Дыхательная и кровеносная и системы. Кровь

Мозг жадно поглощает кислород. В этом легко убедиться, определив концентрацию кислорода в артериальной и венозной крови. Во время отдыха мозг потребляет кислорода почтой в 20 раз больше, чем мышечная ткань. При напряженной умственной работе потребление кислорода мозгом отчетливо возрастает.

О ненасытной потребности мозга в кислороде свидетельствуют и такие цифры. Вес головного мозга взрослого человека, как правило, составляет 2-2,5 процента веса тела. В то же время мозг потребляет 1 / 5 или даже 1 / 4 часть от всего кислорода, который расходует человеческий организм.

В душной комнате нам плохо думается. Это испытывал, по-видимому, каждый. Некоторые люди особенно тяжело переносят нехватку кислорода. А наши дети? Они еще хуже переносят кислородную недостаточность. И это не случайно. У ребенка до четырехлетнего возраста около половины потребляемого организмом кислорода расходует мозг.

Мозговая ткань - самая чувствительная к наркотикам и этиловому спирту. Даже небольшие концентрации алкоголя угнетают ее дыхание...

Исследователи рассчитали, что запасы кислорода, растворенного в крови, в кровеносных сосудах головного мозга и в самой ткани, весьма ограничены. Всего на 10 секунд хватает ему собственных ресурсов. Если кислород не поступает с током крови, то очень скоро может наступить биохимическая катастрофа.

А собственно говоря, для чего мозговой ткани нужно много кислорода?

Вероятно, для того, чтобы при этом совершалась работа, мозг мог жить. И вот тут мы встречаемся с явлением, которое характерно только для мозга.

Чтобы совершать работу, нужно сжигать какое-то топливо. Вот таким топливом, почти единственным, для мозга служит глюкоза. Кислород, главным образом, и расходуется на окисление этого вещества. Конечные продукты превращения глюкозы - углекислота и вода. Однако при этом образуется другой универсальный источник энергии - молекула АТФ. Она и обеспечивает практически все энергетические затраты мозга.

Мозг в определенном смысле бессребреник. Он не имеет никаких сколько-нибудь солидных запасов глюкозы и живет, как говорится, сегодняшним днем.

Убедиться в этом можно на простом, опыте. Обычной безопасной бритвой нарежем тончайшие ломтики внутренних органов лабораторных мышей: печени, почек, мышц. Срезы коры головного мозга сделать труднее, но можно.

Поместим срезы каждого органа отдельно в физиологический раствор, налитый в маленькие сосуды объемом несколько кубических сантиметров каждый. К сосудикам присоединим стеклянные манометры с делениями. В манометр нальем небольшое количество специально приготовленной и окрашенной жидкости. Теперь всю нашу конструкцию опустим в ванну с теплой водой, но так, чтобы манометр был снаружи ванны, а сосудик - внутри ее. Температура воды в ванне 37 градусов, то есть близка к температуре тела лабораторного животного.

Срезы органов дышат и потребляют кислород. Объем газа в сосудике уменьшается, и это отражается на показаниях манометра. Столбик жидкости ползет кверху. Конечно, медленно, но вполне заметно. Таким образом можно рассчитать, сколько кубических миллиметров кислорода поглотилось навеской ткани в 100 миллиграммов за одну минуту.

И вот тут мы сталкиваемся с необычным явлением. Срезы тканей печени, почек, мышц потребляют кислород с постоянной скоростью в течение довольно-таки длительного времени. Во всяком случае, этот процесс можно наблюдать и пять и десять минут. Другое дело мозговая ткань. Ее дыхание быстро замедляется, но стоит добавить каплю раствора глюкозы, как она оживает и дышит снова с прежней интенсивностью.

Опыт, который мы проделали, очень наглядный. Он свидетельствует, что нервные клетки коры головного мозга покрывают свои энергетические потребности почти исключительно за счет глюкозы, которая транспортируется с током крови.

И вот теперь возникает законный вопрос: каким образом при окислении глюкозы образуется другой универсальный источник энергии - молекулы аденозинтрифосфорной кислоты?

Гиппократ - великий врач Древней Греции - в одном из своих сочинений писал: "Есть в человеке и горькое, и соленое, и сладкое, и кислое, и жесткое, и мягкое, и многое другое в бесконечном числе, разнообразии по свойствам, количеству, силе". На примере окислительных превращений глюкозы в мозгу человека и образовании другого универсального источника энергии - аденозинтрифосфорной кислоты можно проследить систему удивительных превращений "сладкого", глюкозы, в АТФ, "кислое", по Гиппократу.

Если просто сжечь молекулы глюкозы в токе кислорода, образуются вода и углекислый газ. При этом выделится значительное количество энергии. Конечно, этот способ образования энергии неприемлем для живой клетки. Энергия в клетке потребляется небольшими порциями. Она должна образовываться постепенно и накапливаться "про запас". Располагая резервом "консервированной энергии", живая клетка способна чрезвычайно быстро отвечать на изменения внешней среды. Более того, процесс наработки энергии клетка может то замедлять, то резко убыстрять.

Каждый из нас наблюдал это бессчетное количество раз. Например, вы спокойно сидели на стуле. Расход энергии в мышечной ткани был сравнительно небольшой. Вы быстро встали и бросились стремительно бежать; биохимическая фабрика по производству энергии заработала на полную мощность.

Длинная цепь биохимических превращений глюкозы началась. Она насчитывает десятки химических преобразований постепенно расщепляемой молекулы исходного соединения. Но нас в данном случае интересует конечный результат. При полном окислении одной молекулы глюкозы синтезируется тридцать восемь молекул аденозинтрифосфорной кислоты.

Вот теперь становится понятным, почему в головном мозгу энергия нарабатывается главным образом путем окисления глюкозы, путем дыхания. При таком способе ее образуется особенно много. Процесс мышления сопровождается значительной затратой энергии в самом прямом смысле этого слова.


Потребление О 2 в состоянии покоя. Количество кислорода, потребляемого тканью, зависит от функционального состояния входящих в ее состав клеток. В табл. 23.1 приведены данные о потреблении кислорода различными органами и их частями, когда организм находится в состоянии покоя при нормальной температуре. Скорость потребления кислорода тем или иным органом () обычно


выражают в мл О 2 на 1 г или 100 г массы за 1 мин (при этом учитывается масса органа в естественных условиях). В соответствии с принципом Фика определяют, исходя из кровотока () через тот или иной орган и разницы в концентрациях О 2 в поступающей к органу артериальной крови и оттекающей от него венозной крови ():

(1)

Когда организм находится в состоянии покоя, кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой), печенью и корковым веществом почек. В то же время скелетные мышцы, селезенка и белое вещество головного мозга потребляют меньше кислорода (табл. 23.1).

Различия в потреблении кислорода разными участками одного и того же органа. Во многих органах можно измерить кровоток через ограниченные участки ткани путем определения клиренса инертных газов (например, 85 Кг, 133 Хе и Н 2). Таким образом, если возможно взять пробу крови из вены, по которой осуществляется отток от данного участка, то этот метод позволяет определить в нем потребление кислорода. Кроме того, несколько лет назад был разработан метод позитронной эмиссионной томографии (ПЭТ), позволяющий непосредственно измерять кровоток и потребление О 2 в отдельных частях органов. Этот метод успешно применяется для исследования головного мозга человека . До внедрения метода ПЭТ, как видно из табл. 23.1, измерить региональное потребление О 2 можно было лишь в немногих органах.

При изучении потребления кислорода тканями мозга различных млекопитающих было показано, что кора больших полушарий потребляет от 8 10 −2 до 0,1 мл О 2 г −1 мин −1 . Исходя из потребления О 2 целым мозгом и корой, можно вычислить среднее потребление О 2 белым веществом мозга. Эта величина составляет примерно 1 10 −2 мл г −1 мин −1 . Прямое измерение поглощения О 2 участками головного мозга у здоровых испытуемых методом позитронной эмиссионной томографии дало следующие величины: для серого вещества различных участках) - примерно от 4 до 6-10 −2 мл г −1 -мин −1 , для белого вещества-2-10 2 млг −1 мин −1 . Можно предполагать, что потребление кислорода варьирует не только в зависимости от участка, но также в разных клетках одного участка. В самом деле, при измерении (с помощью платиновых микроэлектродов) регионального потребления О 2 поверхностными клеточными слоями коры головного мозга было показано, что в условиях слабого наркоза это потребление в пределах небольших участков варьирует примерно от 4-10 −2 до 0,12 мл-г −1 -мин −1 . Результаты радиоавтогра-


ГЛАВА 23. ТКАНЕВОЕ ДЫХАНИЕ 629

Таблица 23.1. Средние значения скорости кровотока (), артериовенозной разницы по О 2 () и потребления 0 2 () в различных органах человека при 37 °С
Орган Источник данных
Кровь
Скелетные мышцы: в покое при тяжелой физической нагрузке
Селезенка
Головной мозг: кора белое вещество
Печень
Почки: корковое вещество наружный слой мозгоаого вещества внутренний слой мозгового вещества
Сердце: в покое при тяжелой физической нагрузке

Фических исследований регионального кровотока (с использованием иод- 14 С-антипирина) и регионального потребления глюкозы (с использованием 14 С-2дезоксиглюкозы) в коре головного мозга позволяют считать, что эти параметры также существенно различаются в соседних участках . У людей старше 30 лет региональный кровоток и потребление О 2 в сером веществе головного мозга с возрастом постепенно снижаются . Примерно такие же различия в потреблении кислорода были обнаружены между отдельными частями почек. В корковом веществе почек среднее потребление О 2 в несколько раз больше, чем во внутренних участках и сосочках мозгового вещества. Поскольку потребности почек в кислороде зависят главным образом от интенсивности активной реабсорбции Na + из просвета канальцев в ткани, полагают, что столь выраженные различия в региональном потреблении О 2 обусловлены в основном разницей между величинами этой реабсорбции в корковом и мозговом веществе .

Потребление О 2 в условиях повышенной активности органа. В том случае, если активность какоголибо органа по тем или иным причинам повышается, в нем возрастает и скорость энергетического обмена, а следовательно, и потребность клеток в кислороде. При физической нагрузке потребление


О 2 тканями миокарда может увеличиваться в 3-4 раза, а работающими скелетными мышцами -более чем в 20-50 раз по сравнению с уровнем покоя. Потребление О 2 тканями почек возрастает при увеличении скорости реабсорбции Na + .

В большинстве органов скорость поглощения О 2 не зависит от скорости кровотока в них (при условии, что напряжение О 2 в тканях достаточно велико). Почки составляют исключение. Существует критическая скорость перфузии, превышение которой вызывает образование ультрафильтрата; при этом уровне фильтрации повышенный кровоток сопровождается повышенным потреблением О 2 тканью почек. Такая особенность обусловлена тем, что интенсивность клубочковой фильтрации (а следовательно, и реабсорбции Na +) пропорциональна скорости кровотока.

Зависимость потребления О 2 от температуры. Потребление О 2 тканями крайне чувствительно к изменениям температуры. При снижении температуры тела энергетический обмен замедляется, а потребность большей части органов в кислороде уменьшается. При нормальной терморегуляции активность органон, участвующих в поддержании теплового баланса, увеличивается, а потребление ими кислорода возрастает. К таким органам относятся, в частности, скелетные мышцы; их терморегуляторная функция осуществляется за счет повышения мышечного тонуса и дрожи (с. 667). Увеличение температуры тела


63β ЧАСТЬ VI. ДЫХАНИЕ


сопровождается повышением потребности большинства органов в кислороде. Согласно правилу Вант-Гоффа, при изменении температуры на 10 o С в пределах от 20 до 40 o С потребление тканями кислорода изменяется в том же направлении в 2 3 раза (Q 10 = 2-3). При некоторых хирургических операциях бывает необходимо временно остановить кровообращение (а следовательно, снабжение органов О 2 и питательными веществами). При этом, чтобы уменьшить потребности органов в кислороде, часто используют гипотермию (понижение температуры тела): больному дают такой глубокий наркоз, при котором терморегуляторные механизмы подавляются.

Деятельность каждой специализированной защитно-приспособительной системы тесно связана со специфическими особенностями охраняемого объекта. Поэтому при изучении принципа работы специализированных защитно-приспособительных систем важно предварительно ознакомиться с основными особенностями охраняемых ими органов.

В этой главе мы расскажем о работе саногенетических механизмов мозга.

Нет необходимости останавливаться на том, какую важную роль играет этот орган, а точнее - система во всей жизнедеятельности организма. С каждым годом в различных лабораториях мира накапливается все больше новых экспериментальных данных о теснейших зависимостях между функциональным состоянием мозга и работой всех других органов и систем.

При исследовании мозга ученых поражает и удивительная его компактность (примерно в 1500 см3 объема черепа вмещается несколько десятков миллиардов клеток и около 1200 км сосудов), и слаженность действия всей этой многомиллиардной структуры, и многое другое. Исключительно интересно решила природа проблему защиты систем мозга.
Основным источником энергии, необходимой для функционирования нервных клеток мозга, является окисление глюкозы. Однако в мозгу почти нет запасов углеводов, поэтому нормальный обмен веществ в нем целиком зависит от постоянной доставки энергетических материалов с кровью. Мозг активен не только во время бодрствования, но и во время сна.

Мозг чрезвычайно чувствителен к недостатку кислорода, его потребность в кислороде значительно выше, чем других органов.

Мозговая ткань потребляет кислорода в 5 раз больше, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% веса тела человека, мозг поглощает 18-25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы - 60-70%, что составляет в сутки около 115 г.

По объему крови, наполняющей его сосуды, мозг стоит на одном из последних мест, в них содержится 1,2% всей крови организма, в то время как в печени и в мышцах 29%.

Парадоксальное несоответствие между количеством крови, наполняющей сосуды мозга, и значительным потреблением кислорода компенсируется большой скоростью кровотока, который в сосудах мозга в 6-7 раз выше, чем в мышцах.
У здоровых людей через 100 г мозгового вещества протекает более 50 мл крови в минуту, что при среднем весе мозга в 1400 г составляет 700-1000 мл. У лиц старше 70 лет мозговой кровоток значительно уменьшается.

В обоих полушариях количество нервных клеток составляет около 15 миллиардов. Кровоснабжение этих клеток осуществляется через капилляры, диаметр которых у человека равен 5-8 мк. В итоге в головном мозгу образуется огромная капиллярная сеть, общая протяженность которой составляет около 1200 км. Кора головного мозга без поступления кислорода может сохранять деятельное состояние в течение 10 секунд. Острая и полная задержка подачи крови мозгу на 6-7 секунд даже у молодых здоровых людей может вызвать обморок, через 40-60 секунд угасают рефлексы, а через 7 минут после клинической смерти наступает гибель нервных клеток в обширных участках различных отделов мозга. Отсюда становится понятным, какое важное значение для нормальной жизнедеятельности мозга имеет непрерывность кровоснабжения. В какой бы ситуации ни находился человек - за рабочим столом или у станка, в разреженной атмосфере высокогорья или в кабине космического корабля, с огромным ускорением набирающим скорость, - мозг должен бесперебойно получать необходимое количество кислорода. Эту задачу успешно решают защитные устройства в системе кровообращения мозга.

Скорость кровообращения в мозгу определяется разницей в давлении крови между мозговыми артериями и венами и величиной просвета сосудов. Давление в артериях мозга пропорционально общему артериальному давлению и в больших артериях виллизиева круга равно примерно 100/60 мм рт. столба, а в капиллярах приблизительно- 13 мм.

Венозное давление в мозге лежащего человека равняется 6-8 мм рт. столба, а в вертикальном положении падает почти до нуля. Падение артериального давления или подъем венозного замедляет мозговое кровообращение.

Головной мозг снабжают кровью две пары артерий: внутренние сонные и позвоночные. Позвоночные артерии являются ветвями подключичных, они идут вверх через отверстия в поперечных отростках шести верхних шейных позвонков и проникают в полость черепа через большое затылочное отверстие.

Отток крови от мозга осуществляют вены, и он происходит при любых положениях головы в пространстве. Продвижению крови в разных направлениях способствует богатство синусов лакунами, расширение средней части верхнего сагиттального синуса.

Хороший отток крови - необходимое условие нормальной жизнедеятельности мозга. Всякое его нарушение приводит к накоплению крови в венах, венозных синусах и капиллярах, что немедленно отражается на питании всех тканей и систем головного мозга, крайне чувствительных к кислородному голоданию. Функция органа в таких условиях быстро понижается. П. Ф. Лесгафт (1922) писал об этом явлении: «В таком случае вся психическая деятельность лица притуплена, замедлена. Все это наблюдается у лиц меланхолического темперамента, самое название которого происходит от слова «черное», указывающего, что в этом случае преобладает черная венозная кровь в теле». Хотя мы сегодня и не имеем возможности сказать, полностью ли прав П. Ф. Лесгафт в своих теоретических предпосылках, тем не менее роль вен головного мозга в патологии мозгового кровотока становится предметом многих исследований.

Из многочисленных факторов внешнего мира, воздействующих прямым и косвенным образом на вены головного мозга, следует назвать колебания атмосферного давления.

Изменение давления отражается на оттоке крови, нередко вызывая этим плохое настроение, тоску, апатию, безразличие и грусть, пониженную работоспособность.

В нашем теле кислород отвечает за процесс выработки энергии. В наших клетках только благодаря кислороду происходит оксигенация — превращение питательных веществ (жиров и липидов) в энергию клетки. При снижении парциального давления (содержания) кислорода во вдыхаемом уровне - снижается его уровень в крови — снижается активность организма на клеточном уровне. Известно, что более 20% кислорода потребляет головной мозг. Дефицит кислорода способствует Соответственно, при падении уровня кислорода страдают самочувствие, работоспособность, общий тонус, иммунитет.
Важно также знать, что именно кислород может выводить из организма токсины.
Обратите внимание, что во всех иностранных фильмах при аварии или человеку в тяжелом состоянии медики экстренных служб первым делом надевают пострадавшему кислородный аппарат, чтобы поднять сопротивляемость организма и повысить его шансы на выживание.
Лечебное воздействие кислорода известно и используется в медицине с конца XVIII века. В СССР активное использование кислорода в профилактических целях началось в 60х годах прошлого века.

Гипоксия

Гипоксия или кислородное голодание — пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе и в крови, при нарушении биохимических процессов тканевого дыхания. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени.
Проявлениями гипоксии являются нарушение дыхания, одышка; нарушение функций органов и систем.

Вред кислорода

Иногда можно услышать, что «Кислород - окислитель, который ускоряет старение организма».
Здесь из верного посыла делается неверный вывод. Да, кислород - окислитель. Только благодаря ему питательные вещества из пищи перерабатываются в энергию организма.
Страх перед кислородом связан с двумя исключительными его свойствами: свободными радикалами и отравлением им при избыточном давлении.

1. Что такое свободные радикалы?
Некоторые из огромного количества постоянно протекающих окислительных (вырабатывающих энергию) и восстановительных реакций организма не завершаются до конца, и тогда образуются вещества с нестабильными молекулами, имеющими на внешних электронных уровнях неспаренные электроны, называемые «свободные радикалы». Они стремятся захватить недостающий электрон у любой другой молекулы. Эта молекула, превратившись в свободный радикал, похищает электрон у следующей, и так далее..
Зачем это нужно? Определенное количество свободных радикалов, или оксидантов, жизненно необходимо организму. Прежде всего — для борьбы с вредными микроорганизмами. Свободные радикалы используются иммунной системой в качестве «снарядов» против «интервентов». В норме в организме человека 5% образовавшихся в ходе химических реакций веществ становятся свободными радикалами.
Главными причинами нарушения естественного биохимического равновесия и роста количества свободных радикалов ученые называют эмоциональный стресс, тяжелые физические нагрузки, травмы и истощение на фоне загрязнения воздуха, употребления в пищу консервированных и технологически неправильно переработанных продуктов, овощей и фруктов, выращенных с помощью гербицидов и пестицидов, ультрафиолетового и радиационного облучения.

Таким образом, старение — это биологический процесс замедления деления клеток, а ошибочно связываемые со старением свободные радикалы — естественные и необходимые организму механизмы защиты и их вредоносное воздействие связано с нарушением естественных процессов в организме негативными факторами окружающей среды и стрессом.

2. «Кислородом легко отравиться».
Действительно, избыток кислорода опасен. Избыток кислорода вызывает увеличение количества окисленного гемоглобина в крови и снижение количества восстановленного гемоглобина. И, поскольку именно восстановленный гемоглобин выводит углекислый газ, его задержка в тканях приводит к гиперкапнии - отравлению CO2.
При переизбытке кислорода растет число свободнорадикальных метаболитов, тех самых страшных «свободных радикалов», которые обладают высокой активностью, действуя в качестве окислителей, способных повредить биологические мембраны клеток.

Ужасно, правда? Сразу хочется перестать дышать. К счастью, для того, чтобы отравиться кислородом, необходимо повышенное давление кислорода как, например, в барокамере (при оксигенобаротерапии) или при погружении со специальными дыхательными смесями. В обычной жизни такие ситуации не встречаются.

3. «В горах мало кислорода, зато много долгожителей! Т.е. кислород вреден».
Действительно, в Советском союзе в горных районах Кавказа и в Закавказье был зарегистрировано некоторое число долгожителей. Если же посмотреть на список верифицированных (т.е. подтвержденных) долгожителей мира за всю его историю, то картина не будет такой очевидной: старейшие долгожители, зарегистрированные во Франции, США и Японии в горах не жили..

В Японии, где до сих пор живет и здравствует самая старая женщина планеты Мисао Окава, которой уже более 116 лет, находится и «остров долгожителей» Окинава. Средняя продолжительность жизни здесь у мужчин — 88 лет, у женщин — 92; это выше, чем в остальной Японии, на 10-15 лет. На острове собраны данные о семистах с лишним местных долгожителей старше ста лет. Там говорят, что: «В отличие от кавказских горцев, хунзакутов Северного Пакистана и других народностей, похваляющихся своим долголетием, все окинавские акты рождения с 1879 года задокументированы в японском семейном реестре — косэки». Сами окинвацы считают, что секрет их долголетия покоится на четырех китах: диета, активный образ жизни, самодостаточность и духовность. Местные жители никогда не переедают, придерживаясь принципа «хари хачи бу» — наесться на восемь десятых. Эти «восемь десятых» у них состоят из свинины, водорослей и тофу, овощей, дайкона и местного горького огурца. Старейшие окинавцы не сидят без дела: они активно работают на земле, и их отдых тоже активен: больше всего они любят играть в местную разновидность крокета.: Окинаву называют самым счастливым островом - там нет свойственной крупным островам Японии спешки и стресса. Местные жители привержены философии юимару — «добросердечное и дружеское совместное усилие».
Интересно, что как только окинавцы переезжают в другие части страны, то среди таких людей уже не встречается долгожителей.. Таким образом, ученые, изучающие этот феномен выяснили, что в долгожительстве островитян генетический фактор роли не играет. А мы, со своей стороны, считаем крайне важным, что Окинавские острова находятся в активно продуваемой ветрами зоне в океане, и уровень содержания кислорода в таких зонах фиксируют как наиболее высокий - 21,9 - 22% кислорода.

Чистота воздуха

«Но ведь на улице грязный воздух, а кислород переносит с собой все вещества».
Именно поэтому в системах OxyHaus установлена трехступенчатая система фильтрации входящего воздуха. И уже очищенный воздух попадает на цеолитовое молекулярное сито, в котором отделяется кислород воздуха.

«Можно ли отравиться кислородом?»

Кислородное отравление, гипероксия, — возникает вследствие дыхания кислородосодержащими газовыми смесями (воздуха, нитрокса) при повышенном давлении. Отравление кислородом может произойти при использовании кислородных аппаратов, регенеративных аппаратов, при использовании для дыхания искусственных газовых смесей, во время проведения кислородной рекомпрессии, а также вследствие превышения лечебных доз в процессе оксигенобаротерапии. При отравлении кислородом развиваются нарушения функций центральной нервной системы, органов дыхания и кровообращения.

Как действует кислород на организм человека?

Большее его количество требуется растущему организму и тем, кто занимается интенсивными физическими нагрузками. Вообще активность дыхания во многом зависит от множества внешних факторов. Например, если вы встанете под достаточно прохладный душ, то количество потребляемого вами кислорода увеличится на 100% по сравнению с условиями при комнатной температуре воздуха. То есть, чем больше человек отдаёт тепло, тем чаще становится частота его дыхания. Вот несколько интересных фактов по этому поводу:


  • за 1 час человек потребляет 15-20 л кислорода;

  • количество потребляемого кислорода: во время бодрствования увеличивается на 30-35%, во время спокойной ходьбы - на 100%, при лёгкой работе - на 200%, при тяжёлой физической работе - на 600% и более;

  • активность дыхательных процессов напрямую зависит от ёмкости лёгких. Так, например, у спортсменов она больше нормы на 1-1,5 литра, а вот у профессиональных пловцов может достигать до 6 литров!

  • Чем больше ёмкость лёгких, тем меньше частота дыхания и больше глубина вдоха. Наглядный пример: спортсмен делает 6-10 вдыханий в минуту, тогда как обычный человек (не являющийся спортсменом) дышит с частотой 14-18 дыханий в минуту.

Так зачем нужен кислород?

Он необходим для всего живого на земле: животные потребляют его в процессе дыхания, а растения выделяют его в процессе фотосинтеза. В каждой живой клеточке содержится больше кислорода, чем любого другого элемента - около 70%.

Он находится в составе молекул всех веществ - липидов, белков, углеводов, нуклеиновых кислот и низкомолекулярных соединений. Да и жизнь человека была бы просто немыслима без этого важного элемента!

Процесс его метаболизма таков: сначала он поступает через лёгкие в кровь, где поглощается гемоглобином и образует оксигемоглобин. Затем через кровь «транспортируется» ко всем клеткам органов и тканей. В связанном состоянии он поступает в виде воды. В тканях расходуется в основном на окисление многих веществ во время их метаболизма. Далее метаболизируется до воды и диоксида углерода, потом выводится из организма через органы дыхательной и выделительной систем.

Избыток кислорода

Для здоровья человека очень опасно длительное вдыхание воздуха, обогащённого этим элементом. Высокие концентрации О2 могут вызвать в тканях появление свободных радикалов, являющихся «разрушителями» биополимеров, точнее, их структуры и функций.

Однако в медицине для лечения некоторых заболеваний всё же используется процедура насыщения кислородом под повышенным давлением, которая называется гипербарическая оксигенация.

Избыток кислорода также опасен, как избыточная солнечная радиация. По жизни человек просто медленно сгорает в кислороде, как свечка. Старение - это процесс сгорания. В прошлом, крестьяне, которые постоянно были на свежем воздухе и солнце, жили значительно меньше своих хозяев - дворян, музицирующих в закрытых домах и проводящих время за карточными играми.

Дыхание - самое яркое и убедительное выражение жизни. Благодаря дыханию организм получает кислород и освобождается от излишков углекислоты, образующейся в результате обмена веществ. Дыхание и кровообращение обеспечивают все органы и ткани нашего тела необходимой для жизни энергией. Освобождение энергии, необходимой для жизнедеятельности организма, происходит на уровне клеток и тканей в результате биологического окисления (клеточного дыхания).

При недостатке кислорода в крови в первую очередь страдают такие жизненно важные органы, как сердце и центральная нервная система. Кислородное голодание сердечной мышцы сопровождается угнетением синтеза аденозинтрифосфорной кислоты, (АТФ), являющейся основным источником энергии, необходимой для работы сердца. Мозг человека потребляет больше кислорода, чем непрерывно работающее сердце, поэтому даже незначительный недостаток кислорода в крови отражается на состоянии мозга.

Поддержание дыхательной функции на достаточно высоком уровне является необходимым условием сохранения здоровья и предупреждения развития преждевременного старения.

Дыхательный процесс включает несколько этапов:

  1. наполнение легких атмосферным воздухом (вентиляция легких);
  2. переход кислорода из легочных альвеол в кровь, протекающую через капилляры легких, и выделение из крови в альвеолы, а затем в атмосферу - углекислоты;
  3. доставка кислорода кровью к тканям и углекислоты из тканей к легким;
  4. потребление кислорода клетками - клеточное дыхание.

Первый этап дыхания - вентиляция легких - заключается в обмене вдыхаемого и выдыхаемого воздуха, т.е. в наполнении легких атмосферным воздухом и удалении его наружу. Это осуществляется благодаря дыхательным движениям грудной клетки.

12 пар ребер прикреплены спереди к грудине, а сзади - к позвоночнику. Они защищают органы грудной клетки (сердце, легкие, крупные кровеносные сосуды) от внешних повреждений, их движение - вверх и вниз, осуществляемое межреберными мышцами, способствует вдоху и выдоху. Снизу грудная клетка герметично отделена от брюшной полости диафрагмой, которая своей выпуклостью несколько вдается в грудную полость. Легкие заполняют почти все пространство грудной клетки, за исключением ее средней части, занятой сердцем. Нижняя поверхность легких лежит на диафрагме, их суженные и закругленные верхушки выступают за ключицы. Наружная выпуклая поверхность легких прилегает к ребрам.

В центральную часть внутренней поверхности легких, соприкасающуюся с сердцем, входят крупные бронхи, легочные артерии (несущие в легкие венозную кровь из правого желудочка сердца), кровеносные сосуды с артериальной кровью, питающие ткань легких, и нервы, иннервирующие легкие. Из легких выходят легочные вены, несущие в сердце артериальную кровь. Вся эта зона образует так называемые корни легких.

Схема строения легких: 1- трахея; 2 - бронх; 3 - кровеносный сосуд; 4 - центральная (прикорневая) зона легкого; 5 - верхушка легкого.

Каждое легкое покрыто оболочкой (плеврой). У корня легкого плевра переходит на внутреннюю стенку грудной полости. Поверхность плеврального мешка, в котором заключено легкое, почти соприкасается с поверхностью плевры, выстилающей внутреннюю сторону грудной клетки. Между ними имеется щелевидное пространство - плевральная полость, где находится небольшое количество жидкости.

Во время вдоха межреберные мышцы поднимают и разводят ребра в стороны, нижний конец грудины отходит вперед. Диафрагма (главная дыхательная мышца) в этот момент также сокращается, отчего ее купол становится более плоским и опускается, отодвигая брюшные органы вниз, в стороны и вперед. Давление в плевральной полости становится отрицательным, легкие пассивно расширяются, и воздух через трахею и бронхи втягивается в легочные альвеолы. Так происходит первая фаза дыхания - вдох.

При выдохе межреберные мышцы и диафрагма расслабляются, ребра опускаются, купол диафрагмы приподнимается. Легкие сдавливаются, и воздух из них как бы вытесняется наружу. После выдоха наступает короткая пауза.

Здесь необходимо отметить особую роль диафрагмы не только как главной дыхательной мышцы, но и как мышцы, активирующей кровообращение. Сокращаясь во время вдоха, диафрагма давит на желудок, печень и другие органы брюшной полости, как бы выжимая из них венозную кровь по направлению к сердцу. Во время выдоха диафрагма приподнимается, внутрибрюшное давление снижается, и это усиливает приток артериальной крови к внутренним органам брюшной полости. Таким образом, дыхательные движения диафрагмы, совершающиеся 12-18 раз в минуту, производят мягкий массаж органов брюшной полости, улучшая их кровообращение и облегчая работу сердца.

Повышение и понижение внутригрудного давления во время дыхательного цикла непосредственно отражаются и на деятельности органов, расположенных в грудной клетке. Так, присасывающая сила отрицательного давления в плевральной полости развивается во время вдоха и облегчает приток крови из верхней и нижней полых вен и из легочной вены к сердцу. Кроме того, снижение внутригрудного давления во время вдоха способствует более значительному расширению просвета венечных артерий сердца в период его расслабления и отдыха (т. е. во время диастолы и паузы), в связи с чем улучшается питание сердечной мышцы. Из сказанного ясно, что при поверхностном дыхании ухудшается не только вентиляция легких, но и условия работы и функциональное состояние сердечной мышцы.

Когда человек находится в покое, в акте дыхания заняты преимущественно периферические участки легкого. Центральная часть, расположенная у корня, менее растяжима.

Ткань легких состоит из мельчайших наполненных воздухом пузырьков - альвеол , стенки которых густо оплетены кровеносными сосудами. В отличие от многих других органов, легкие имеют двойное кровоснабжение: систему кровеносных сосудов, обеспечивающих специфическую функцию легких - газообмен, и специальные артерии, питающие саму легочную ткань, бронхи и стенку легочной артерии.

Капилляры легочных альвеол представляют собой весьма густую сеть с расстоянием между отдельными петлями в несколько микрометров (мкм). Это расстояние увеличивается при растяжении стенок альвеол во время вдоха. Общая внутренняя поверхность всех капилляров, находящихся в легких, достигает примерно 70 м 2 . Одномоментно в легочных капиллярах может находиться до 140 мл крови, при физической работе количество протекающей крови может достигать 30 л в 1 мин.

Кровоснабжение разных участков легкого зависит от их функционального состояния: кровоток осуществляется главным образом через капилляры вентилируемых альвеол, в выключенных же из вентиляции участках легких кровоток резко снижен. Такие участки легочной ткани становятся беззащитными при вторжении болезнетворных микробов. Именно этим в некоторых случаях объясняется локализация воспалительных процессов при бронхопневмониях.

В нормально функционирующих легочных альвеолах имеются специальные клетки, которые называются альвеолярными макрофагами. Они защищают легочную ткань от органической и минеральной пыли, содержащейся во вдыхаемом воздухе, обезвреживают микробы и вирусы и нейтрализуют выделяемые ими вредные вещества (токсины). Эти клетки переходят в легочные альвеолы из крови. Длительность их жизни определяется количеством вдыхаемой пыли и бактерий: чем больше загрязнен вдыхаемый воздух, тем быстрее гибнут макрофаги.

От способности этих клеток к фагоцитозу, т.е. к поглощению и перевариванию болезнетворных бактерий, в большой степени зависит уровень общей неспецифической сопротивляемости организма к инфекции. Кроме того, макрофаги очищают легочную ткань от ее собственных погибших клеток. Известно, что макрофаги быстро «узнают» поврежденные клетки и направляются к ним, чтобы их устранить.

Резервы аппарата внешнего дыхания, обеспечивающего вентиляцию легких, очень велики. Например, в покое взрослый здоровый человек делает в среднем 16 вдохов л выдохов в 1 мин, причем за один вдох в легкие поступает примерно 0,5 л воздуха (этот объем называется дыхательным объемом), за 1 мин это составит 8 л воздуха. При максимальном же произвольном усилении дыхания частота вдоха и выдоха может возрасти до 50-60 в 1 мин, дыхательный объем - до 2 л, а минутный объем дыхания - до 100-200 л.

Довольно значительны и резервы легочных объемов. Так, у людей, ведущих малоподвижный образ жизни, жизненная емкость легких (т. е. максимальный объем воздуха, который может быть выдохнут после максимального вдоха) равна 3000-5000 мл; при физической тренировке, например у некоторых спортсменов, она повышается до 7000 мл и больше.

Организм человека лишь частично использует кислород атмосферного воздуха. Как известно, во вдыхаемом воздухе в среднем содержится 21%, а в выдыхаемом - 15-17% кислорода. В состоянии покоя организм потребляет 200-300 см 3 кислорода.

Переход кислорода в кровь и углекислоты из крови в легкие происходит вследствие разницы между парциальным давлением этих газов в воздухе, находящемся в легких, и их напряжением в крови. Поскольку парциальное давление кислорода в альвеолярном воздухе составляет в среднем 100 мм рт. ст., в крови же, притекающей к легким, давление кислорода равно 37-40 мм рт. ст., он переходит из альвеолярного воздуха в кровь. Давление же углекислоты в крови, проходящей через легкие, уменьшается с 46 до 40 мм рт. ст. за счет ее перехода в альвеолярный воздух.

Кровь насыщена газами, находящимися в химически связанном состоянии. Кислород переносится эритроцитами, в которых он вступает в непрочное соединение с гемоглобином - оксигемоглобин. Это очень выгодно для организма, так как если бы кислород был просто растворен в плазме и не соединен с гемоглобином эритроцитов, то, чтобы обеспечить нормальное дыхание тканей, сердце должно было бы биться в 40 раз чаще, чем теперь.

В крови взрослого здорового человека содержится всего около 600 г гемоглобина, поэтому количество кислорода, находящегося в связи с гемоглобином, составляет сравнительно небольшую величину, примерно 800-1200 мл. Оно может удовлетворить потребность организма в кислороде только в течение 3-4 мин.

Поскольку клетки весьма энергично используют кислород, его напряжение в протоплазме очень низко, В связи с этим он должен непрерывно поступать в клетки. Количество кислорода, поглощаемого клетками, меняется в разных условиях. При физических нагрузках оно увеличивается. Интенсивно образующиеся при этом углекислота и молочная кислота уменьшают способность гемоглобина удерживать кислород и облегчают тем самым его освобождение и использование тканями.

Если дыхательный центр, находящийся в продолговатом мозге, является абсолютно необходимым для осуществления дыхательных движений (после его повреждения дыхание прекращается и наступает смерть), то остальные отделы головного мозга обеспечивают регуляцию тончайших приспособительных изменений дыхательных движений к условиям внешней и внутренней среды организма и не являются жизненно необходимыми.

Дыхательный центр чутко реагирует на газовый состав крови: избыток кислорода и недостаток углекислого газа тормозят, а недостаток кислорода, особенно при избыточном содержании углекислоты, возбуждает дыхательный центр. Во время физической работы мышцы увеличивают потребление кислорода и накапливают углекислоту, на это дыхательный центр реагирует усилением дыхательных движений. Даже небольшая задержка дыхания (дыхательная пауза) оказывает возбуждающее влияние на дыхательный центр. Во время сна, при снижении физической активности дыхание ослаблено. Это примеры непроизвольной регуляции дыхания.

Влияние коры головного мозга на дыхательные движения выражается в возможности произвольно задерживать дыхание, изменять его ритм и глубину. Импульсы, исходящие из дыхательного центра, в свою очередь, влияют на тонус коры больших полушарий. Физиологами установлено, что вдох и выдох оказывают противоположное воздействие на функциональное состояние коры головного мозга и через нее - на произвольную мускулатуру. Вдох вызывает небольшой сдвиг в сторону возбуждения, а выдох - сдвиг в сторону торможения, т.е. вдох является возбуждающим фактором, выдох - успокаивающим. При равной длительности вдоха и выдоха эти влияния в целом нейтрализуют друг друга. Удлиненный вдох с паузой на высоте вдоха при укороченном выдохе наблюдается у людей, находящихся в бодром состоянии, с высокой работоспособностью. Этот тип дыхания можно назвать мобилизующим. И наоборот: энергичный, но короткий вдох с несколько растянутым удлиненным выдохом и задержкой дыхания после выдоха обладает успокаивающим действием и способствует расслаблению мускулатуры.

На совершенствовании произвольной регуляции дыхания основано лечебное действие дыхательной гимнастики. В процессе многократного повторения дыхательных упражнений вырабатывается привычка физиологически правильного дыхания, происходит равномерная вентиляция легких, ликвидируются застойные явления в малом круге и в легочной ткани. При этом улучшаются и другие показатели функции дыхания, а также сердечная деятельность и кровообращение органов брюшной полости, главным образом печени, желудка и поджелудочной железы. Кроме того, появляется умение использовать различные типы дыхания для улучшения работоспособности и для полноценного отдыха.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека