Слуховая сенсорная система и ее функциональное значение. Строение слуховой системы

Слух является органом чувств человека, который способствует психическому развитию полноценной личности, ее адаптации в социуме. Со слухом связанны звуковые языковые общения. С помощью слухового анализатора человек воспринимает и различает звуковые волны, состоящие из последовательных сгущения и разрежения воздуха.

Слуховой анализатор состоит из трех частей: 1) рецепторного аппарата, содержащегося во внутреннем ухе; 2) проводящих путей, представленных восьмой парой черепно-мозговых (слуховых) нервов; 3) центра слуха в височной доле коры больших полушарий.

Слуховые рецепторы (фонорецепторы) содержатся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания, прежде чем дойти до слуховых рецепторов, проходят через всю систему звукопроводящих и звукоусиливающих частей.

Ухо - это орган слуха, который состоит из 3-х частей: внешнего, среднего и внутреннего уха.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков. Ушная раковина образована эластичным хрящом, снаружи покрыта кожей. Внизу дополнена складкой - мочкой, которая заполнена жировой тканью.

Наружный слуховой проход (2,5 см), где происходит усиление звуковых колебаний в 2-2,5 раза, выслан тонкой кожей с тонкими волосами и видоизмененными потовыми железами, которые вырабатывают ушную серу, состоящий из жировых клеток и содержит пигмент. Волоски и ушная сера выполняют защитную роль.

Среднее ухо состоит из барабанной перепонки, барабанной полости и слуховой трубы. На границе между наружным и средним ухом находится барабанная перепонка, которая внешне покрыта эпителием, а изнутри слуховой оболочкой. Звуковые колебания, которые подходят к барабанной перепонке, заставляют ее колебаться с той же частотой. С внутренней стороны перепонки находится барабанная полость, внутри которой расположены слуховые косточки , соединенные между собой - молоточек, наковальня и стремя . Через системы слуховых косточек колебания барабанной перепонки передаются во внутреннее ухо. Слуховые косточки размещены так, что образуют рычаги, которые уменьшают размах звуковых колебаний и увеличивают их силу.



Барабанная полость соединена с носоглоткой с помощью евстахиевой трубы, которая поддерживает одинаковое давление извне и изнутри на барабанную перепонку.

На рубеже среднего и внутреннего уха является перепонка, которая содержит овальное окно . Стремя прилегает к овальному окну внутреннего уха.

Внутреннее ухо находится в полости пирамиды височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани. Между костным и перепончатыми лабиринтами содержится жидкость - перилимфа, а внутри перепончатого лабиринта - эндолимфа. В стенке, отделяющей среднее ухо от внутреннего, кроме овального окна, есть еще круглое окно, которое делает возможным колебания жидкости.

Костный лабиринт состоит из трех частей: в центре - преддверие, спереди от него улитка , а сзади - полукружные каналы . Внутри среднего канала улитки, в улитковом ходе содержатся звуковоспринимающий аппарат - спиральный или кортиев орган. Он имеет основную пластинку, которая состоит примерно из 24 тыс. фиброзных волоконец. На основной пластинке вдоль нее в 5 рядов расположены опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами . Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой. Волосковые клетки охватываются нервными волосками улитковой ветви слухового нерва. В продолговатом мозге содержится второй нейрон слухового пути, дальше этот путь идет, в основном перекрещиваясь, к задним буграм четверохолмия, а от них в височную область коры, где расположена центральная часть слухового анализатора.

Для слухового анализатора звук является адекватным раздражителем. Все вибрации воздуха, воды и другого упругого среды делятся на периодические (тоны) и непериодические (шумы). Тона бывают высокие и низкие. Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенное количество колебаний в секунду. Длину звуковой волны определяют расстоянием, которое проходит звук в секунду, поделенную на количество полных колебаний, осуществляемых тело, которое звучит, в секунду.

Человеческое ухо воспринимает звуковые колебания в пределах 16-20 000 Гц, сила которых выражается в децибелах (дБ). Звуковые колебания частотой более 20 кГц человек не слышит. Это - ультразвуки.

Звуковые волны - это продольные колебания среды. Сила звука зависит от размаха (амплитуды) колебаний воздушных частиц. Звук характеризуется тембром или окраской.

Наибольшую возбудимость ухо имеет к звукам с частотой колебаний от 1000 до 4000 Гц. Ниже и выше этого показателя возбудимость уха снижается.

В 1863 году Гельмгольц предложил резонансную теорию слуха . Воздушные звуковые волны, попадая в наружный слуховой проход, обуславливают колебания барабанной перепонки, далее колебания передаются через среднее ухо. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания и передает их жидкости, содержащейся между костным и перепончатыми лабиринтами завитки. Звуковые волны могут передаваться и через воздух, содержащийся в среднем ухе.

По резонансной теории, колебания эндолимфы вызывают колебания основной пластинки, волокна которой имеют разную длину, настроенные на разные тона и составляют собой набор резонаторов, которые звучат в унисон различным звуковым колебаниям. Кратчайшие волны воспринимаются у основы улитки, а длинные у верхушки.

Во время колебания соответствующих резонирующих участков основной пластинки колеблются и расположенные на ней чувствительны волосковые клетки. Мельчайшие волоски этих клеток касаются при колебании покровной пластинки и деформируются, что ведет к возбуждению волосковых клеток и проведения импульсов по волокнам улиткового нерва в центральную нервную систему. Поскольку полной изоляции волокон основной мембраны нет, то одновременно начинают колебаться и соседние волокна, что соответствует обертонам. Обертон - звук, число колебаний которого в 2, 4, 8 и т.д. раз превышает число колебаний основного тона.

При длительном воздействии сильных звуков возбудимость звукового анализатора снижается, а при длительном пребывании в тишине возбудимость возрастает. Это адаптация . Наибольшая адаптация наблюдается в зоне более высоких звуков.

Чрезмерный шум не только ведет к потере слуха, но и вызывает психические нарушения у людей. Специальными опытами на животных доказана возможность появления "акустического шока " и "акустических коряг", порой смертельных.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния "школьного" шума на организм школьника

Воспаление уха - отит . Чаще всего встречается отит среднего уха - опасная болезнь, потому что рядом с полостью среднего уха - головной мозг и его оболочки. Отит чаще всего возникает как осложнение гриппа, острых респираторныхзаболеваний; инфекция из носоглотки может перейти по евстахиевой трубе в полость среднего уха. Отит протекает как тяжелое заболевание и проявляется сильными болями в ухе, высокой температурой тела, сильной головной болью, значительным снижением слуха. При упомянутых признаках необходимо немедленно обратиться к врачу. Профилактика отита: лечение острых и хронических болезней носоглотки (аденоидов, насморка, гайморита). Если возник насморк, нельзя сильно сморкаться, чтобы инфекция через евстахиеву трубу попала в среднее ухо. Нельзя сморкаться одновременно обеими половинами носа, а надо делать это поочередно, прижимая крыло носа к носовой перегородки.

Глухота - полная потеря слуха на одно или оба уха. Она может быть приобретенной или врожденной.

Приобретенная глухота чаще всего является следствием двустороннего отита среднего уха, который сопровождался разрывом обеих барабанных перепонок или тяжелому воспалению внутреннего уха. Глухота может быть вызвана тяжелыми дистрофическими поражениями слуховых нервов, которые часто связаны с профессиональными факторами: шумом, вибрацией, действием паров химических веществ или с травмами головы (например, в результате взрыва). Частой причиной глухоты является отосклероз - болезнь, при которой слуховые косточки (особенно стремя) становятся неподвижными. Эта болезнь была причиной глухоты у выдающегося композитора Людвига Ван Бетховена. К глухоте может привести бесконтрольное применение антибиотиков, которые негативно действуют на слуховой нерв.

Врожденная глухота связана с врожденным нарушением слуха. причинами которого могут быть вирусные болезни матери во время беременности (краснуха, корь, грипп), бесконтрольное употребление ею некоторых лекарств, особенно- антибиотиков, употребление алкоголя, наркотиков, курения. Рожденный глухой ребенок, никогда не слыша речи, становится глухонемым.

Гигиена слуха - система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слухового анализатора, способствует нормальному его развитию и функционированию.

Различают специфическое и неспецифическое действие шума на организм человека. Специфическое действие проявляется в нарушениях слуха разной степени, неспецифическое - в различных отклонениях в деятельности ЦНС, расстройствах вегетативной реактивности, эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта. У лиц молодого и среднего возраста при уровне шума 90 дБ (децибел), который длится в течение часа, снижается возбудимость клеток коры головного мозга, ухудшаются координация движений, острота зрения, устойчивость ясного видения, удлиняется латентный период зрительной и слухомоторных реакций. По такой же продолжительности работы в условиях воздействия шума, уровень которого составляет 96 дБ, наблюдается еще более резкие нарушения корковой динамики, фазовые состояния, запредельной торможения, расстройства вегетативной реактивности. Ухудшаются показатели мышечной работоспособности (выносливости, утомляемости) и показатели труда. Работа в условиях воздействия шума, уровень которого - 120 дБ, может вызвать нарушения в виде астенических неврастеническим проявлений. Появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы. Происходят изменения в сердечно-сосудистой системе: нарушается тонус сосудов и ритм сердечных сокращений, возрастает или снижается артериальное давление.

На взрослых и особенно детей чрезвычайно негативное влияние (неспецифический и специфический) производит шум в помещениях, где включены на полную громкость радиоприемники, телевизоры, магнитофоны и тому подобное.

Сильно влияет шум на детей и подростков. Изменение функционального состояние слухового и других анализаторов наблюдается у детей под влиянием "школьного" шума, уровень интенсивности которого в основных помещениях школы колеблется от 40 до 110 дБ. В классе уровень интенсивности шума в среднем составляет 50-80 дБ, во время перерывов может достигать 95 дБ.

Шум, который не превышает 40 дБ, не вызывает негативных изменений в функциональном состоянии нервной системы. Изменения заметны при воздействии шума, уровень которого составляет 50-60 дБ. Согласно данным исследований, решения математических задач требует при шумовой громкости 50 дБ на 15-55%, 60 дБ - на 81 -100% больше времени, чем к действию шума. Ослабление внимания школьников в условиях воздействия шума указанной громкости достигало 16%. Снижение уровней "школьного" шума и его неблагоприятного воздействия на здоровье учащихся достигается благодаря ряду комплексных мероприятий:строительных, технических и организационных.

Так, ширина "зеленой зоны" со стороны улицы должна быть не менее 6 м. Целесообразно вдоль этой полосы на расстоянии не менее 10 м от здания посадить деревья, кроны которых задерживать распространение шума.

Важное значение в уменьшении "школьного" шума имеет гигиенически правильное расположение учебных помещений в здании школы. Мастерские, спортивные залы размещаются на первом этаже в отдельном крыле или пристройке.

Гигиеническим стандартам, направленным на сохранение зрения и слуха учащихся и учителей, должны отвечать размеры учебных помещений: длина (размер от доски до противоположной стенки) и глубина классных комнат. Длина классной комнаты, не превышает 8 м, обеспечивает ученикам с нормальной остротой зрения и слуха, которые сидят на последних партах, четкое восприятие речи учителя и ясное видение того, что написано на доске. По первым и вторыми партами (столами) в любом ряду отводятся места для учащихся с ослабленным слухом, поскольку речь воспринимается от 2 до 4 м, а шепот - от 0,5 до 1 м. Восстановить функциональное состояние слухового анализатора и предупредить сдвиги в других физиологических системах организма подростка помогают небольшие перерывы (10-15 мин.).

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Слух имеет важное значение в жизни человека, что связано в первую очередь с восприятием речи. Человек слышит не все звуковые сигналы, а лишь те, которые имеют для него биологическое и социальное значение. Поскольку звук представляет собой распространяющиеся волны, основными характеристиками которых являются частота и амплитуда, то и слух характеризуется теми же параметрами. Частота субъективно воспринимается как тональность звука, а амплитуда как его интенсивность, громкость. Человеческое ухо способно воспринимать звуки частотой от 20 Гц до 20000 Гц и интенсивностью до 140 дБ (болевой порог). Наиболее тонкий слух лежит в диапазоне 1–2 тыс. Гц, т.е. в области речевых сигналов.

Периферический отдел слухового анализатора – орган слуха, состоит из наружного, среднего и внутреннего уха (рис. 4).

Рис. 4. Ухо человека: 1 – ушная раковина; 2 – наружный слуховой проход; 3 – барабанная перепонка; 4 – евстахиева труба; 5 – молоточек; 6 – наковальня; 7 – стремечко; 8 – овальное окно; 9 – улитка.

Наружное ухо включает в себя ушную раковину и наружный слуховой проход. Эти структуры выполняют функцию рупора и концентрируют звуковые колебания в определенном направлении. Ушная раковина к тому же участвует в определении локализации звука.

Среднее ухо включает барабанную перепонку и слуховые косточки.

Барабанная перепонка, отделяющая наружное ухо от среднего, представляет собой перегородку толщиной 0,1 мм, сплетенную из волокон, идущих в различных направлениях. По своей форме она напоминает направленную внутрь воронку. Барабанная перепонка начинает колебаться при действии звуковых колебаний, проходящих через наружный слуховой проход. Колебания перепонки зависят от параметров звуковой волны: чем выше частота и громкость звука, тем выше частота и больше амплитуда колебаний барабанной перепонки.

Эти колебания передаются слуховым косточкам – молоточку, наковальне и стремечку. Поверхность стремечка прилегает к мембране овального окна. Слуховые косточки образуют между собой систему рычагов, которая усиливает колебания, передаваемые с барабанной перепонки. Отношение поверхности стремечка к барабанной перепонке равно 1:22, что во столько же раз усиливает давление звуковых волн на мембрану овального окна. Это обстоятельство имеет большое значение, так как даже слабые звуковые волны, действующие на барабанную перепонку способны преодолеть сопротивление мембраны овального окна и привести в движение столб жидкости в улитке. Таким образом, энергия колебаний, передаваемая на внутреннее ухо, возрастает примерно в 20 раз. Однако при очень громких звуках та же система косточек с помощью специальных мышц ослабляет передачу колебаний.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, существует еще круглое окно, тоже закрытое мембраной. Колебания жидкости в улитке, возникшие у овального окна и прошедшие по ходам улитки, достигают, не затухая, круглого окна. Если бы этого окна с мембраной не было, из-за несжимаемости жидкости колебания ее были бы невозможны.

Полость среднего уха сообщается с наружной средой через евстахиеву трубу , которая обеспечивает поддержание в полости постоянного давления, близкого к атмосферному, что создает наиболее благоприятные условия для колебаний барабанной перепонки.

Внутреннее ухо (лабиринт) включает в себя слуховой и вестибулярный рецепторные аппараты. Слуховая часть внутреннего уха – улитка представляет собой спирально закрученный, постепенно расширяющийся костный канал (у человека 2,5 витка, длина хода около 35 мм) (рис. 5).

По всей длине костный канал разделен двумя перепонками: более тонкой вестибулярной (рейснеровой) мембраной и более плотной и упругой – основной (базилярной, базальной) мембраной. На вершине улитки обе эти мембраны соединяются и в них имеется отверстие – геликотрема. Вестибулярная и основная мембраны делят костный канал на три хода или лестницы, заполненных жидкостью.

Верхний канал улитки, или вестибулярная лестница, берет начало от овального окна и продолжается до вершины улитки, где он через геликотрему сообщается с нижним каналом улитки – барабанной лестницей, которая начинается в области круглого окна. Верхний и нижний каналы заполнены перилимфой, напоминающей по составу спинномозговую жидкость. Средний – перепончатый канал (улитковая лестница) не сообщается с полостью других каналов и заполнен эндолимфой. На базилярной (основной) мембране в улитковой лестнице расположен рецепторный аппарат улитки – орган Корти , состоящий из волосковых клеток. Над волосковыми клетками расположена покровная (текториальная) мембрана. При передаче звуковых колебаний через систему слуховых косточек к улитке в последней происходит колебание жидкости и, соответственно, мембраны, на которой находятся волосковые клетки. Волоски касаются текториальной мембраны и деформируются, что и является непосредственной причиной возбуждения рецепторов и генерации рецепторного потенциала. Рецепторный потенциал вызывает выделение в синапсе медиатора – ацетилхолина, что в свою очередь приводит к генерации потенциалов действия в волокнах слухового нерва. Далее это возбуждение передается к нервным клеткам спирального ганглия улитки, а оттуда в слуховой центр продолговатого мозга – кохлеарные ядра. После переключения на нейронах кохлеарных ядер импульсы поступают к следующему клеточному скоплению – ядрам верхнеоливарного комплекса моста. Все афферентные пути из кохлеарных ядер и ядер комплекса верхней оливы заканчиваются в задних холмах, или нижнем двухолмии, – слуховом центре среднего мозга. Отсюда нервные импульсы поступают во внутренне коленчатое тело таламуса, отростки клеток которого направляются к слуховой коре. Слуховая кора находится в верхней части височной доли и включает 41-е и 42-е поля (по Бродману).

Помимо восходящего (афферентного) слухового пути имеется и нисходящий центробежный, или эфферентный, путь, предназначенный для регуляции сенсорного потока

.Принципы переработки слуховой информации и основы психоакустики

Основными параметрами звука являются его интенсивность (или уровень звукового давления), частота, продолжительность и пространственная локализация источника звука. Какие механизмы лежат в основе восприятия каждого из этих параметров?

Интенсивность звука на уровне рецепторов кодируется амплитудой рецепторного потенциала: чем громче звук, тем больше амплитуда. Но здесь, как и в зрительной системе имеет место не линейная, а логарифмическая зависимость. В отличие же от зрительной системы в слуховой системе используется и другой способ – кодирование числом возбужденных рецепторов (благодаря разному уровню порога у разных волосковых клеток).

В центральных отделах слуховой системы при увеличении интенсивности, как правило, увеличивается частота нервных импульсов. Однако для центральных нейронов наиболее значимым является не абсолютный уровень интенсивности, а характер ее изменения во времени (амплитудно-временная модуляция).

Частота звуковых колебаний. Рецепторы на базальной мембране расположены в строго определенном порядке: на той части, которая расположена ближе к овальному окну улитки, рецепторы реагируют на высокие частоты, а расположенные на участке мембраны ближе к верхушке улитке, реагируют на низкие частоты. Таким образом, частота звука кодируется местоположением рецептора на базальной мембране. Такой способ кодирования сохраняется и в вышележащих структурах, поскольку они являются своеобразной «картой» основной мембраны и взаиморасположение нервных элементов здесь точно соответствует таковому на базальной мембране. Такой принцип получил название топического. В то же время нужно заметить, что на высоких уровнях сенсорной системы нейроны реагируют уже не на чистый тон (частоту), а на его изменение во времени, т.е. на более сложные сигналы, имеющие, как правило, то или иное биологическое значение.

Длительность звука кодируется длительностью разряда тонических нейронов, которые способны возбуждаться в течение всего времени действия раздражителя.

Пространственная локализация звука обеспечивается преимущественно за счет двух разных механизмов. Их включение зависит от частоты звука или его длины волны. При низкочастотных сигналах (примерно до 1,5 кГц) длина волны оказывается меньше межушного расстояния, равного в среднем у человека 21 см. В этом случае локализация источника осуществляется благодаря разному времени прихода звуковой волны на каждое ухо в зависимости от азимута. При частотах больше 3 кГц длина волны заведомо меньше межушного расстояния. Такие волны не могут обогнуть голову, они многократно отражаются от окружающих предметов и головы, теряя при этом энергию звуковых колебаний. В этом случае локализация осуществляется в основном за счет межушных различий по интенсивности. В области частот от 1,5 Гц до 3 кГц происходит смена временного механизма локализации на механизм оценки интенсивности, а область перехода оказывается неблагоприятной для определения местонахождения источника звука.

При определении местонахождения источника звука важно оценить его удаленность. Существенную роль в решении этой задачи играет интенсивность сигнала: чем больше расстояние от наблюдателя, тем меньше воспринимаемая интенсивность. При больших расстояниях (более 15 м) мы учитываем спектральный состав дошедшего до нас звука: звуки высокой частоты затухают быстрее, т.е. «пробегают» меньшее расстояние, звуки низкой частоты, напротив, затухают медленнее и распространяются дальше. Именно поэтому звуки, издаваемые удаленным источником, кажутся нам более низкими. Одним из факторов, существенно облегчающих оценку удаленности, является реверберация звукового сигнала от отражающих поверхностей, т.е. восприятие отраженного звука.

Слуховая система способна определять не только местоположение неподвижного, но и движущегося источника звука. Физиологической основой оценки локализации источника звука является активность так называемых нейронов-детекторов движения, расположенных в верхнеоливарном комплексе, задних холмах, внутреннем коленчатом теле и слуховой коре. Но ведущая роль здесь принадлежит верхним оливам и задним холмам.

Вопросы и задания для самоконтроля

1. Рассмотрите строение органа слуха. Опишите функции наружного уха.

2. Какова роль среднего уха в передаче звуковых колебаний?

3. Рассмотрите строение улитки и органа Корти.

4. Что представляют собой слуховые рецепторы и что является непосредственной причиной их возбуждения?

5. Как происходит преобразование звуковых колебаний в нервные импульсы?

6. Охарактеризуйте центральные отделы слухового анализатора.

7. Oпишите механизмы кодирования интенсивности звука на разных уровнях слуховой системы?

8. Каким образом кодируется частота звука?

9. Какие механизмы пространственной локализации звука вы знаете?

10. В каком диапазоне частот воспринимает звуки ухо человека? Почему самые низкие пороги по интенсивности у человека лежат в области 1–2 кГц?

Слуховой анализатор (слуховая сенсорная система) – второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) – это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

Рис . 12.10. Органы слуха и равновесия . Наружное, среднее и внутреннее ухо, а также отходящие от рецепторных элементов органа слуха (кортиев орган) и равновесия (гребешки и пятна) слуховая и преддверная (вестибулярная) ветви преддверно–улиткового нерва (VIII пара черепных нервов).

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передаётся далее на волокна преддверно-улиткового нерва (рис. 12.11).

Рис . 12.11. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками.

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделённые друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3 500. Наружные волосковые клетки располагаются в 3-4 ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлинённую форму; один её полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии . Их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна, около 2·10 -13 ньютон. Ещё более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибается один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удалённости звука от организма связана с ослаблением звука и изменением его тембра.

Слуховой анализатор – это второй по значимости анализатор в обеспечении познавательной деятельности человека. Слуховая система служит для восприятия звуковых сигналов, что придает ей особую роль, связанную с восприятием членораздельной речи. Ребёнок, потерявший слух в раннем детстве, утрачивает и речевую способность.

Строение слухового анализатора:

Периферическая часть – рецепторный аппарат в ухе (внутреннем);

Проводниковая часть – слуховой нерв;

Центральная часть – слуховая зона коры больших полушарий (височная доля).

Строение уха.

Ухо - орган слуха и равновесия, включает:

Наружное ухо – ушная раковина, которая улавливает звуковые колебания и направляет их в наружный слуховой проход. Ушная раковина образована эластичным хрящом, снаружи покрытым кожей. Наружный слуховой проход имеет вид изогнутого канала длиной 2,5 см. Его кожа покрыта волосками. В слуховой проход открываются протоки желез, которые производят ушную серу. И волоски, и ушная сера, выполняют защитную функцию;

Среднее ухо. Состоит из: барабанной перепонки, барабанной полости (заполненной воздухом), слуховых косточек - молоточка, наковальни, стремени (передают звуковые колебания из барабанной перепонки на овальное окно внутреннего уха, предотвращают его перегрузку), евстахиевой трубы (соединяет полость среднего уха с глоткой). Барабанная перепонка - тонкая эластичная пластинка, расположенная на границе наружного и среднего уха. Молоточек одним концом соединён с барабанной перепон­кой, а другим – с наковальней, которая соединена со стремечком. Стремя соединено с овальным окном, которое отделяет барабанную полость от внутреннего уха. Слуховая (евстахиевая) труба соединяет барабанную полость с носоглоткой, устланная изнутри слизистой оболочкой. Она поддерживает одинаковое давление внешне и изнутри на барабанную перепонку.

Среднее ухо отделено от внутреннего уха костной стенкой, в котором имеется два отверстия (круглое окно и овальное окно);

Внутреннее ухо. Расположено в височной кости и образовано костным и перепончатым лабиринтами. Перепончатый лабиринт из соединительной ткани расположен внутри костного лабиринта. Между костным и перепончатым лабиринтом содержится жидкость - перилимфа, а внутри перепончатого лабиринта - эндолимфа.

Костный лабиринт состоит из улитки (звукоприемный аппарат), преддверия (часть вестибулярного аппарата) и трёх полукружных каналов (орган слуха и равновесия). Перепончатый лабиринт расположен внутри костного лабиринта. Между ними находится жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа. В перепончатом лабиринте улитки находится кортиев орган – рецепторная часть слухового анализатора, превращающий звуковые колебания в нервное возбуждение. Костное преддверие, которое образует среднюю часть лабиринта внутреннего уха, имеет в стенке два открытых окна, овальное и круглое, которые соединяют костную полость с барабанной перепонкой. Овальное окно закрыто основой стремени, а круглое - подвижной эластичной соединительно-тканной пластинкой.

Восприятие звука: звуковые волны через ушную раковину попадают во внешний слуховой проход и вызывают колебательные движения барабанной перепонки –– колебания барабанной перепонки передаются слуховым косточкам, движения которых вызывают вибрацию стремени, которое закрывает овальное окно –– движения стремени овального окна колеблют перилимфу, ее колебания передаются –– колебание эндолимфы, влечет колебание основной мембраны –– при движениях основной мембраны и эндолимфы, покровная мембрана внутри улитки с определенной силой и частотой касается микроворсинок рецепторных клеток, которые возбуждаются –– возбуждение по слуховому нерву к подкорковым центрам слуха (средний мозг) –– высший анализ и синтез слуховых раздражений происходит в корковом центре слухового анализатора, который расположен в височной доле. Здесь происходит различение характера звука, его силы, высоты.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека