Методика проведения электроэнцефалографии. Электроэнцефалография

Загадок в человеческом организме много, и не все пока подвластны медикам. Самая сложная и запутанная из них, пожалуй, головной мозг. Приоткрыть завесу тайны помогают врачам различные методы исследования мозга, например электроэнцефалография. Что это такое и чего ждать от процедуры пациенту?

Кому назначается обследование методом электроэнцефалографии

Электроэнцефалография (ЭЭГ) позволяет уточнить многие диагнозы, связанные с инфекциями, травмами и нарушениями работы головного мозга.

Врач может направить на обследование, если:

  1. Есть вероятность эпилепсии. Мозговые волны в этом случае показывают особую эпилептиформную активность, которая выражается в измененной форме графиков.
  2. Требуется установить точное местонахождение травмированного участка мозга или опухоли.
  3. Имеются некоторые генетические заболевания.
  4. Есть серьезные нарушения режима сна и бодрствования.
  5. Нарушена работа сосудов головного мозга.
  6. Нужна оценка эффективности проводимого лечения.

Метод электроэнцефалографии применим как у взрослых, так и у детей, он нетравматичный и безболезненный. А четкая картина работы нейронов мозга в разных его участках дает возможность прояснить характер и причины неврологических нарушений.

Метод исследования мозга электроэнцефалография - что это?

Такое обследование базируется на регистрации биоэлектрических волн, испускаемых нейронами коры головного мозга. При помощи электродов активность нервных клеток улавливается, усиливается и прибором переводится в графический вид.

Полученная кривая характеризует процесс работы разных участков мозга, его функциональное состояние. В нормальном состоянии она имеет определенную форму, а отклонения диагностируются с учетом изменения внешнего вида графика.

ЭЭГ может выполняться в различных вариантах. Помещение для него изолировано от посторонних звуков и света. Обычно процедура занимает 2-4 часа и проводится в поликлинике или лаборатории. В некоторых случаях проведение электроэнцефалографии с депривацией сна требует большего времени.

Метод позволяет врачам получить объективные данные о состоянии головного мозга, даже когда пациент находится в бессознательном состоянии.

Как проводится ЭЭГ головного мозга

Если врачом назначена электроэнцефалография, что это такое для пациента? Ему предложат сесть в удобном положении или прилечь, наденут на голову фиксирующий электроды шлем из эластичного материала. Если запись предполагается длительная, то в местах соприкосновения электродов с кожей наносится специальная проводящая паста или коллодий. Электроды не доставляют каких-либо неприятных ощущений.

ЭЭГ не предполагает каких-либо нарушений целостности кожи либо введения лекарственных средств (премедикации).

Рутинная запись мозговой активности происходит для пациента в состоянии пассивного бодрствования, когда он спокойно лежит или сидит с закрытыми глазами. Это довольно сложно, время тянется медленно и нужно бороться со сном. Лаборант периодически проверяет состояние пациента, просит открывать глаза и выполнять определенные задания.

Во время исследования пациент должен свести к минимуму любую двигательную активность, которая создавала бы помехи. Хорошо, если в лаборатории удается зафиксировать интересующие медиков неврологические проявления (судороги, тики, эпилептический припадок). Иногда приступ у эпилептиков провоцируется целенаправленно, чтобы понять его тип и происхождение.

Подготовка к проведению ЭЭГ

Накануне исследования стоит вымыть голову. Волосы лучше не заплетать и не использовать какие-либо средства для укладки. Заколки и зажимы оставить дома, а длинные волосы собрать в хвост, если требуется.

Дома стоит оставить и металлические украшения: серьги, цепочки, пирсинг с губ и бровей. Перед тем как войти в кабинет, отключить мобильный телефон (не только звук, а совсем), чтобы не создавать помех чувствительным датчикам.

Перед обследованием нужно поесть, чтобы не испытывать чувства голода. Желательно избегать любых волнений и сильных переживаний, но принимать какие-либо успокоительные препараты не следует.

Может понадобиться салфетка или полотенце, чтобы стереть остатки фиксирующего геля.

Пробы во время ЭЭГ

Для того чтобы отследить реакцию нейронов головного мозга в различных ситуация, и расширить показательные возможности метода, обследование электроэнцефалография включает несколько тестов:

1. Проба на открывание-закрывание глаз. Лаборант убеждается, что пациент в сознании, слышит его, выполняет инструкции. Отсутствие паттернов на графике в момент открывания глаз говорит о патологии.

2. Проба с фотостимуляцией, когда во время записи в глаза пациенту направляют вспышки яркого света. Таким образом выявляется эпилептиморфная активность.

3. Проба с гипервентиляцией, когда испытуемый в течение нескольких минут произвольно глубоко дышит. Частота дыхательных движений в это время немного снижается, но повышается содержание кислорода в крови и, соответственно, увеличивается подача оксигенированной крови в мозг.

4. Депривация сна, когда пациент погружается в непродолжительный сон с помощью седативных препаратов или остается в стационаре для суточного наблюдения. Это позволяет получить важные данные об активности нейронов в момент пробуждения и засыпания.

5. Стимуляция умственной активности заключается в решении несложных задач.

6. Стимуляция мануальной активности, когда пациенту предлагают выполнить задание с предметом в руках.

Все это дает более полную картину функционального состояния головного мозга и заметить нарушения, которые имеют незначительное внешнее проявление.

Продолжительность проведения электроэнцефалограммы

Время процедуры может быть разным в зависимости от целей, поставленных врачом, и условий конкретной лаборатории:

  • 30 минут и более, если удается быстро зарегистрировать искомую активность;
  • 2-4 часа в стандартном варианте, когда пациент обследуется полулежа в кресле;
  • 6 и более часов при ЭЭГ с депривацией дневного сна;
  • 12-24 часа, когда исследуются все фазы ночного сна.

Запланированное время процедуры может быть изменено на усмотрение врача и лаборанта в любую сторону, ведь если отсутствуют характерные паттерны, соответствующие диагнозу, ЭЭГ придется повторять, потратив лишнее время и средства. А если все необходимые записи получены, нет смысла мучить пациента вынужденным бездействием.

Для чего нужен видеомониторинг во время ЭЭГ

Иногда электроэнцефалография головного мозга дублируется видеозаписью, на которой фиксируется все, что происходит во время исследования с пациентом.

Видеомониторинг назначается больным эпилепсией, чтобы соотнести, как поведение во время приступа соотносится с мозговой активностью. Сопоставление по таймеру характерных волн с картинкой может прояснить пробелы в диагнозе и помочь врачу разобраться в состоянии испытуемого для более точного лечения.

Результат электроэнцефалографии

Когда пациенту проведена электроэнцефалография, заключение выдается на руки вместе с распечатками всех графиков волновой активности различных участков головного мозга. Кроме этого, если проводился и видеомониторинг, запись сохраняется на диске или флеш-накопителе.

На консультации у невролога лучше показать все результаты, чтобы врач мог оценить особенности состояния пациента. Электроэнцефалография головного мозга не является основанием для диагноза, но значительно проясняет картину заболевания.

Чтобы на графиках четко были видны все мельчайшие зубцы, рекомендуется хранить распечатки в расправленном виде в твердой папке.

Шифровка от мозга: виды ритмов

Когда пройдена электроэнцефалография, что показывает каждый график - понять самостоятельно крайне сложно. Врач поставит диагноз на основе изучения изменений активности участков мозга во время исследования. Но если ЭЭГ была назначена, то причины были вескими, и осознанно подойти к своим результатам не помешает.

Итак, у нас на руках распечатка таеого обследования, как электроэнцефалография. Что это такое - ритмы и частоты - и как определить границы нормы? Основные показатели, которые фигурируют в заключении:

1. Альфа-ритм. Частота в норме колеблется в пределах 8-14 Гц. Между большими полушариями может наблюдаться разница до 100 мкВ. Патологию альфа-ритма характеризуют асимметрия между полушариями, превышающая 30 %, показатель амплитуды выше 90 мкВ и ниже 20.

2. Бета-ритм. В основном фиксируется на передних отведениях (в лобных долях). Для большинства людей типична частота 18-25 Гц с амплитудой не выше 10 мкВ. О патологии говорит увеличение амплитуды свыше 25 мкВ и стойкое распространение бета-активности на задние отведения.

3. Дельта-ритм и Тета-ритм. Фиксируются только во время сна. Появление данных активностей в период бодрствования сигнализирует о нарушении питания тканей мозга.

5. Биоэлектрическая активность (БЭА). Нормальный показатель демонстрирует синхронность, ритмичность, отсутствие пароксизмов. Отклонения проявляются при эпилепсии раннего детского возраста, предрасположенности к судорогам и депрессии.

Чтобы результаты исследования были показательными и информативными, важно соблюдать в точности назначенную схему лечения, не отменяя препараты перед исследованием. Исказить картину может принятый накануне алкоголь или энергетические напитки.

Для чего нужна электроэнцефалография

Для пациента преимущества проведения исследования очевидны. Врач может проверить корректность назначенной терапии и поменять ее в случае необходимости.

У страдающих эпилепсией, когда наблюдением установлен период ремиссии, ЭЭГ может показать ненаблюдаемые внешне приступы, которые все еще требуют медикаментозного вмешательства. Или избежать необоснованных социальных ограничений, уточнив особенности течения болезни.

Исследование также может содействовать ранней диагностике новообразований, сосудистых патологий, воспалений и дегенераций мозга.

Электроэнцефалография – это метод регистрации биоэлектрических явлений головного мозга. Впервые биотоки головного мозга были зарегистрированы на животных, при этом производили вскрытие черепной коробки и на корковое вещество помещали электроды. Данный метод получил название «электрокортикография». В настоящее время имеется техническая возможность регистрации электрических явлений головного мозга (биотоков) с поверхности головы.

Используются два метода регистрации электроэнцефалографии: униполярный, при котором один электрод пассивный – помещается на мочке уха, а один – активный, и биполярный метод, где оба электрода активные, расположены на определенном расстоянии друг от друга.

Кривая, получаемая в результате регистрации, называется электроэнцефалограммой, на ней можно увидеть основные волны электрической активности, или ритмы головного мозга.

1. α-ритм – постоянный ритм синусоидальной формы – регистрируется со всех участков головного мозга, но наиболее характерен для теменной и затылочной областей. Частота от – 8 до 14 колебаний в секунду при амплитуде от 20 до 80 мкв. Данный ритм регистрируется в состоянии физического и психического покоя.

Особенности α-ритма, его постоянная характеристика: легко подвергается депрессии, для его исчезновения достаточно открыть глаза, характеризуется высокой способностью к адаптации – восстанавливается при открытых глазах в состоянии покоя.

2. β-ритм. Выделяют высокочастотный и низкочастотный β-ритм. Частота – 14–35 колебаний в минуту, амплитуда – 10–30 мкв. Регистрируется со всех участков головного мозга, но наиболее характерен для лобной доли, при переходе из состояния покоя в состояние активности (например, при открытии глаз).

3. δ-ритм – регистрируется у взрослых людей в состоянии глубокого сна, а у детей – при физической и психической активности. Частота данного ритма небольшая – 0,5–3 колебания в секунду, амплитуда составляет 250–1000 мкв.

4. θ-ритм – небольшой, с частотой 4–7 колебаний в секунду, имеет высокую амплитуду – 100–150 мкв. Регистрируется в процессе быстрого сна, при гипоксии головного мозга у взрослых людей, а у подростков – в состоянии активности.

При исследовании используют методики для получения определенных ритмов. Реакция десинхронизации – замена α-ритма на β-ритм. При открытии глаз усиливается поток импульсов в кору больших полушарий через ретикулярную формацию, наблюдается преобладание процессов возбуждения в коре. Вызванные потенциалы – высокоамплитудные, они регистрируются при воздействии специфических раздражителей в строго определенных отделах головного мозга. Например, в затылочной области регистрируются вспышки потенциалов высокой амплитуды при раздражении светом.

Внедрение этого метода в клиническую практику и в экспериментальную нейрофи-зиологию позволило получить принципиально новые дан-ные о функциональной организации головного мозга: о так называемых неспецифических системах — активирующих и дезактивирующих (синхронизирующих), об организации сна (медленный и быстрый сон) и роли нарушения функци-онирования неспецифических систем во многих патологиче-ских процессах.

Метод электроэнцефалографии сыграл основную роль в развитии современ-ных представлений о патогенезе эпилепсии. Для диагности-ки последней он является важнейшим методом инструмен-тального исследования.

Для регистрации ЭЭГ используются специальные при-боры — элекгроэнцефалографы, усиливающие в сотни тысяч, миллион раз отводимую от мозга биоэлектрическую активность и регистрирующие ее на бумажную ленту либо в процессор компьютера с последующим визуальным или ав-томатическим анализом.

Электроэнцефалография записывается в расслабленном состоянии исследуе-мого, при закрытых глазах.

ЭЭГ с функциональными пробами

После записи фоновой активнос-ти применяются функциональные пробы: кратковременное открывание глаз (вызывает реакцию активации — исчезнове-ние a-ритма), световую ритмическую стимуляцию (в норме отмечается усвоение частот световых мельканий в диапазоне 6-18 Гц); гипервентиляцию— глубокое дыхание («надувание мяча»)— вызывает синхронизацию, т.е. замедление частоты колебаний и увеличение их амплитуды. Этот феномен осо-бенно выражен у детей и обычно становится незначитель-ным после 20-летнего возраста.

Вызванные потенциалы

Специальным методом электроэнцефалографического исследования является метод регистрации вызванных ответов го-ловного мозга (вызванные потенциалы — ВП) на дискретное раздражение (свет, звук и др.), ЭЭГ регистрирует закономерный ответ, однако при обычном способе регистра-ции ничтожная амплитуда ответа на фоне ритмической активности огромной массы нейронов не позволяет выделить ответ. Создание специальных приборов, позволяющих сум-мировать повторные ответы и нивелировать фоновую актив-ность, дало возможность ввести метод вызванных потенциалов в клиническую и экспериментальную практику.

Вызванные потенциалы представляют собой ритмические колебания, в ко-торых различают ранние и поздние компоненты (рис. 1.9.14). Полагают, что ранние компоненты отражают процессы, свя-занные с возбуждением и прохождением импульса по соот-ветствующему сенсорному пути с переключением его в ре-лейных структурах; поздние компоненты связывают с афферентацией от неспецифических структур, активирующихся специфическими импульсами.

Различают негативные (направленные от изолинии вверх) и позитивные (направленные вниз) колебания, которые мар-кируются соответствующими номерами либо цифрами, обоз-начающими латентные периоды колебаний в миллисекундах.

Исследуют ответы на вспышки света — зрительные вызванные потенциалы (ЗВП, звуковые щелчки — слуховые вызванные потенциалы (СВП) и электри-ческую стимуляцию периферических нервов или рецеп-торов — соматосенсорные вызванные потенциалы (ССВП).

В клинической практике метод вызванных потенциалов используется в диа-гностике уровня и локализации поражения нервной системы и соответственно этому тех или других заболеваний, в част-ности рассеянного склероза (нарушаются ранние компонен-ты ЗВП), истерической слепоты (ЗВП не меняются) и др.

В последние годы в клиническую практику вошли новые методы компьютерной обработки электроэнцефалографии: амплитудное кар-тирование, оценка спектральной мощности, метод многоша-говой дипольной локализации, метод электромагнитной то-мографии низкого разрешения.

Амплитудное картирование биоэлектрической активности мозга

Данный метод позволяет наглядно представить распреде-ление разностей потенциалов на поверхности мозга в любые моменты времени, оценить полярность, пространственное распределение тех или иных феноменов, а также соответ-ствие потенциальных карт дипольной модели (а именно на-личие 1 или 2 экстремумов противоположного знака).

Оценка спектральной мощности

При помощи данного метода проводится анализ пространственного распределения спектральной мощности по основным ритмам ЭЭК: α, β 1 , β 2 , θ и δ на заданных безартефактных участках записей (эпохах анализа). Выбор эпох определяется наличием на ЭЭГ интересующих исследовате-ля феноменов.

Метод многошаговой дипольной локализации

Программа BranLoc на основании анализа распределения разностей потенциалов на поверхности головы позволяет разрешить обратную задачу ЭЭГ — определение трехмерной локализации источников биоэлектрической активности моз-га. Источник активности представлен в виде диполя в трех-мерном пространстве (декартова система координат), где ось X проходит по линии инион — назон, ость Y— параллельно линии, соединяющей слуховые проходы, ось Z — от базиса к артексу. Возможности программы позволяют отображать результаты дипольной локализации на реальных и стандар-тизованных КТ- или МРТ-срезах.

Норма ЭЭГ

Биоэлектрические потенциалы в норме характеризуют-ся симметричностью. ЭЭГ отражает суммарную функцио-нальную активность нейронов мозговой коры . Однако эта активность находится под воздействием неспецифических стволово-кортикальных систем, активирующих и дезактивирующих, ритмически организована и имеет различную возрастную характеристику.

На электроэнцефалографии взрослого бодрствующего человека (рис. 1.9.10) биоэлектрическая активность состоит главным образом из ритм и веских вили частотой 8-12 Гц и амплитудой 50— 100 мкВ (a-ритм), преимущественно выраженных в задних отделах головного мозга , максимально — в затылочных отведениях, и из более частых колебаний в передних отделах головного мозга частотой 13-40 Гц и амплитудой до 15 мкВ (р-ритм). Материал с сайта

ЭЭГ ребенка

ЭЭГ новорожденного характеризуется отсутствием рит-мической активности. Регистрируются нерегулярные мед-ленные волны. К 3-месячному возрасту формируется рит-мическая активность, в основном 5-диапазона. К 6 месяцам доминирует 0-ритм (5-6 Гц). В дальнейшем появляется и нарастает так называемый медленный а-ритм (7-8 Гц), ко-торый к 12-месячному возрасту становится доминирующим.

ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ЭЛЕКТРОЭНЦЕФАЛОГРАФИЮ

Лаборатория для ЭЭГ-исследований
должна состоять из звукоизолированной, экранированной от электромагнитных волн, светоизолированной комнаты для пациента (камеры) и аппаратной, где размещаются электроэнцефалограф, стимулирующая и анализирующая аппаратура
помещение для ЭЭГ-лаборатории необходимо выбрать в наиболее тихой части здания, подальше от проезжей части улиц, рентгеновских установок, физиотерапевтических аппаратов и других источников электромагнитных помех.

Общие правила проведения ЭЭГ-исследования
Исследования проводятся в утреннее время не ранее чем через два часа после приема пищи, курения.
В день исследования не рекомендуется принимать медикаменты, за три дня надо отменить барбитураты, транквилизаторы, бромиды и другие препараты, изменяющие функциональное состояние ЦНС.
При невозможности отмены лекарственной терапии должна быть сделана запись с названием лекарственного препарата, указаны его доза, время и способ применения.
В помещении, где находится обследуемый, необходимо поддерживать температуру 20-22 Со.
При исследовании обследуемый может лежать или сидеть.
Необходимо присутствие врача, так как применение функциональных нагрузок может в некоторых случаях вызывать развернутый эпилептический припадок, коллаптоидное состояние и т. п., и иметь соответственно набор медикаментов для купирования возникших нарушений.

Количество электродов , наложенных на конвекситальную поверхность черепа должно быть не менее 21. Кроме того, для монополярной регистрации необходимо накладывать щечный электрод, расположенный между круглой мышцей рта и жевательной мышцей. Накладывают также 2 электрода на края глазниц для регистрации движений глаз и электрод заземления. Расположение электродов на голове осуществляют по схеме "десять-двадцать" .

Применяют 6 видов электродов, которые различаются как по форме, так и по способу их фиксации на голове:
1) контактные накладные неприклеивающися электроды, которые прилегают к голове при помощи тяжей шлема-сетки;
2) приклеивающиеся электроды;
3) базальные электроды;
4) игольчатые электроды;
5) пиальные электроды;
6) многоэлектродные иглы.

Электроды не должны иметь собственного потенциала.

Электроэнцефалографическая установка состоит из электродов, соединительных проводов, электродной распределительной коробки с пронумерованными гнездами, коммутационного устройства и некоторого количества каналов регистрации, позволяющих определенное количество независимых друг от друга процессов. При этом необходимо иметь в виду, что
4-канальные электроэнцефалографы непригодны для диагностических целей, так как позволяют выявить только грубые изменения, генерализованные по всей конвекситальной поверхности,
8-12-канальные-пригодны только для общих диагностических целей - оценки общего функционального состояния и выявления грубой очаговой патологии.
Только наличие 16 и более каналов позволяет регистрировать биоэлектрическую активность всей конвекситальной поверхности мозга одновременно, что дает возможность проводить самые тонкие исследования.

Отведение биопотенциалов обязательно осуществляют двумя электродами, так как для их регистрации необходима замкнутая электрическая цепь: первый электрод-усилитель-регистрирующий прибор-усилитель-второй электрод. Источником колебаний потенциала является участок мозговой ткани, лежащий между этими двумя электродами. В зависимости от способа расположения этих двух электродов различают биполярное и монополярное отведения.

Для топической диагностики необходимо большое количество отведений, которые регистрируются в различных комбинациях. С целью экономии времени (так как набор этих комбинаций на селекторе является очень трудоемким процессом) в современных электроэнцефалографах используют заранее фиксированные схемы отведений (монтажные схемы, рутинные программы и т. п.).

Наиболее рациональным для осуществления топического анализа с использованием электроэнцефалографии являются следующие принципы построения монтажных схем:
первая монтажная схема - биполярные отведения с большими межэлектродными расстояниями, схема "десять-двадцать"), соединения электродов в пары по сагиттальным и фронтальным линиям;
вторая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям;
третья - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по фронтальным линиям;
четвертая - монополярные отведения с индифферентными электродами на щеке и по методу Гольдмана;
пятая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям и регистрации движений глаз, ЭКГ или кожно-гальванической реакции при проведении нагрузок.

Канал электроэнцефалографа включает в себя усилитель биопотенциалов с большим коэффициентом усиления, позволяющим усиливать биоэлектрическую активность от единицы микровольт до десятков вольт, и большим коэффициентом дискриминации, позволяющим противодействовать электрическим помехам в виде электромагнитных наводок. Усилительный тракт электроэнцефалографа к регистрирующему устройству, имеющему различные варианты. В настоящее время чаще применяют электромагнитные вибраторы с различными методами регистрации (чернильная, штифтовая, струйная, игольчатая), которые позволяют регистрировать колебания в зависимости от параметров регистрирующего устройства до 300Гц.

Так как в ЭЭГ покоя не всегда выявляются признаки патологии, то, как и при других методах функциональной диагностики, в клинической электроэнцефалографии применяются физические нагрузки, некоторые из которых являются обязательными:
нагрузка для оценки ориентировочной реакции
нагрузка для оценки устойчивости к внешним ритмам (ритмическая фотостимуляция).
Обязательной также является нагрузка, эффективная для выявления латентной (компенсированной) патологии, триггерная фотостимуляция - стимуляция в ритмах биоэлектрической активности самого мозга с помощью триггера-преобразователя волновых компонентов электроэнцефалограммы во вспышке света. С целью возбуждения основных ритмов мозга дельта, тета и т. д. (используется метод "задержки" светового стимула.

При расшифровке ЭЭГ необходимо отличать артефакты, а при регистрации ЭЭГ устранять их причины.

Артефакт в электроэнцефолографии - это сигнал экстрацеребрального происхождения, искажающий запись биотоков мозга.

К артефактам физического происхождения относятся
наводка 50 Гц от сетевого тока
шумы ламп или транзисторов
неустойчивость нулевой линии
"микрофонный эффект"
помехи, возникающие из-за движений на голове испытуемого
резкие апериодические движения перьев (штрифов, игл и т. п.), возникающие при загрязнении или окислении контактов переключателей селекторов
появление амплитудной асимметрии, если при отведении от симметричных участков черепа межэлектродные расстояния неодинаковы
фазовые искажения и ошибки при отсутствии выведения перьев (штрифов и пр.) на одну линию

К артефактам биологического происхождения относятся:
мигание
нистагм
дрожание век
зажмуривание
мышечные потенциалы
электрокардиограмма
регистрация дыхания
регистрация медленной биоэлектрической активности у лиц с металлическими зубными протезами
кожно-гальваническая реакция, возникающая при обильном потоотделении на голове

Общие принципы электроэнцефалографии

Достоинствами клинической электроэнцефалографии являются
объективность
возможность непосредственной регистрации показателей функционального состояния мозга количественной оценки получаемых результатов
наблюдения в динамике, что необходимо для прогноза заболевания
большое преимущество этого метода состоит в том, что он не связан с вмешательством в организм обследуемого.

При назначении ЭЭГ-исследования врач-эксперт должен:

1) четко поставить диагностическую задачу с указанием предполагаемой локализации патологического очага и характера патологического процесса;

2) детально знать методику исследования, ее возможности и ограничения;

3) провести психотерапевтическую подготовку больного - разъяснить безвредность исследования, объяснить общий его ход;

4) отменить все препараты, которые изменяют функциональное состояние мозга (транквилизаторы, нейролептики и пр.), если позволяет функциональное состояние больного;

5) требовать максимально полного описания полученных результатов, а не только заключения по исследованию. Для этого врач-эксперт должен понимать терминологию клинической электроэнцефалографии. Описание полученных результатов должно быть стандартизировано;

6) врач, назначивший исследование, должен быть уверен, что исследование ЭЭГ проходило в соответствии со "Стандартным методом исследования в электроэнцефалографии для использования в клинической практике и врачебно-трудовой экспертизе".

Проведение ЭЭГ-исследований повторно, в динамике дает возможность следить за ходом лечения, осуществлять динамическое наблюдение за характером течения заболевания - прогрессированием или стабилизацией его, определить степень компенсации патологического процесса, определить прогноз и трудовые возможности инвалида.

Алгоритм описания электроэнцефалограммы

1. Паспортная часть: номер ЭЭГ, дата исследования, фамилия, имя, отчество, возраст, клинический диагноз.

2. Описание ЭЭГ покоя.
2.1. Описание альфа-ритма.
2.1.1. Выраженность альфа-ритма: отсутствует, выражена вспышками (указать длительность вспышки и длительность интервалов между вспышками), выражена регулярной компонентой.
2.1.2. Распределение альфа-ритма.
2.1.2.1. Для суждения о правильности распределения альфа-ритма используют только биполярные отведения с малыми межэлектродными расстояниями с отведениями по сагиттальным линиям. За правильное распределение альфа-ритма принимают его отсутствие при отведениях с лобно-полюсных-лобных электродов.
2.1.2.2. Область доминирования альфа-ритма указывают на основании сопоставления использованных методов отведения биоэлектрической активности. (Должны быть использованы следующие методы: биполярные отведения с осуществлением связи между электродами по сагиттальным и фронтальным линиям по методу обратных фаз по большим и малым межэлектродным расстояниям, монополярные отведения с усредненным электродом по Голдману и с распределением индифферентного электрода на щеке).
2.1.3. Симметрия альфа-ритма. Определяют симметрию альфа-ритма по амплитуде и частоте в симметричных участках мозга на монополярных монтажных схемах регистрации ЭЭГ с применением усредненного электрода по Голдману или с расположением индифферентного электрода на щеке.
2.1.4. Образ альфа-ритма веретенообразный с хорошо выраженными веретенами, т. е. модулированный по амплитуде (на стыках веретен альфа-ритма нет); веретенообразный с плохо выраженными веретенами, т. е. недостаточно модулированный по амплитуде (на стыках веретен наблюдаются волны с амплитудами более 30% от максимальной амплитуды альфа-ритма); машиноподобный или пилообразный, т. е. не модулированный по амплитуде; пароксизмальный - веретено альфа-ритма начинается с максимальной амплитуды; аркообразный - большая разница в полупериодах.
2.1.5. Форма альфа-ритма: не искажена, искажена медленной активностью, искажена электромиограммой.
2.1.6. Наличие гиперсинхронизации волн альфа-ритма (синфазных биений в различных областях мозга и их количество на единицу времени (за эпоху анализа принимают 10 с.))
2.1.7. Частота альфа-ритма, ее стабильность.
2.1.7.1. Частоту альфа-ритма определяют на случайных односекундных отрезках ЭЭГ на протяжении всего времени регистрации и выражают в виде средней величины (при наличии смены частоты при сохранении стабильности периодов указывают на смену частот доминирующего ритма).
2.1.7.2. Стабильность часто оценивают на основании крайних значений периодов и выражают в виде отклонений от основной средней частоты. Например, (10ё2) колеб./с. или (10ё0, 5)колеб./с.
2.1.8. Амплитуда альфа-ритма. Амплитуду ритма определяют на монополярных схемах записи ЭЭГ с использованием усредненного электрода по Голдману или при отведении с большими межэлектродными расстояниями в центрально-затылочных отведениях. Амплитуду волн измеряют от пика до пика без учета наличия изоэлектрической линии.2.1.9. Индекс альфа-ритма определяют в отведениях с наибольшей выраженностью этого ритма независимо от способа отведения биоэлектрической активности (эпохой анализа индекса ритма является 10 с.).
2.1.9.1. Если альфа-ритм выражен регулярной компонентой, то его индекс определяют на 10 полных кадрах ЭЭГ и вычисляют среднюю величину.
2.1.9.2. При неравномерном распределении альфа-ритма его индекс определяют за время всей записи ЭЭГ-покоя.
2.1.10. Отсутствие альфа-ритма отмечают всегда на первом месте (см. 2.1.1).
2.2. Описание доминирующих и субдоминмрующих ритмов.
2.2.1. Доминирующую активность описывают по правилам описания альфа-ритма (см. 2.1).
2.2.2. Если альфа-ритм имеется, но есть и другая частотная компонента, представленная в меньшей степени, то после описания альфа-ритма (см. 2.1.) ее описывают по тем же правилам как субдоминирующую.
При этом необходимо иметь в виду, что полоса регистрации ЭЭГ делится на ряд диапазонов: до 4 Гц (дельта-ритм), от 4 до 8 Гц (тета-ритм), от 8 до 13 Гц (альфа-ритм), от 13 до 25 Гц (низкочастотный бета-ритм или бета-1-ритм), от 25 до 35 Гц (высокочастотный бета-ритм или бета-2-ритм), от 35 до 50 Гц (гамма-ритм или бета-3-ритм). При наличии низкоамплитудной активности также необходимо указывать на наличие апериодичной (полиритмичной) активности. Для простоты словесного описания следует выделять плоскую ЭЭГ, низкоамплитудную медленную полиморфную активность (НПМА), полиритмичную активность и высокочастотную низкоамплитудную ("махристую") активность.
2.3. Описание бета-активности (бета-ритма).
2.3.1. При наличии бета-активности, только в лобных отделах мозга или на стыках веретен альфа-ритма, при условии симметричных амплитуд, асинхронного апериодического образа, при амплитуде не выше 2-5 мкВ бета-активность не описывают или характеризуют как норму.
2.3.2. При наличии следующих явлений: распределении бета-активности по всей конвекситальной поверхности, появлении очагового распределения бета-активности или бета-ритма, асимметрии более 50% амплитуды, появлении альфа-подобного образа бета-ритма, увеличении амплитуды более 5 мкВ - бета-ритм или бета-активность описывают по соответствующим правилам (см. 2.1, 2.4, 2.5).
2.4. Описание генерализованной (диффузной) активности.
2.4.1. Частотная характеристика вспышек и пароксизмов.
2.4.2. Амплитуда.
2.4.3. Длительность вспышек и пароксизмов во времени и частота их следования.
2.4.4. Образ генерализованной активности.
2.4.5. Каким ритмом (активностью) вспышки или пароксизмы искажены.
2.4.6. Топическая диагностика фокуса или основного очага генерализованной активности.
2.5. Описание очаговых изменений ЭЭГ.
2.5.1. Топическая диагностика очага поражения.
2.5.2. Ритм (активность) локальных изменений.
2.5.3. Образ локальных изменений: альфа-подобный образ, регулярная компонента, пароксизмы.
2.5.4. Чем искажены локальные изменения ЭЭГ.
2.5.5. Количественная характеристика изменений: частота, амплитуда, индекс.

3. Описание реактивной (активационной) ЭЭГ. 3.1. Одиночная вспышка света (ориентировочная нагрузка).
3.1.1. Характер изменений биоэлектрической активности: депрессия альфа-ритма, экзальтация альфа-ритма, другие изменения частоты и амплитуды (см. раздел Учебного пособия).
3.1.2. Топическое распределение изменений биоэлектрической активности.
3.1.3. Длительность изменений биоэлектрической активности.
3.1.4. Скорость угашения ориентировочной реакции при применении повторных раздражителей.
3.1.5. Наличие и характер вызванных ответов: отрицательные медленные волны, появление бета-ритма.
3.2. Ритмическая фотостимуляция (РФС).
3.2.1. Диапазон усвоения ритма.
3.2.2. Характер реакции усвоения ритма (РУР).
3.2.3. Амплитуда усвоенного ритма по отношению к фоновой активности: выше фона (отчетливая), ниже фона (неотчетливая).
3.2.2.2. Длительность РУР по отношению ко времени стимуляции: кратковременная, длительная, длительная с последствием.
3.2.2.3. Симметричность по полушариям.
3.2.3. Топическое распределение РУР.
3.2.4. Возникновение гармоник и их частная характеристика.
3.2.5. Возникновение субгармоник и их частотная характеристика.
3.2.6. Возникновение ритмов, некратных частоте световых мельканий.
3.3. Триггерная фотостимуляция (ТФС).
3.3.1. Частотный диапазон, возбуждаемый ТФС.
3.3.2. Топика появившихся изменений.
3.3.3. Количественная характеристика изменений: частота, амплитуда.
3.3.4. Характер возбуждаемой активности: спонтанные волны, вызванные ответы.
3.4. Гипервентиляция (ГВ).
3.4.1. Время от начала нагрузки до появления изменений биоэлектрической активности.
3.4.2. Топика изменений.
3.4.3. Количественная характеристика изменений биоэлектрической активности: частота, амплитуда.
3.4.4. Время возврата к фоновой активности.
3.5. Фармакологические нагрузки.
3.5.1. Концентрация воздействия (в мг на 1 кг массы тела больного).
3.5.2. Время от начала воздействия до появления изменений биоэлектрической активности.
3.5.3. Характер изменений биоэлектрической активности.
3.5.4. Количественная характеристика изменений: частота, амплитуда, длительность.

4. Заключение.
4.1. Оценка тяжести изменений ЭЭГ. Изменения ЭЭГ в пределах нормы, умеренные, средней тяжести, значительные изменения, тяжелые изменения ЭЭГ.
4.2. Локализация изменений.
4.3. Клиническая интерпретация.
4.4. Оценка общего функционального состояния мозга.

Развитие электроники в 20-х годах нашего столетия - создание чувствительных триодов, используемых при построении усилителей, осциллографических трубок для наблюдения сигналов явилось технической основой электроэнцефалографии. В 1928 г. немецкий психиатр Бергер с помощью специального аппарата - электроэнцефалографа - записал в клинических условиях электрические сигналы мозга . Основной принцип работы электроэнцефалографа достаточно прост. Электроды, улавливающие минимальные сигналы, возникающие вследствие электрических колебаний в мозгу, закрепляются на голове. Эти колебания могут появляться в любых отделах мозга, однако в канале усилителя, соединенного с данной парой электродов, лучше всего выражены ритмы ближайших к электродам областей. Чтобы записать и в дальнейшем проанализировать эти чрезвычайно малые сигналы, их необходимо было усилить в несколько миллионов раз.

Электроэнцефалография головного мозга представляет собой запись суммарной электрической активности большого количества клеток головного мозга. ЭЭГ взрослого здорового человека в бодрствующем состоянии является сплошной кривой, состоящей из многих ритмических (частотных) компонентов: альфа-ритма с частотой 8-13 гЦ, бета-ритма - 13-30 гЦ, гамма-ритма - 30-70 гЦ, дельта-ритма - 1-3 гЦ.

Степень нарушения биопотенциалов мозга довольно точно характеризует общую тяжесть заболевания. Например, у больных с частыми эпилептическими припадками ЭЭГ в межприпадочный период обычно более выражены, чем у больных с редкими припадками. При заболеваниях, связанных с нарушением сознания, изменения ЭЭГ более грубо выражены в состоянии комы, чем в состоянии сопора. Наиболее успешно электроэнцефалография головного мозга применяется для локализации патологического процесса. Дальнейший прогресс клинической электроэнцефалографии связан с преодолением разрыва, существующего между количеством информации, заложенной в получаемых сигналах, и весьма несовершенными способами расшифровки этой информации (что есть что?). Этот разрыв, возможно, будет преодолен, если применять идеи и методы теоретической кибернетики к анализу биоэлектрической активности сигналов мозга .

Используя электромагнитные поля, генерируемые мозгом, улавливая и регистрируя их в виде электроэнцефалограмм, электроника тем самым передает информацию о процессах в различных отделах нервной системы - «от первоисточника», являясь прямым, а зачастую и единственным средством получения таких сведений. Электроэнцефалографию успешно используют при изучении не только онто- и филогенеза мозга, но и для раскрытия механизмов замыкания условнорефлекторных связей, действия наркотических веществ, для анализа формирования и взаимодействия функциональных систем головного мозга , обеспечивающих выполнение высших психических функций, для исследования и диагностики поражений центральной нервной системы в клинических условиях и для многих других целей.


КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека