Анатомо-физиологические особенности кроветворения, классификация, основные синдромы. Анатомо-физиологические и возрастные особенности системы крови

К системе крови относятся периферическая кровь, органы кроветворения и кроверазрушения (красный костный мозг, печень, селезенка, лимфатические узлы и другие лимфоидные образования). В эмбриональный период кроветворными органами являются печень, селезенка, костный мозг и лимфоидная ткань. После рождения ребенка кроветворение сосредоточивается главным образом в костном мозге и происходит у детей раннего возраста во всех костях. Начиная с 1-го года жизни появляются признаки превращения красного костного мозга в желтый (жировой). К периоду полового созревания кроветворение происходит в плоских костях (грудине, ребрах, телах позвонков), эпифизах трубчатых костей, а также в лимфатических узлах и селезенке. Лимфоузлы. Важнейшие органы лимфопоэза. У новорожденных по сравнению со взрослыми они более богаты лимфатическими сосудами и лимфоидными элементами с множеством молодых форм, количество которых после 4-5 лет жизни постепенно уменьшается. Морфологическая и связанная с ней функциональная незрелость лимфатических узлов приводит к их недостаточной барьерной функции, в связи с чем у детей первых месяцев жизни инфекционные агенты легко проникают в кровяное русло. Видимых изменений со стороны лимфатических узлов при этом не наступает. В возрасте 1-3 лет лимфатические узлы начинают отвечать на внедрение возбудителя. С 7-8 лет в связи с завершением развития лимфатических узлов появляется возможность местной защиты от возбудителей инфекции. Ответной реакцией на приникновение инфекции является увеличение размеров лимфатических узлов, их болезненность при пальпации. У здоровых детей пальпируются шейные (подчелюстные, передне- и заднешейные, затылочные), подмышечные и паховые лимфатические узлы. Они единичные, мягкие, подвижные, не спаяны между собой и с окружающей тканью, имеют величину от просяного зерна до чечевичного. Зная локализацию лимфатических узлов, можно определить направление распространения инфекции и обнаружить их изменение при патологических процессах. Вилочковая железа. Центральный орган иммунитета. К моменту рождения ребенка она хорошо развита. В возрасте от 1 до 3 лет происходит увеличение ее массы. С началом периода полового созревания начинается возрастная инволюция вилочковой железы. Селезенка. Один из периферических органов иммунитета. В ней происходит образование лимфоцитов, разрушение эритроцитов и тромбоцитов, накопление железа, синтез иммуноглобулинов. В функции селезенки входит депонирование крови. Системы макрофагов (ретикулоэндотелиальная система) является местом образования моноцитов. Миндалины. Основные лимфоидные образования. У новорожденного ребенка они расположены глубоко и имеют небольшие размеры. В связи со структурой и функциональной незрелостью миндалин дети первого года жизни редко болеют ангинами. С 5-10 лет нередко наблюдается увеличение небных миндалин, часто сочетающееся с увеличением носоглоточной миндалины и другими лимфоидными образованиями глотки. С периода полового созревания начинается их обратное развитие. Лимфоидная ткань замещается соединительной, миндалины уменьшаются в размере, становятся более плотными. Для кроветворной системы ребенка характерны выраженная функциональная неустойчивость, легкая ранимость, возможность возврата при патологических состояниях к эмбриональному типу кроветворения или образование экстрамедуллярных очагов кроветворения. Вместе с тем отмечается склонность кроветворной системы к процессам регенерации. Эти свойства обьясняеются большим количеством недифференцированных клеток, которые при различных раздражениях дифференцируются так же, как и в период эмбрионального развития. Кровь. По мере роста ребенка кровь претерпевает своеобразные изменение со стороны качественного и количественного состава. По гематологическим показателям весь детский возраст подразделяют на три периоды: 1) новорожденности; 2) грудного возраста; 3) после 1 года жизни.

Кровь новорожденного. Для периферической крови в этом возрастном периоде характерно повышенное количество эритроцитов и высокой уровень гемоглобина. Кровь содержит 60-80 % фетального гемоглобина. У недоношенных его уровень может составлять 80-90%. Приспособленный к транспорту кислорода в условиях плацентарного кровообращения фетальный гемоглобин связывает кислород быстрее, чем гемоглобин взрослых, играя важную роль в период адаптации новорожденных к новым условиям жизни. Постепенно, в течение первых 3 месяцев жизни, происходит его замена на гемоглобин взрослых. Цветовой показатель в период новорожденности превышает 1 (до 1,3). Для эритроцитов новорожденного характерны следующие качественные отличия: анизоцитоз (различная окраска эритроцитов), повышенное содержание ретикулоцитов (молодые формы эритроцитов, содержащие зернистость), наличие нормобластов (молодые формы эритроцитов с наличием ядра). Скорость оседания эритроцитов (СОЭ) у новорожденных составляет 2-3 мм/ч.

В лейкоцитарной формуле в первые дни жизни ребенка преобладают нейтрофилы (около 60-65%). Число лимфоцитов составляет 16-34%, к 5-6-му дню жизни происходит выравнивание количества нейтрофилов и лимфоцитов (первый физиологический перекрест в лейкоцитарной формуле). К концу первого месяца жизни число нейтрофилов уменьшается до 25-30%, а лимфоцитов возрастает 55-60% (рис.55). Кровь ребенка в возрасте старше 1 года. Количество эритроцитов и гемоглобина постепенно нарастает, из молодых форм эритроцитов остаются ретикулоциты, число которых колеблется от 2 до 5%. Цветовой показатель составляет 0,85-0,95, СОЭ равна 4-10 мм/ч. Общее число лейкоцитов уменьшается, меняется и характер лейкоцитарной формулы: количество лимфоцитов постепенно уменьшается, а нейтрофилов увеличивается, и к 5-6 годам число их уравнивается, т.е. происходит второй перекрест кривой нейтрофилов (рис. 55). В дальнейшем увеличение нейтрофилов и уменьшение лимфоцитов продолжается, и постепенно состав крови приближается к составу крови взрослых. С в е р т ы в а ю щ а я с и с т е м а к р о в и новорожденных и детей 1-го года жизни имеет ряд особенностей. В период новорожденности свертываемость замедленна, что обусловлено снижением активности компонентов протромбинового комплекса: II, V, и VIIфакторов. У детей 1-го года жизни отмечается замедленное образование тромбопластина. В первые дни жизни снижена активность Xи IVфакторов. В период новорожденности отмечается и некоторое уменьшение количества Iфактора. Активность фибринолитической системы у детей чаще повышенная. В дальнейшем по мере созревания печени активность факторов свертывания становится достаточной и обеспечивает равновесие сложной системы гомеостаза.

Клинические методы исследования больных с заболеванием системы крови. Морфологическое исследование периферической крови, диагностическое значение.

Методическая разработка практического занятия для студентов III курса

лечебного факультета

Курс - III семестр

Факультет: лечебный

Продолжительность занятия : 4 академических часов

Место проведения: кардиологическое отделение ГКБ№4

1.Тема занятий: Клинические методы исследования больных с заболеванием системы крови. Морфологическое исследование периферической крови, диагностическое значение.

2.Значение изучения данной темы. Изучение данной темы дает понимание о методах клинического обследования больных с заболеванием системы крови, кроветворные органы чрезвычайно чувствительны к различным физиологическим и патологическим воздействиям на организм, отражением этих является картина периферического анализа крови в норме и при заболевании различных систем организма.

3.Цель занятия: Научить студентов клиническому обследованию больных с заболеванием системы крови и ознакомить студентов с основным показателями клинического анализа периферической крови в норме и при заболевании различных систем организма.

В результате изучения данной темы студент должен знать:

Основные жалобы больных с заболеванием системы крови;

Уметь проводить пальпацию периферических лимфатических узлов,

печени, селезенки;

Показатели общего анализа крови в норме;

Методику определения гемоглобина, эритроцитов, лейкоцитов, содержание гемоглобина в одном эритроците, скорости оседания эритроцитов (СОЭ);

Методику подсчёта лейкоцитарной формулы;

Клиническое значение клеток крови, средние содержание гемоглобина в одном эритроците, СОЭ;

Лейкоцитарную формулу в патологии;

Представление о стернальной пункции, трепанобиопсии;

Представление о коагулограмме;

Самоподготовка к занятию.

В результате самоподготовки студент должен знать:

Анатомо-физиологические особенности системы крови;

Основные жалобы больных с заболеванием системы крови, механизм их возникновения;

Данные общего осмотра больных с заболеванием системы крови;

Уметь проводить пальпацию периферических лимфатических узлов, печени, селезёнки;

Уметь анализировать данные общего анализа крови, биохимического анализа крови.

Базисные разделы для повторения, полученные студентом на смежных дисциплинах:

Анатомо-физиологические особенности системы крови, схема ростков кроветворения;

Метаболизм и обмен железа;

Разделы для повторения, полученные ранее по дисциплине пропедевтика внутренних болезней :

Анамнез и его разделы;

Общий осмотр;

Осмотр и пальпация периферических лимфатических узлов;

Перкуссия и пальпация печени;

Пальпация селезенки;

Аускультация сердца;

Исследование свойств пульса;

Критерии нормы периферического анализа крови.

Вопросы для повторения и изучения при подготовке к занятию.

1.Анатомо-физиологические особенности системы крови, схема ростков кроветворения;

3. Основные жалобы больных с заболеванием системы крови, механизм их возникновения;

4.Значение анамнеза для выявления факторов, способствующие развитию анемии.

5. Значение физикального обследования больных системой крови.

6. Значение количественных и качественных изменений клеточного состава крови:

а) эритроцитов;

б) изменение формы и окраски эритроцитов;

в) изменение цветового показателя;

г) количество ретикулоцитов;

д) лейкоцитоз и лейкопения;

е) нейтрофильный сдвиг;

ж) эозинофилия и анэозинофилия;

з) лимфоцитоз и лимфопения;

и) моноцитоз;

Вопрос 1. Анатомо-физиологические особенности системы крови.

Существуют несколько теорий кроветворения, но в настоящее время общепринятой является унитарная теория кроветворения, на основании которой была разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

  • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественника стволовой клетки;
  • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
  • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток:

1класс-стволовые клетки;
2 класс - полустволовые клетки;
3 класс - унипотентные клетки;
4 класс - бластные клетки;
5 класс - созревающие клетки;
6 класс - зрелые форменные элементы.

Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту, является полипотентной, то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются клон-образующие единицы - КОЕ.

2 класс - полустволовые, ограниченно полипотентные (или частично коммитированные) клетки - предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки - предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2-4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови. Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноциты не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги. Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд. Например, эритроцитарный дифферон составляет:

  • стволовая клетка;
  • полустволовая клеткапредшественница миелопоэза;
  • унипотентная эритропоэтинчувствительная клетка;
  • эритробласт;
  • созревающие клетки - пронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит, эритроцит.

В процессе созревания эритроцитов в 5 классе происходит: синтез и накопление гемоглобина, редукция органелл, редукция ядра. В норме пополнение эритроцитов осуществляется в основном за счет деления и дифференцировки созревающих клеток пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. При выраженной кровопотери пополнение эритроцитов обеспечивается не только усиленным делением созревающих клеток, но и клеток 4, 3, 2 и даже 1 классов гетеропластический тип кроветворения, предшествующий собой уже репаративную регенерацию крови.Кровь представляет собой жидкость (жидкая ткань мезодермального происхождения), красного цвета, слабо щелочной реакции, солоноватого вкуса с удельным весом 1,054-1,066. Совместно с тканевой жидкостью и лимфой она образует внутреннюю среду организма. Кровь выполняет многообразные функции. Главнейшие из них следующие:

Транспорт питательных веществ от пищеварительного тракта к тканям, местам резервных запасов от них (трофическая функция);

Транспорт конечных продуктов метаболизма из тканей к органам выделения (экскреторная функция);

Транспорт газов (кислорода и диоксида углерода из дыхательных органов к тканям и обратно; запасание кислорода (дыхательная функция);

Транспорт гормонов от желез внутренней секреции к органам (гуморальная регуляция);

Защитная функция - осуществляется за счет фагоцитарной активности лейкоцитов (клеточный иммунитет), выработки лимфоцитами антител, обезвреживающих генетически чужеродные вещества (гуморальный иммунитет);

Свертывание крови, препятствующее кровопотере;

Терморегуляторная функция - перераспределение тепла между органами, регуляция теплоотдачи через кожу;

Механическая функция - придание тургорного напряжения органам за счет прилива к ним крови; обеспечение ультрафильтрации в капиллярах капсул нефрона почек и др.;

Гомеостатическая функция - поддержание постоянства внутренней среды организма, пригодной для клеток в отношении ионного состава, концентрации водородных ионов и др.

Относительное постоянство состава и свойств крови - гомеостаз является необходимым и обязательным условием жизнедеятельности всех тканей организма. Из всего объёма крови примерно половина циркулирует по организму. Остальная же половина задерживается в расширенных капиллярах некоторых органов и называется депонированной. Органы, в которых депонирована кровь, называются кровяным депо.

Схема кроветворения

(И. Л. Чертков и А. И. Воробьев, 1973 г.).

Селезёнка. Вмещает в своих лакунах - отростках капилляров до 16% всей крови. Эта кровь практически выключена из кругооборота и не смешивается с циркулирующей кровью. При сокращении гладких мышц селезёнки лакуны сжимаются, и кровь поступает в общее русло.

Печень. Вмещает в себя до 20% объёма крови. Печень выполняет роль кровяного депо за счёт сокращения сфинктеров печёночных вен, по которым кровь оттекает от печени. Тогда в печень крови поступает больше, чем оттекает. Капилляры печени расширяются, кровоток в ней замедляется. Однако депонированная в печени кровь полностью не выключается из кровотока.

Подкожная клетчатка. Депонирует до 10% крови. В кровеносных капиллярах кожи имеются анастомозы. Часть капилляров расширяется, заполняется кровью, а кровоток совершается по укороченным путям (шунтам).

Лёгкие также можно отнести к органам, депонирующим кровь. Объём сосудистого русла лёгких также не постоянен, он зависит от вентиляции альвеол, величины кровяного давления в них и от кровенаполнения сосудов большого круга кровообращения.

Таким образом, депонированная кровь выключена из кровотока и в основном не смешивается с циркулирующей кровью. Вследствие всасывания воды депонированная кровь более густа, она содержит большее количество форменных элементов.Значение депонированной крови заключается в следующем. Когда организм находится в состоянии физиологического покоя, его органы и ткани не нуждаются в усиленном снабжении кровью. В этом случае депонирование крови снижает нагрузку на сердце, и в результате оно работает на 1/5 - 1/6 своей мощности. При необходимости кровь может быстро перейти в кровоток, например при физической работе, сильных эмоциональных переживаниях, вдыхании воздуха с повышенным содержанием диоксида углерода - то есть во всех случаях, когда требуется, увеличит доставку кислорода и питательных веществ органам. В механизмах перераспределения крови между депонированной и циркулирующей участвует вегетативная нервная система: симпатические нервы вызывают увеличение объёма циркулирующей крови, а парасимпатические - переход крови в депо. При поступлении в кровь большого количества адреналина происходит выход крови из депо. При кровопотерях объём крови восстанавливается, прежде всего, за счёт перехода тканевой жидкости в кровь, а затем в кровоток поступает депонированная кровь. В результате объём плазмы восстанавливается значительно быстрее, чем количество форменных элементов. При увеличении объёма крови (например, при введении большого количества кровезаменителей или при выпаивании большого количества воды) часть жидкости быстро выводится почками, но большая часть переходит в ткани, а затем постепенно выводится из организма. Таким образом, восстанавливается объём крови, заполняющий сосудистое русло.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Анатомо-физиологические особенности крови и лимфатической системы

Кроветворение, или гемопоэз, - процессы возникновения и последующего созревания форменных элементов крови в так называемых органах кроветворения.

В период внутриутробной жизни плода выделяют 3 периода кроветворения. Этапы не строго разграничены, а постепенно сменяют друг друга. К моменту рождения ребенка прекращается кроветворение в печени, а селезенка утрачивает функцию образования клеток красного ряда, гранулоцитов, мегакариоцитов, сохраняя функцию образования лимфоцитов. Соответственно различным периодам кроветворения - мезобластическому, печеночному и костномозговому - существует три разных типа гемоглобина: эмбриональный, фетальный и гемоглобин взрослого. Постепенно фетальный гемоглобин замещается гемоглобином взрослого. К году остается 15% фетального, а к 3 годам количество его не должно превышать 2%.

Кровь новорожденного . Общее количество крови у детей не является постоянной величиной и зависит от массы тела, времени перевязки пуповины, доношенности ребенка. В среднем у новорожденного объем крови составляет около 14,7% его массы тела, а у взрослого - соответственно 5,0-5,6%.

В периферической крови здорового новорожденного повышено содержание гемоглобина и эритроцитов, а цветовой показатель колеблется от 0,9 до 1,3. С первых же часов после рождения начинается распад эритроцитов, что клинически обусловливает появление физиологической желтухи.

Лейкоцитарная формула у новорожденных имеет особенности. Диапазон колебания общего числа лейкоцитов довольно широкий. В течение первых часов жизни число их несколько увеличивается, а затем падает. Большое количество эритроцитов, повышенное содержание в них гемоглобина, наличие большого количества молодых форм эритроцитов указывают на усиленный гемопоэз у новорожденных и связанное с этим поступление в периферическую кровь молодых, еще не созревших форменных элементов. Эти изменения вызваны тем, что гормоны, циркулирующие в крови беременной женщины и стимулирующие ее кроветворный аппарат, переходя в тело плода, повышают работу его кроветворных органов. После рождения поступление в кровь ребенка этих гормонов прекращается, вследствие чего быстро падает количество гемоглобина, эритроцитов, лейкоцитов. Кроме этого, усиленное кроветворение у новорожденных можно объяснить особенностями газообмена - недостаточным снабжением плода кислородом.

Кровь детей первого года жизни . В этом возрасте продолжается постепенное снижение числа эритроцитов и уровня гемоглобина. К концу 5-6-го месяца наблюдаются наиболее низкие показатели. Это явление физиологическое и наблюдается у всех детей. Оно обусловлено быстрым нарастанием массы тела, объема крови, недостаточным поступлением с пищей железа, функциональной несостоятельностью кроветворного аппарата.

С начала второго года жизни до пубертатного периода морфологический состав периферической крови ребенка постепенно приобретает черты, характерные для взрослых. В лейкограмме после 3-4 лет выявляется тенденция к умеренному нарастанию числа нейтрофилов и уменьшению количества лимфоцитов. Между пятым и шестым годом жизни наступает 2-й перекрест числа нейтрофилов и лимфоцитов в сторону увеличения количества нейтрофилов. Следует отметить, что в последние десятилетия выявляется тенденция к снижению количества лейкоцитов у здоровых детей и взрослых.

Кровеносные сосуды у новорожденного шире, чем у взрослого. Их просвет постепенно увеличивается, но медленнее, чем объем сердца. Процесс кровообращения у детей происходит интенсивнее, чем у взрослых. Пульс у ребенка учащенный: 120-140 ударов в минуту. На один цикл “вдох-выдох” приходится 3,5-4 сердечных удара. Но через полгода пульс становится реже - 100-130 ударов.

Кровяное давление у детей первого года жизни низкое. С возрастом оно повышается, но у разных детей по-разному, в зависимости от веса, темперамента и т. д.

У новорожденного в крови содержится большое количество эритроцитов и лейкоцитов, гемоглобин повышен. Но постепенно в течение года их число снижается до нормы. Поскольку кроветворная система младенцев очень чувствительна к разного рода внешним и внутренним вредным воздействиям, дети первого года жизни чаще, чем дети более старшего возраста, подвержены заболеванию анемией.

Становление гемопоэза в антенатальном и постнатальном периодах.

Процесс внутриутробного кроветворения включает 3 этапа:

1. Желточный этап (мезобластический, ангиобластический). Начинается с 3-й продолжается до 9-й недели. Гемопоэз происходит в сосудах желточного мешка (из стволовых клеток образуются примитивные первичные эритробласты (мегалобласты), содержащие HbP.

2. Печеночный (гепатолиенальный) этап. Начинается с 6-й недели и продолжается почти до рождения. Вначале в печени происходит как мегалобластический, так и нормобластический эритропоэз, а с 7-го месяца происходит только нормобластический эритропоэз. Наряду с этим происходит гранулоцито-, мегакариоцито-, моноцито- и лимфоцитопоэз. С 11-й недели по 7-й месяц в селезенке присходит эритроцито-, гранулоцито-, моноцито- и лимфоцитопоэз.

3. Костно-мозговой (медуллярный, миелоидный) этап. Начинается с конца 3-го месяца и продолжается в постнатальном онтогенезе. В костном мозге всех костей (начиная с ключицы) из стволовых клеток происходит эритропоэз по нормобластическому типу, гранулоцито-, моноцито-, мегакариоцитопоз и лимфопоэз. Роль органов лимфопоэза в этот период выполняют селезенка, тимус, лимфоузлы, небные миндалины и пейеровы бляшки.

В постнатальной жизни основным кроветворным органом становится костный мозг. В нем содержится основная масса стволовых кроветворных клеток и осуществляется образование всех клеток крови. Интенсивность гемопоэза в остальных органах после рождения быстро снижается.

Особенности гемопоэза у ребёнка .

Особенности эритропоэза у ребенка.

У новорожденного ребёнка преобладает HbF, он обладает большим сродством к кислороду и легко отдаёт его тканям. Начиная с первых недель постнатальной жизни происходит резкое увеличение синтезаHbА, тогда как образование HbF резко снижается (приблизительно на 3% в неделю). К полугодовалому возрасту содержаниеHbAв крови составляет 95-98% (то есть, как у взрослого), тогда как концентрацияHbFне превышает 3%.

У новорожденного ребенка число эритроцитов в периферической крови достигает 710 12 /л, а уровень гемоглобина – 220 г/л. Повышенное число эритроцитов у новорожденного объясняется тем, что плод в утробе матери и во время родов испытывает состояние гипоксии, вызывающей в его крови увеличение содержания эритропоэтинов. Однако после рождения у ребенка возникает гипероксия (так как устанавливается внешнее дыхание), что приводит к снижению интенсивности эритропоэза (за счёт снижения выработки эритропоэтина), хотя в первые дни он остается на достаточно высоком уровне. Через несколько часов после рождения число эритроцитов и уровень гемоглобина даже возрастают, главным образом за счет сгущения крови, но уже к концу первых суток количество эритроцитов начинает падать. В дальнейшем содержание эритроцитов уменьшается на 5-7-й, а гемоглобина – на 10-й день жизни ребенка после массового гемолиза эритроцитов, сопровождающегося так называемой транзиторной гипербилирубинемией новорожденных, проявляющейся у части детей «физиологической желтухой». Столь быстрое снижение числа эритроцитов у новорождённого ребенка объясняется очень коротким периодом жизни красных кровяных телец плода (с ними ребенок появляется на свет) – всего 10-14 дней – и очень высокой степенью их разрушения, в 5-7 раз превышающей интенсивность гибели эритроцитов у взрослого. Однако в эти сроки происходит и быстрое образование новых эритроцитов.

Число ретикулоцитов у доношенных новорожденных детей колеблется в широких пределах и составляет от 0,8 до 4%. Более того, в периферической крови могут встречаться единичные нормобласты. Однако к 10 дню жизни ребёнка содержание ретикулоцитов не превышает 2%. К этому сроку в периферической крови нормобласты исчезают.

К 3 месяцу жизни ребёнка уровень гемоглобина и количество эритроцитов снижаются, достигая 100-130 г/л и 3,0 — 4,510 12 /л соответственно. Столь низкие цифры числа эритроцитов и уровня гемоглобина у грудных детей представляют так называемую «физиологическую анемию» или «эритробластопению младенцев» и редко сопровождаются клиническими проявлениями гипоксии. Резкое уменьшение содержания эритроцитов отчасти связано с гемолизом фетальных эритроцитов, срок жизни которых приблизительно в 2 раза меньше, чем у взрослого человека. Кроме того, у грудного ребёнка по сравнению с взрослыми интенсивность эритропоэза значительно снижена, что связано с пониженным образованием в этот период основного фактора эритропоэза – эритропоэтина. В дальнейшем содержание эритроцитов и гемоглобина может слегка возрастать или падать, или оставаться на одном и том же уровне до трёхлетнего возраста. Несмотря на то, что к десяти годам число эритроцитов и уровень гемоглобина постепенно растёт, колебания как в ту, так и в другую сторону сохраняются вплоть до полового созревания. К этому моменту отмечаются половые различия в нормативах красной крови.

Особенно резкие индивидуальные вариации в количестве эритроцитов и уровне гемоглобина наблюдаются в возрастные периоды от 1 года до 2-х лет, от 5 до 7 и от 12 до 15-ти лет, что, по-видимому, связано со значительными вариациями в темпах роста детей.

Значительно отличаются эритроциты новорождённого по размеру и форме: с первых часов жизни и до 5-7-го дня у детей отмечается макроцитоз и пойкилоцитоз. В крови выявляется много молодых незрелых крупных форм эритроцитов. В течение первых часов жизни у ребенка наблюдается резкое повышение количества ретикулоцитов (ретикулоцитоз) до 4-6%, что в 4-6 раз превышает число этих форм у взрослого. Кроме того, у новорождённого можно обнаружить эритробласты и нормобласты. Всё это указывает на интенсивность эритропоэза в первые дни жизни ребенка.

Эритроциты плода и новорожденного ребёнка, по сравнению с эритроцитами взрослых, более чувствительны к оксидантам, что может приводить к нарушению структуры мембраны, гемолизу и сокращению сроков их жизни. Эти явления объясняются снижением в эритроцитах сульфгидрильных групп и уменьшением содержания антиоксидантных ферментов. Однако к концу 1 недели жизни ребёнка функция антиоксидантной системы усиливается, возрастает активность таких ферментов, как глютатионпероксидаза, глютатионкаталаза, супероксиддисмутаза, что защищает структуры мембраны эритроцитов ребёнка от окисления и возможности дальнейшего разрушения. К этому сроку у большинства новорожденных заканчивается физиологическая желтуха.

На эритропоэз плода и особенно развивающегося ребёнка оказывают влияние те же факторы, что и у взрослого человека. В частности, железо в организме плоданакапливается на всём протяжении его развития, но особенно интенсивно этот процесс осуществляется в третьем триместре беременности. Материнское железо, переходя через плаценту, связывается с трансферрином плода и транспортируется в основном в печень. У плода имеется положительный запас железа, что обусловлено совершенными механизмами плаценты, позволяющими обеспечивать будущего ребёнка достаточным количеством железа даже при наличии железодефицитной анемии у беременной. К таким механизмам относится более высокая способность фетального трансферрина насыщаться железом, а также замедленный расход ферритина в связи с низкой активностью ксантиноксидазы.

Следовательно, у плода имеется положительный баланс железа. Транспорт железа является активным процессом, идущим против градиента концентрации в пользу плода без обратной передачи в плаценту и к матери. К моменту рождения ребёнка общий запас железа в его организме составляет 75 мг/кг массы тела. Эта величина является константной как у доношенного, так и у недоношенного ребёнка.

У ребёнка в желудочно-кишечном тракте абсорбция железа осуществляется значительно интенсивнее, чем у взрослых. Так, у детей первых месяцев жизни, находящихся на грудном вскармливании, может всасываться до 57% потребляемого железа, в возрасте 4-5 месяцев – до 40-50%, а в 7-10 лет – до 8-18%. У взрослого человека в среднем в желудочно-кишечном тракте утилизируется от 1 до 2% железа, поступаемого с пищей.

Суточные нормы поступления железа, необходимого для развития эффективного эритропоэза, следующие: до 4-х месячного возраста — 0,5 мг, от 5 месяцев до года – 0,7 мг, от 1 года до 12 лет – 1,0 мг, от 13 до 16 лет – 1,8 мг для мальчиков и 2,4 мг для девочек.

Поскольку ребёнок растёт, и общее содержание гемоглобина у него резко возрастает, то для образования последнего требуется усиленное поступление железа с пищей. Особенно велика потребность в железе в подростковом и юношеском возрасте. При наступлении менструаций у девочек потребность в железе значительно увеличивается, и оно может быть компенсировано лишь полноценным питанием.

Начиная с 12 недели, у плода в очагах кроветворения можно обнаружить кобальт , что подчёркивает его важную роль в процессах кроветворения. В дальнейшем с 5-го месяца внутриутробного развития, когда появляется нормобластическое кроветворение, кобальт у плода выявляется в печени. Вэритропоэзе участвует такжемарганец, медь, селен и другие микроэлементы.

Важную роль в регуляции эритропоэза у плода и ребёнка играют витамин В 12 и фолиевая кислота. Уплодакобаламин поступает в печень через плаценту от матери будущего ребёнка. Удоношенных детейзапасы витамина В 12 составляют 20-25 мкг. Суточная потребность ребёнка в витамине В 12 составляет 0,1 мкг. В то же время в 100 мл молока матери содержится приблизительно около 0,11 мкг кобаламина. В сыворотке доношенного новорожденного ребёнка содержание кобаламина колеблется в очень больших пределах и в среднем составляет 590 нг/л. В дальнейшем концентрация витамина В 12 в крови снижается и достигает к шестинедельному возрасту нормы, характерной для взрослого человека (в среднем 440 нг/л). Суточная потребность в фолиевой кислоте у грудных детей колеблется от 20 до 50 мкг. Содержание фолата в грудном молоке матери составляет в среднем 24 мкг/литр. Следовательно, грудное кормление полностью обеспечивает ребёнка необходимым количеством не только витамина В 12 , но и фолиевой кислотой.

В антенатальном периоде эритропоэтин образуется сначала в желточном мешке, а затем в печени. Его синтез в этом органе, как и у взрослого человека, регулируется напряжением кислорода в тканях и резко возрастает при гипоксии. Вместе с тем, в последнем триместре беременности образование эритропоэтина у плода переключается с печени на почки, которые к 40 дню после рождения ребёнка становятся основным органом синтеза эритропоэтина. Действие эритропоэтина у плода также осуществляется через рецепторы, которые находятся на гемопоэтических стволовых клетках эмбриона. Кроме того, рецепторы к эритропоэтину обнаружены в клетках плаценты, благодаря чему эритропоэтический фактор может быть перенесён от матери к плоду. Содержание эритропоэтина к моменту рождения как у доношенных, так и недоношенных детей значительно выше, чем у взрослых. В то же время у недоношенных детей его концентрация варьирует в широких пределах. В первые две недели после рождения ребёнка содержание эритропоэтина резко снижается (особенно у недоношенных) и даже к тридцатому дню жизни оказывается ниже, чем в среднем у взрослых. На втором месяце жизни ребёнка наблюдается существенное увеличение уровня эритропоэтина, и его концентрация приближается к цифрам, характерным для взрослых (5 – 35 МЕ/мл).

Особенности лейкопоэза у ребенка

Сразу после рождения ребенка число лейкоцитов очень велико и может достигать 2010 9 /л и даже больше. Этот физиологический лейкоцитоз обусловлен тяжелейшим стрессом, который ощущает ребенок, переходя во время родов в новую среду обитания. На протяжении 1 дня число лейкоцитов может даже возрастать и достигать 3010 9 /л, что связано со сгущением крови. Затем постепенно происходит уменьшение количества лейкоцитов (у части детей наблюдается их небольшой подъем между 4 и 9 днями). В грудном возрасте в разные месяцы уровень лейкоцитов колеблется в очень широких пределах – от 6 до 1210 9 / л. Нормы, характерные для взрослого человека, устанавливаются в возрасте 9-10 лет.

Лейкоцитарная формула новорожденного очень напоминает таковую у взрослых, хотя и отмечается явный сдвиг влево за счет преобладания, в основном, палочкоядерных нейтрофилов. Со 2-го дня число нейтрофилов начинает падать, а лимфоцитов – возрастать. На 5-7 день число нейтрофилов и лимфоцитов равняется 40-45% для каждой популяции. Это так называемый «первый перекрест» относительного содержания нейтрофилов и лимфоцитов. В дальнейшем число нейтрофилов продолжает уменьшаться, а число лимфоцитов повышаться более медленными темпами и к 3 –5-му месяцу лейкоцитарная формула представляет собой зеркальное отражение для взрослого человека. При этом число нейтрофилов достигает 25-30%, а лимфоцитов – 60–65%. Такое соотношение нейтрофилов и лимфоцитов с небольшими колебаниями сохраняется до 9-10-ти месячного возраста, после чего начинается планомерный подъем числа нейтрофилов и падения количества лейкоцитов, что приводит к появлению «второго перекреста» в возрасте 5-6 лет. После этого число лимфоцитов постепенно снижается, а количество нейтрофилов нарастает и к моменту полового созревания становится таким же, как у взрослого человека. Следует, однако, указать, что у детей одного и того же возраста, особенно в первые дни и месяцы жизни, отмечается чрезвычайный разброс в процентном содержании как нейтрофилов, так и лимфоцитов.

Что касается других клеток белой крови (эозинофилов, базофилов и моноцитов), то их относительное количество претерпевает на всем протяжении развития ребенка лишь незначительные колебания и мало отличается от показателей лейкоцитарной формулы взрослого человека

Примечание. В 5 дней и 5 лет содержание нейтрофилов и лимфоцитов в периферической крови примерно одинаково (45%). Чем младше ребенок, тем больше в периферической крови лимфоцитов. Соотношение лимфоцитов и нейтрофилов можно ориентировочно определить по формуле:

до 5 лет: нейтрофилы (%) = 45-2(5-п), лимфоциты(%) = 45+2(5-п), где п – число лет;

после 5 лет: нейтрофилы (%) = 45+2(п-5), лимфоциты (%) = 45-2(п-5)

Тромбоциты у ребенка

У новорождённого в первые часы жизни содержание кровяных пластинок не отличается от величин, характерных для детей более позднего возраста и для взрослых. В то же время у разных детей оно колеблется в очень широких пределах от 10010 9 /л до 40010 9 /л и в среднем равно около 20010 9 /л. В первые часы после рождения количество тромбоцитов возрастает, что может быть связано со сгущением крови, а к концу суток снижается и достигает цифр, характерных для ребенка, только что появившегося на свет. К концу 2-х суток количество тромбоцитов вновь увеличивается, приближаясь к верхней границе нормы взрослого человека. Однако к 7-10 дню число кровяных пластинок резко падает и достигает 150-20010 9 /л. Вполне возможно, что тромбоциты, как и эритроциты, подвергаются на первой неделе жизни массовому разрушению. У ребенка в возрасте 14 дней количество тромбоцитов соответствует приблизительно величине, характерной для новорождённого. В дальнейшем содержание тромбоцитов изменяется незначительно в ту или другую сторону, не отличаясь существенно от общепринятых норм для взрослых людей (150 — 40010 9 /л).

Особенности гемостаза у детей

У всех здоровых доношенных новорожденных первых пяти дней жизни имеется сопряженное снижение уровня прокоагулянтов, основных физиологических антикоагулянтов и плазминогена (табл. 32). Подобное соотношение свидетельствует о сбалансированности между отдельными звеньями системы гемостаза, хотя и на более низком функциональном уровне, чем в последующие возрастные периоды жизни. Характерная для раннего периода адаптации транзиторная гипокоагуляция обусловлена преимущественной гипопродукцией факторовIXиX, связанной с К-гиповитаминозом, хотя и не исключён механизм их потребления в процессе свёртывания крови. Примечательно, что в первые минуты и дни жизни, несмотря на фоновый дефицит витамина К, в плазме здоровых детей существенно повышается содержание РФМК – продуктов усиленной ферментативной деятельности тромбина. В динамике этот показатель быстро и прогрессивно увеличивается (по сравнению с нормой в 4,2 раза), достигая максимума к 3 – 5 дням. В последующем количество этих промежуточных продуктов фибринообразования заметно снижается и к концу периода новорождённости становится практически нормальным.

У детей с хронической гипоксией, недоношенностью отмечается более позднее формирование равновесия участников гемостатических реакций (табл. 33). Эти дети уже до родов, в родах и сразу после рождения проявляют склонность к кровоточивости и данная тенденция увеличивается в первые дни жизни («геморрагическая болезнь новорождённых»). У некоторых из них геморрагический синдром сочетается с тромбозами из-за низкой активности фибринолиза и антикоагулянтов, развитием ДВС-синдрома.

Время свертывания по Ли-Уайту: 5-12 мин.

Длительность кровотечения: 1-2 мин.

Схема анализа гемограммы

Оценка эритрограммы: содержания гемоглобина, эритроцитов, величины цветного показателя (ц.п.), количества ретикулоцитов, морфологических особенностей эритроцитов.

Снижение гемоглобина и эритроцитов – анемия, повышение – эритроцитоз

Ц.п. = (Нв в г/л х 0,3) : 2 первые цифры эритроцитов

Пример: Нв – 120г/л, эритроциты – 3,6*10.12/л, ц.п.=(120 х 0,3):36 = 1,0

Норма: 0,8 – 1,1

Ниже 0,8 – гипохромия, выше1,1 – гиперхромия

Снижение ретикулоцитов – ретикулоцитопения – гипорегенерация

Повышение ретикулоцитов – ретикулоцитоз – гиперрегенерация

Анизоцитоз – большие разбросы колебания размеров эритроцитов, микроцитоз – преобладание эритроцитов размером менее 7 микрон, макроцитоз – преобладание эритроцитов размером более 8 микрон

Оценка лейкограммы: количества лейкоцитов, соотношения разных форм лейкоцитов

Снижение количества лейкоцитов – лейкопения, увеличение – лейкоцитоз.

Снижение количества эозинофилов – эозинопения, повышение – эозинофилия

Снижение количества нейтрофилов – нейтропения, повышение – нейтрофилия. Если в периферической крови увеличивается содержание молодых форм гранулоцитов, говорят о сдвиге лейкоцитарной формулы влево.

Снижение лимфоцитов – лимфопения, повышение – лимфоцитоз

Снижение моноцитов – моноцитопения, повышение – моноцитоз

Снижение тромбоцитов – тромбоцитопения, повышение – тромбоцитоз.

Пример оценки гемограммы .

Ребенку 5 день жизни.

Нв – 150 г/л, эритроциты – 510 12 /л, ретикулоциты – 0,5%, лейкоциты – 1210 9 /л, эозинофилы – 1%, нейтрофилы палочкоядерные – 4%, нейтрофилы сегментоядерные – 41%, лимфоциты – 45%, моноциты – 9%, тромбоциты –10 9 /л, СОЭ – 5 мм/ч

Оценка. Эритрограмма. Ц.п.=(150х0,3):50 = 0,9

Физиологический эритроцитоз новорожденного, ц.п., содержание ретикулоцитов в норме.

Лейкограмма. Физиологический лейкоцитоз новорожденного, соотношение нейтрофилов и лимфоцитов можно определить как «первый перекрест» в 5 дней Содержание эозинофилов, моноцитов в пределах нормы.

Заключение. Нормальная гемограмма здорового ребенка в 5 дней.

Кроветворение, или гемопоэз, - процессы возникновения и последующего созревания форменных элементов крови в так называемых органах кроветворения.

Эмбриональное кроветворение. Впервые кроветворение обнаруживается у 19-дневного эмбриона в кровяных островках желточного мешка, которые окружают со всех сторон развивающийся зародыш. Появляются начальные примитивные клетки - мегалобласты. Этот кратковременный первый период гемопоэза носит название мезобластического, или внеэмбрионального, кроветворения.

Второй (печеночный) период начинается после 6 нед и достигает максимума к 5-му месяцу. Наиболее отчетливо выражен эритропоэз и значительно слабее - лейко- и тромбоцитопоэз. Мегалобласты постепенно замещаются эритро-бластами. На 3-4-м месяце эмбриональной жизни в гемопоэз включается селезенка. Наиболее активно как кроветворный орган она функционирует с 5-го по 7-й месяц развития. В ней осуществляется эритроците-, гранулоцито- и мегакарио-цитопоэз. Активный лимфоцитопоэз возникает в селезенке позднее - с конца 7-го месяца внутриутробного развития.

К моменту рождения ребенка прекращается кроветворение в печени, а селезенка утрачивает функцию образования клеток красного ряда, гранулоцитов, мегакариоцитов, сохраняя функцию образования лимфоцитов.

На 4-5-м месяце начинается третий (костномозговой) период кроветворения, который постепенно становится определяющим в продукции форменных элементов крови.

Таким образом, в период внутриутробной жизни плода выделяют 3 периода кроветворения. Однако различные его этапы не строго разграничены, а постепенно сменяют друг друга.

Соответственно различным периодам кроветворения - мезобластическому, печеночному и костномозговому - существует три разных типа гемоглобина: эмбриональный (НЬР), фетальный (HbF) и гемоглобин взрослого (НЬА). Эмбриональный гемоглобин (НЬР) встречается лишь на самых ранних стадиях развития эмбриона. Уже на 8-10-й неделе беременности у плода 90-95% составляет HbF, и в этот же период начинает появляться НЬА (5-10%). При рождении количество фетального гемоглобина вирьирует от 45% до 90%. Постепенно HbF замещается НЬА. К году остается 15% HbF, а к 3 годам количество его не должно превышать 2%. Типы гемоглобина отличаются между собой аминокислотным составом.

Кроветворение во внеутробном периоде. Основным источником образования всех видов клеток крови, кроме лимфоцитов, у новорожденного является костный мозг. В это время и плоские, и трубчатые кости заполнены красным костным мозгом. Однако уже с первого года жизни начинает намечаться частичное превращение красного костного мозга в жировой (желтый), а к 12-15 годам, как и у взрослых, кроветворение сохраняется в костном мозге только плоских костей. Лимфоциты во внеутробной жизни вырабатываются лимфатической системой, к которой относятся лимфатические узлы, селезенка, солитарные фолликулы, групповые лимфатические фолликулы (пейеровы бляшки) кишечника и другие лимфоидные образования.

Моноциты образуются в ретикулоэндотелиальной системе, включающей ретикулярные клетки стромы костного мозга, селезенки, лимфатических узлов, звездчатые ретикулоэндотелиоциты (клетки Купфера) печени и гистиоциты соединительной ткани.

Периоду новорожденности свойственна функциональная лабильность и быстрая истощаемость костного мозга. Под влиянием неблагоприятных воздействий: острых и хронических инфекций, тяжелых анемий и лейкозов - у детей раннего возраста может возникнуть возврат к эмбриональному типу кроветворения.

Регуляция гемопоэза осуществляется под влиянием нервных и гуморальных факторов. Существование прямой связи между нервной системой и органами кроветворения может быть подтверждено наличием иннервации костного мозга.

Постоянство морфологического состава крови является результатом сложного взаимодействия процессов кроветворения, кроворазрушения и кровораспределения.

Кровь новорожденного. Общее количество крови у детей не является постоянной величиной и зависит от массы тела, времени перевязки пуповины, доношенности ребенка. В среднем у новорожденного объем крови составляет около 14,7% его массы тела, т. е. 140-150 мл на 1 кг массы тела, а у взрослого - соответственно 5,0-5,6%, или 50-70 мл/кг.

В периферической крови здорового новорожденного повышено содержание гемоглобина (170-240 г/л) и эритроцитов (5-7-1012 /л), а цветовой показатель колеблется от 0,9 до 1,3. С первых же часов после рождения начинается распад эритроцитов, что клинически обусловливает появление физиологической желтухи.

Эритроциты полихроматофильны, имеют различную величину (анизоцитоз), преобладают макроциты. Диаметр эритроцитов в первые дни жизни составляет 7,9-8,2 мкм (при норме 7,2-7,5 мкм). Ретикулоцитоз в первые дни достигает 22-42°/00 (у взрослых и детей старше 1 мес 6-8°/ж)", встречаются ядерные формы эритроцитов - нормобласты. Минимальная резистентность (осмотическая стойкость) эритроцитов несколько ниже, т. е. гемолиз наступает при больших концентрациях NaCl - 0,48-0,52%, а максимальная - выше 0,24-0,3%. У взрослых и детей школьного и дошкольного возраста минимальная резистентность равна 0,44-0,48%, а максимальная - 0,28-0,36%.

Лейкоцитарная формула у новорожденных имеет особенности. Диапазон колебания общего числа лейкоцитов довольно широкий и составляет 10-30-109 /л. В течение первых часов жизни число их несколько увеличивается, а затем падает и со второй недели жизни держится в пределах 10-12-109 /л.

Нейтрофилез со сдвигом влево до миелоцитов, отмечаемый при рождении (60-50%), начинает быстро снижаться, а число лимфоцитов нарастает, и на 5- 6-й день жизни кривые числа нейтрофилов и лимфоцитов перекрещиваются (первый перекрест). С этого времени лимфоцитоз до 50-60% становится нормальным явлением для детей первых 5 лет жизни.

Большое количество эритроцитов, повышенное содержание в них гемоглобина, наличие большого количества молодых форм эритроцитов указывают на усиленный гемопоэз у новорожденных и связанное с этим поступление в периферическую кровь молодых, еще не созревших форменных элементов. Эти изменения вызваны тем, что гормоны, циркулирующие в крови беременной женщины и стимулирующие ее кроветворный аппарат, переходя в тело плода, повышают работу его кроветворных органов. После рождения поступление в кровь ребенка этих гормонов прекращается, вследствие чего быстро падает количество гемоглобина, эритроцитов, лейкоцитов. Кроме этого, усиленное кроветворение у новорожденных можно объяснить особенностями газообмена - недостаточным снабжением плода кислородом. Для состояния аноксемии характерно увеличение количества эритроцитов, гемоглобина, лейкоцитов. После рождения ребенка устраняется кислородное голодание и продукция эритроцитов уменьшается.

Труднее объяснить увеличение количества лейкоцитов и особенно нейтрофилов в первые часы внеутробной жизни. Возможно, имеет значение разрушение эмбриональных очагов кроветворения в печени, селезенке и поступление из них молодых элементов крови в периферическое кровяное русло. Нельзя исключить влияния на гемопоэз и рассасывания внутритканевых кровоизлияний.

Колебания со стороны остальных элементов белой крови сравнительно невелики. Число кровяных пластинок в период новорожденное™ в среднем составляет 150-400-109 /л. Отмечается их анизоцитоз с наличием гигантских форм пластинок.

Продолжительность кровотечения не изменена и по методу Дюке равна 2-4 мин. Время свертывания крови у новорожденных может быть ускоренным или нормальным, а у детей с выраженной желтухой удлинено. Показатели времени свертывания зависят от используемой методики. Гематокритное число, дающее представление о процентном соотношении между форменными элементами крови и плазмой в первые дни жизни, более высокое, чем у детей старшего возраста, и составляет около 54%. Ретракция кровяного сгустка, характеризующая способность тромбоцитов стягивать волокна фибрина в сгустке, в результате чего объем сгустка уменьшается и из него отжимается сыворотка, составляет 0,3-0,5.

Кровь детей первого года жизни. В этом возрасте продолжается постепенное снижение числа эритроцитов и уровня гемоглобина. К концу 5-6-го месяца наблюдаются наиболее низкие показатели. Гемоглобин снижается до 120-115 г/л, а количество эритроцитов - до 4,5-3,7-1012 /л. Цветовой показатель при этом становится меньше 1. Это явление физиологическое и наблюдается у всех детей. Оно обусловлено быстрым нарастанием массы тела, объема крови, недостаточным поступлением с пищей железа, функциональной несостоятельностью кроветворного аппарата. Макроцитарный анизоцитоз постепенно уменьшается и диаметр эритроцитов становится равным 7,2-7,5 мкм. Полихроматофилия после 2-3 мес не выражена. Величина гематокрита уменьшается параллельно снижению количества эритроцитов и гемоглобина с 54% в первые недели жизни до 36% к концу 5-6-го месяца.

Количество лейкоцитов колеблется в пределах 9-10-109 /л. В лейкоцитарной формуле преобладают лимфоциты.

С начала второго года жизни до пубертатного периода морфологический состав периферической крови ребенка постепенно приобретает черты, характерные для взрослых. В лейкограмме после 3-4 лет выявляется тенденция к умеренному нарастанию числа нейтрофилов и уменьшению количества лимфоцитов. Между пятым и шестым годом жизни наступает 2-й перекрест числа нейтрофилов и лимфоцитов в сторону увеличения количества нейтрофилов.

Следует отметить, что в последние десятилетия выявляется тенденция к снижению количества лейкоцитов у здоровых детей и взрослых до 4,5-5.0109 /л. Возможно, это связано с изменившимися условиями окружающей среды.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека