отклоняется с уровнем значимости т.е. коэффициент ( или )не случайно отличается от нуля и сформировался под влиянием систематически действующего фактора

Если то гипотеза не отклоняется и признается случайная природа формирования параметра.

Значимость линейного коэффициента корреляции также проверяется с помощью - критерия Стьюдента, т.е.

Гипотеза о несущественности коэффициента корреляции отклоняется с уровнем значимости если

Замечание. Для линейной парной регрессии проверки гипотез о значимости коэффициента и коэффициента корреляции равносильны проверке гипотезы о существенности уравнения регрессии в целом, т.е.

Для расчета доверительного интервала определяют предельную ошибку для каждого показателя, т.е.

Доверительные интервалы для коэффициентов линейной регрессии:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, т.к. он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего прогнозного значения Затем вычисляется средняя стандартная ошибка прогноза

где

и строится доверительный интервал прогноза

Интервал может быть достаточно широк за счет малого объема наблюдений.

Регрессии, нелинейные по включенным переменным , приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью МНК.

Г ипербол ическая регрессия:

Р егрессии , нелинейны е по оцениваемым параметрам , делятся на два типа: внутренне нелинейные и т.п. (к линейному виду не приводятся) и внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований), например:

Экспоненциальная регрессия:

Линеаризующее преобразование:

Степенная регрессия:

Линеаризующее преобразование:

Показатель ная регрессия:

Линеаризующее преобразование:

Логарифмическ ая регрессия:

Линеаризующее преобразование:

2. Решение типовых задач

Пример 9 .1 . По 15 сельскохозяйственным предприятиям (табл. 9.1) известны: - количество техники на единицу посевной площади (ед/га) и - объем выращенной продукции (тыс. ден. ед.). Необходимо:

1) определить зависимость от

2) построить корреляционные поля и график уравнения линейной регрессии на

3) сделать вывод о качестве модели и рассчитать прогнозное значение при прогнозном значении составляющем 112% от среднего уровня.

Таблица 9.1

Решение:

1) В Excel составим вспомогательную таблицу 9.2.

Таблица 9.2

Рис. 9 .1. Таблица для расчета промежуточных значений

Вычислим количество измерений Для этого в ячейку В19 поместим =СЧЁТ(A2:A 16 ) .

С помощью функции ∑ (Автосумма) на панели инструментов Стандар т ная найдем сумму всех (ячейка В17 ) и (ячейка С17 ).

Рис. 9.2. Расчет суммы значений и средних

Для вычисления средних значений используем встроенную функцию MS Excel СРЗНАЧ(), в скобках указывается диапазон значений для определения средней. Таким образом, средний объем выращенной продукции по 15 хозяйствамсоставляет 210,833 тыс.ден. ед., а средние количество техники - 6,248ед/га.

Для заполнения столбцов D , E , F введем формулувычисления произведения: в ячейку D 2 поместим =B2*C2 , затем на клавиатуре нажмем ENTER. Щелкнем левой кнопкой мыши по ячейке D 2 и, ухватив за правый нижний угол этой ячейки (черный плюсик), потянем вниз до ячейки D 16 . Произойдет автоматическое заполнение диапазона D 3 - D 16 .

Для вычисления выборочн ой ковариации между и используем формулу т.е. в ячейку B 21 поместим =D 18- B 18* C 18 и получим 418,055 (рис. 9.3).

Рис. 9 .3. Вычисление

Выборочн ую дисперси ю для найдем по формуле для этого в ячейку B 22 поместим =E18-B18 ^2 (^- знак указывающий возведение в степень) и получим 11,337. Аналогично определяем =16745,05556 (рис. 9.4)

Рис. 9 .4. Вычисление Var (x ) и Var (y )

Далее используя стандартную функцию MS Excel «КОРРЕЛ» вычисляем значение линейного коэффициента корреляции для нашей задачи функция будет иметь вид «=КОРРЕЛ(B2:B16;C2:C16)», а значение rxy=0,96. Полученное значение коэффициента корреляции указывает на прямую и сильную связь наличия техники и объемов выращенной продукции.

Находим в ыборочный коэффициент линейной регрессии =36,87; параметр =-17,78. Значит, уравнение парной линейной регрессии имеет вид =-17,78+36,87

Коэффициент показывает, что при увеличении количества техники на 1 ед/га объем выращенной продукции в среднем увеличится на 36,875 тыс. ден. ед. (рис. 9.5)

Рис. 9 .5. Расчет параметров уравнения регрессии.

Таким образом, уравнение регрессии будет иметь вид: .

Подставляем в полученное уравнение фактические значения x (количество техники) находим теоретические значения объемов выращенной продукции (рис. 9.6).

Рис. 9 .6. Расчет теоретических значений объемов выращенной продукции

Используя Мастер диаграмм строим корреляционные поля (выделяя столбцы со значениями и ) и уравнение линейной регрессии (выделяя столбцы со значениями и ). Выбираем тип диаграммы - Т очечная В полученной диаграмме заполняем нужные параметры (название, подписи к осям, легенду и т.п.). В результате получим график представленный на рис. 9.7.

Рис. 9 .7. График зависимости объема выращенной продукции от количества техники

Для оценки качества построенной модели регрессии вычислим:

. к оэффициент детерминации =0,92, который показывает, что изменение затрат на выпуск продукции на 92% объясняется изменением объема произведенной продукции а 8% приходится на долю неучтенных в модели факторов, что указывает на качественность построенной регрессионной модели;

. с редн юю ошибк у аппроксимации . Для этого в столбце H вычислим разность фактического и теоретического значений а в столбце I - выражение . Обращаем Ваше внимание, что для вычисления значения по модулю используется стандартная функция MS Excel «ABS». При умножении среднего значения (ячейка I 18 ) на 100% получим 18,2%. Следовательно, в среднем теоретические значенияотклоняются от фактических на 18,2%(рис. 1.8).

С помощью -критерия Фишераоценим з начимост ь уравнения регре с сии в целом : 150,74.

На уровне значимости 0,05 =4,67 определяем c помощью встроенной статистической функции FРАСПОБР (рис. 1.9). При этом необходимо помнить, что «Степени_свободы1» это знаменатель , а «Степени_свободы2» - числитель , где - число параметров в уравнении регрессии (у нас 2), n - число исходных пар значений (у нас 15).

Так как то уравнение регрессии значимо при =0,05.

Рис. 9 .8. Определение коэффициента детерминации и средней ошибки апроксимации

Рис. 9 . 9 . Диалоговое окно функции FРАСПОБР

Далее определяем с редний коэффициент эластичности по формуле. Найденное показывает, что с ростом объема произведенной продукции на 1% затраты на выпуск этой продукции в среднем по совокупности возрастут на 1,093%.

Рассчитаем прогнозное значение путем подстановки в уравнение регрессии =-19,559+36,8746 прогнозного значения фактора =1,12=6,248*1,12=6,9978. Получим =238,48. Следовательно, при количестве техники в количестве 6,9978ед/гаобъем выпущенной продукции составит 238,48 тыс. ден. ед.

Найдем остаточную дисперсию, для этого вычислим сумму квадратов разности фактического и теоретического значений. =39,166 поместив следующую формулу =КОРЕНЬ(J17/(B19-2)) в ячейку H 2 1 (рис. 9.10).

Рис. 9 .10. Определение остаточной дисперсии

С редн яя стандартн ая ошибка прогноза :

На уровне значимости =0,05 с помощью встроенной статистической функции СТЬЮДРАСПОБР определим =2,1604 и вычислим предельную ошибку прогноза, которая в 95% случаев не будет превышать .

Д оверительный интервал прогноза :

Или .

Выполненный прогноз затрат на выпуск продукции оказался надежным (1-0,05=0,95), но неточным, так как диапазон верхней и нижней границ доверительного интервала составляет раза. Это произошло за счет малого объема наблюдений.

Необходимо отменить, что в MS Excel встроены статистические функции позволяющие значительно снизить количество промежуточных вычислений, например (рис. 9.11.):

Для вычисления в ыборочны х средни х используем функцию СРЗНАЧ(число1:число N ) из категории Статистические .

Выборочная ковариация между и находится с помощью функции КОВАР(массив X ;массив Y ) из категории Статистические .

Выборочн ые дисперси и определяются статистической функцией ДИСПР(число1:число N ) .

Рис. 9 .11. Вычисление п оказателей встроенными функциями MS Excel

П араметр ы линейной регрессии в Excel можно определить несколькими способами.

1 способ) С помощью встроенной функции ЛИНЕЙН . Порядок действий следующий:

1. Выделить область пустых ячеек 5x2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики или область 1x2 - для получения только коэффициентов регрессии.

2. С помощью Мастера функций среди Статистических выбрать функцию ЛИНЕЙН и заполнить ее аргументы (рис. 9.12):

Рис. 9 . 12 . Диалоговое окно ввода аргументов функции ЛИНЕЙН

Известные_значения_ y

Известные_значения_ x

Конст - логическое значение (1 или 0), которое указывает на наличие или отсутствие свободного члена в уравнении; ставим 1;

Статистика - логическое значение (1 или 0), которое указывает, выводить дополнительную информацию по регрессионному анализу или нет; ставим 1.

3. В левой верхней ячейке выделенной области появится первое число таблицы. Для раскрытия всей таблицы нужно нажать на клавишу < F 2> , а затем - на комбинацию клавиш < CTRL > + < SHIFT > + < ENTER > .

Дополнительная регрессионная статистика будет выведена в виде (табл. 9.3):

Таблица 9.3

Значение коэффициента

Значение коэффициента

Среднеквадратическое
отклонение

Среднеквадратическое
отклонение

Коэффициент
детерминации

Среднеквадратическое
отклонение

Статистика

Число степеней свободы

Регрессионная сумма квадратов

Остаточная сумма квадратов

В результате применения функции ЛИНЕЙН получим:

( 2 способ) С помощью инструмента анализа данных Регрессия можно получить результаты регрессионной статистики, дисперсионного анализа, доверительные интервалы, остатки, графики подбора линий регрессии, графики остатков и нормальной вероятности. Порядок действий следующий:

1. Необходимо проверить доступ к Пакету анализа . Для этого в главном меню (через кнопку Microsoft Office получить доступ к параметрам MS Excel) в диалоговом окне «Параметры MS Excel » выбрать команду «Надстройки» и справа выбрать надстройку Пакета анализ а далее нажать кнопку «Перейти» (рис. 9.13). В открывшемся диалоговом окне поставить галочку напротив «Пакет анализа» и нажать «ОК» (рис. 9.14).

На вкладке «Данные» в группе «Анализ» появится доступ к установленной надстройке. (рис. 9.15).

Рис. 9 .13. Включение надстроек в MS Excel

Рис. 9 .14. Диалоговое окно «Надстройки»

Рис. 9 .15. Надстройка «Анализ данных» на ленте MS Excel 2007 .

2. Выбрать на «Данные» в группе «Анализ» выбираем команду Анализ да н ных в открывшемся диалоговом окне выбрать инструмент анализа «Регрессия» и нажать «ОК» (рис. 9.16):

Рис. 9 .16. Диалоговое окно «Анализ данных»

В появившемся диалоговом окне (рис. 9.17) заполнить поля:

Входной интервал Y - диапазон, содержащий данные результативного признака Y;

Входной интервал X - диапазон, содержащий данные объясняющего признака X;

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Конст анта-ноль - флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

Рис. 9 .17. Диалоговое окно «Регрессия»

Для получения информации об остатках, графиков остатков, подбора и нормальной вероятности нужно установить соответствующие флажки в диалоговом окне.

Рис. 9 . 18 . Результаты применения инструмента Регрессия

В MS Excel линия тренда может быть добавлена в диаграмму с областями гистограммы или в график. Для этого:

1. Необходимо выделить область построения диаграммы и в ленте выбрать «Макет» и в группе анализ выбрать команду «Линия тренда» (рис. 9.19.). В выпадающем пункте меню выбрать «Дополнительные параметры линии тренда».

Рис. 1.19. Лента

2. В появившемся диалоговом окне выбрать фактические значения, затем откроется диалоговое окно «Формат линии тренда» (рис. 9.20.) в котором выбирается вид линии тренда и устанавливаются соответствующие параметры.

Рис. 9 . 20 . Диалоговое окно «Формат линии тренда»

Для полиноминального тренда необходимо задать степень аппроксимирующего полинома, для линейной фильтрации - количество точек усреднения.

Выбираем Линейная для построения уравнения линейной регрессии.

В качестве дополнительной информации можно показать уравнение на ди а грамме и поместить на диаграмму величину (рис.9.21).

Рис. 9 . 21 . Линейный тренд

Нелинейные модели регрессии иллюстрируются при вычислении параметров уравнения с применением выбранной в Excel статистической функции Л ГРФПРИБЛ . Порядок вычислений аналогичен применению функции ЛИНЕЙН.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека