В какой части уха. Строение и функции наружного, среднего и внутреннего уха

Ухо - орган слуха и равновесия позвоночных животных и человека.
Ухо - периферическая часть слухового анализатора.

В анатомическом отношении в ухе человека различают три отдела.

  • наружное ухо, состоящее из ушной раковины и наружного слухового прохода ;
  • среднее ухо, составленное барабанной полостью и имеющее придатки - евстахиеву трубу и ячейки сосцевидного отростка;
  • внутреннее ухо (лабиринт), состоящее из улитки (часть слуховая), преддверия и полукружных каналов (орган равновесия).

Если присоединить к этому слуховой нерв от периферии до коры височных долей головного мозга, то весь комплекс будет называться слуховым анализатором.

Ушная раковина человека состоит из остова - хряша, покрытого надхрящницей и кожей. Поверхность раковины имеет ряд вдавлений и возвышений.
Мышцы ушной раковины у человека служат для поддержания ушной раковины в ее нормальном положении. Наружный слуховой проход представляет собой слепую трубку (длиной около 2.5см), несколько изогнутую, замкнутую па внутреннем своем конце барабанной перепонкой. У взрос­лого человека наружная треть слухового прохода приходится на долю хрящевой части, а внутренние две трети - костной, входящей в состав височной кости. Стенки наружного слухового прохода выст­ланы кожей, которая в хрящевом его отделе и началь­ной части костного имеет волосы и железы, выделя­ющие вязкий секрет (ушную серу), а также сальные железы.

Ушная раковина:
1 - тре­угольная ямка; г-дарвинов буго­рок; 3 - ладья; 4 - ножка завит­ка; 5 - чаша раковины; 6 - по­лость раковины; 7 -противузавиток;
8 - завиток; 9 - противукозелок; 10 - мочка; 11 - межкозелковая вырезка; 12 -козелок; 13-надкозелковый бугорок; 14-надкозелковая вырезка; 15 - ножки противузавитка.

Барабанная перепонка у взрослого (10 мм в вышину и 9 мм в ширину) полностью изо­лирует наружное ухо от сред­него, то есть от барабанной по­лости. В барабанную перепонку вращена рукоятка молоточка - часть одной из слуховых косточек.

Барабанная полость взрослого имеет объем около 1 см^; выстла­на слизистой оболочкой; верхняя костная стенка ее граничит с полостью черепа, передняя в нижнем отделе переходит в евстахиеву трубу, задняя в верхнем отделе - в углубление, соединяющее барабанную полость с полостью (пещерой) сосце­видного отростка. Барабанная полость содержит воздух. В ней находятся слуховые косточки (моло­точек, наковальня, стремечко) , соединенные суста­вами, а также две мышцы (стременная и натяги­вающая барабанную перепонку) и связки.

На вну­тренней стенке имеют­ся два отверстия; одно из них овальное, закрыто пластинкой стремени, края кото­рой прикреплены к костной раме волок­нистой тканью, допускающей подвижность стремени; другое - круглое, затянуто перепонкой (т. наз. вторичной барабанной).

Евстахиева труба соединяет барабан­ную полость с носоглоткой. Она находится обычно в спавшемся состоянии, при глотании труба откры­вается и через нее проходит воздух в барабанную полость.

Схема строения правого слухового орга­на человека (разрез вдоль наружного слухового прохода) :
1 - ушная раковина; 2 - наружный слуховой проход; 3 - барабанная перепонка; 4- барабанная полость; о- .молоточек;
6 - наковальня; 7-стремечко; 8- евстахиева труба; 9- полукружные каналы; 10 - улитка; 11 - слуховой нерв; 12 - височная кость.

При воспалительных процессах в носо­глотке слизистая оболочка, выстилающая трубу, набухает, просвет трубы закрывается, прекращает­ся поступление воздуха в барабанную полость, что вызывает чувство закладывания уха и понижение слуха.

Позади барабанной полости и наружного слухового прохода находятся ячейки сосцевидного отростка височной кости, сообщающиеся со средним ухом, в норме наполненные воздухом. При гнойном воспалении барабанной полости (см.) воспалительный процесс может перейти на ячейки сосцевидного отростка (мастоидит).

Устройство внутреннего уха очень сложно, поэтому оно и называется лабиринтом.
В нем различают слуховую часть (улитку) , которая имеет форму мор­ской улитки и образует 2 1/2 завитка, и так называемую вести­булярную часть, состоящую из цистерны, или пред­дверия , и трех полукружных каналов , находящихся в трех различных плоскостях. Внутри костного лабиринта заложен перепончатый, выполненный прозрачной жидкостью. Поперек просвета завитка улитки проходит пластинка, способная колебаться, а на ней расположен улитковый, или кортиев орган, содержащий слуховые клетки,- воспринимающая звук часть слухового анализа­тора.

Физиология слуха.

В функциональном отношении уха можно разде­лить на две части:

  • звукопроводящую (раковина, наружный слуховой проход, барабанная перепонка и барабанная полость, лабиринтная жидкость) и
  • звуковоспринимающую (слуховые клетки, окон­чания слухового нерва); к звуковоспринимающему аппарату относится и весь слуховой нерв, централь­ные проводники и часть коры головного мозга.
    Пол­ное поражение звуковоспринимающего аппарата ведет к полной потере слуха на данное уха- глу­хоте, а одного звукопроводящего - лишь к частич­ной (тугоухости).

Ушная раковина в физиологии слуха у человека не играет большой роли, хотя она, видимо, помо­гает ориентации относительно источника звука в пространстве. Наружный слуховой проход является тем основным каналом, по которому идет звук, переда­ваемый через воздух при так наз. воздушной прово­димости; ее может нарушить герметическая заку­порка (напр., ) просвета. В таких случаях звук передается лабиринту главным образом через кости черепа (т. наз. костная передача звука).

Барабанная перепонка , герметически отделяя среднее ухо (барабанную полость) от внешнего мира, защищает его от содержащихся в атмосферном воз­духе бактерий, а также и от охлаждения. В физио­логии слуха барабанная перепонка (так же как и вся связанная с ней слуховая цепь) имеет большое значение для передачи низких, т. е. басовых, зву­ков; при разрушении перепонки или слуховых ко­сточек низкие звуки воспринимаются плохо или же совсем не воспринимаются, средние и высокие слы­шатся удовлетворительно. Воздух, содержащийся в барабанной полости, способствует подвижности цепи слуховых косточек п, кроме того, он сам по себе тоже проводит звук средних и низких тонов непосредственно пластинке стремени, а может быть и вторичной перепонке круглого окна. Мышцы в барабанной полости служат для регулирования натяжения барабанной перепонки и цепи слуховых косточек (приспособление к звукам различного характера) в зависимости от силы звука. Роль овального окна заключается в основной передаче звуковых колебаний лабиринту (его жидкости).

Известную роль в передаче звука играет и сама внутренняя (лабиринтная) стенка среднего уха (ба­рабанной полости).

Через евстахиеву трубу постоян­но возобновляется воздух барабанной полости, чем в ней поддерживается атмосферное давление окружа­ющей среды; воздух этот подвергается постепенному рассасыванию. Кроме того, труба служит для выведения из барабанной полости в носоглотку тех или иных вредных веществ - скопившегося отде­ляемого, случайно попавшей инфекции и т. д. При открытом рте часть звуковых волн достигает барабанной полости по трубе; этим объясняется то, что некоторые тугоухие для того, чтобы лучше слышать, открывают рот.

Громадное значение в физиологии слуха имеет лабиринт. Звуковые волны, идущие через овальное окно и иными путями, передают колебания лабиринтной жидкости преддверия, которая в свою очередь передает их жидкости улитки. Звуковые волны, проходящие через лабиринтную жидкость, вызывают ее колебание, что и раздражает окончания волосков соответствующих слуховых клеток. Это раздражение, передаваясь коре головного вызывает слуховое ощущение.

Преддверие и полукружные каналы уха представляют собой орган чувств, воспринимающий изменения положения головы и тела в пространстве, а также направления движения тела. В результате вращения головы или перемещения всего тела движение жидкости в полукружных каналах, расположенных в трех взаимно-перпендикулярны! плоскостях, отклоняет волоски чувствительных клеток в полукружных каналах и этим вызывает раздражения нервных окончаний; эти раздражения передаются в нервные центры, расположенные в продолговатом мозгу, вызывая рефлексы. Сильные раздражения преддверия и полукружных каналов вестибулярного аппарата (напр., при вращении тела, качке на судах или самолете) вызывают чувство головокружения, побледнение, выступание пота, тошноту, рвоту. Исследование вестибулярного аппарата имеет большое значение при отборе летную и морскую службы.

И морфологи эту структуру называют органелуха и равновесия (organum vestibulo-cochleare). В нем выделяют три отдела:

  • наружное ухо (наружный слуховой проход, ушная раковина с мышцами и связками);
  • среднее ухо (барабанная полость, сосцевид­ные придатки, слуховая труба)
  • (перепон­чатый лабиринт, располагающийся в костном лабиринте внутри пирамиды кости).

1. Наружное ухо концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.

2. В слуховой канал проводит звуковые колебания к барабанной перепонке

3. Барабанная перепонка – это мембрана, которая вибрирует под действием звука.

4. Молоточек своей рукояткой прикреплен к центру барабанной перепонки при помощи связок, а его головка соединяется с наковальней (5), которая, в свою очередь, прикреплена к стремени (6).

Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек.

7. Евстахиева (или слуховая) труба соединяет среднее ухо с носоглоткой. При изменении давления окружающего воздуха давление по обе стороны барабанной перепонки выравнивается через слуховую трубу.

Kортиев орган состоит из ряда чувствительных, снабженных волосками клеток (12), которые покрывают базилярную мембрану (13). Звуковые волны улавливаются волосковыми клетками и преобразуются в электрические импульсы. Далее эти электрические импульсы передаются по слуховому нерву (11) в головной . Слуховой нерв состоит из тысяч тончайших нервных волокон. Каждое волокно начинается от определенного участка улитки и передает определенную звуковую частоту. Низкочастотные звуки, передаются по волокнам, исходящим из верхушки улитки (14), а высокочастотные – по волокнам, связанным с ее основанием. Таким образом, функцией внутреннего уха является преобразование механических колебаний в электрические, так как мозг может воспринимать только электрические сигналы.

Наружное ухо является звукоулавливающим аппаратом. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.

Звуковые колебания улавливаются ушными раковинами (у животных они могут поворачиваться к источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами - так называемый бинауральный слух - имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки - молоточек, наковальня и стремячко, а последнеe через перпонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, - перилимфе.

Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке.

При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения.

Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде - при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

В среднем ухе расположены две мышцы: напрягающая барабанную перепонку и стременная. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Рефлекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды. Этим внутреннее ухо автоматически предохраняется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сработать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).

Внутреннее ухо является звуковоспринимаюшцм аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2.5 спиральных витка. Улитковый канал разделен двумя перегородками основной мембраной и вестибулярной мембраной на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью - пери-лимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимаюший аппарат- Кортиев орган, в котором находятся механорецепторы звуковых колебаний - волосковые клетки.

Основным путем доставки звуков к уху является воздушный. Подошедший звук колеблет барабанную перепонку, и далее через цепь слуховых косточек колебания передаются на овальное окно. Одновременно возникают и колебания воздуха барабанной полости, которые передаются на мембрану круглого окна.

Другим путем доставки звуков к улитке является тканевая или костная проводимость . При этом звук непосредственно действует на поверхность черепа, вызывая его колебания. Костный путь передачи звуков приобретает большое значение, если вибрирующий предмет (например, ножка камертона) соприкасается с черепом, а также при заболеваниях системы среднего уха, когда нарушается передача звуков через цепь слуховых косточек. Кроме воздушного пути, проведения звуковых волн существует тканевый, или костный, путь.

Под влиянием воздушных звуковых колебаний, а также при соприкосновении вибраторов (например, костного телефона или костного камертона) с покровами головы кости черепа приходят в колебание (начинает колебаться и костный лабиринт). На основании последних данных (Бекеши - Bekesy и др.) можно допустить, что звуки, распространяющиеся по костям черепа, только в том случае возбуждают кортиев орган, если они, аналогично воздушным волнам, вызывают выгибание определенного участка основной мембраны.

Способность костей черепа проводить звук объясняет, почему самому человеку его голос, записанный на магнитофонную пленку, при воспроизведении записи кажется чужим, в то время как другие его легко узнают. Дело в том, что магнитофонная запись воспроизводит ваш голос не полностью. Обычно, разговаривая, вы слышите не только те звуки, которые слышат и ваши собеседники (т. е. те звуки, которые воспринимаются благодаря воздушно-жидкостной проводимости), но и те низкочастотные звуки, проводником которых являются кости вашего черепа. Однако слушая магнитофонную запись собственного голоса, вы слышите только то, что можно было записать, - звуки, проводником которых является воздух.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Для него важно и наличие двух симметричных половин на всех уровнях . Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.

Это сложнейший и удивительно точный механизм, позволяющий воспринимать различные звуки. У одних людей очень тонкий слух от природы, который способен улавливать точнейшие интонации и звуки, другим, как говорят, «медведь на ухо наступил». Но как устроено ухо человека ? Вот что пишут исследователи.

Наружное ухо

Слуховой аппарат человека можно разделить на наружное, среднее и внутреннее ухо. Первая часть составляет всё, что мы видим внешне. Наружное ухо состоит из слухового прохода и ушной раковины. Внутренне ушная раковина устроена так, что человек начинает воспринимать различные звуки. Она состоит из особого хряща, который покрыт кожей. Нижняя часть уха у человека имеет небольшую мочку, состоящую из жировой ткани.

Есть мнение, что именно в области наружного уха и ушной раковины расположены биологически активные точки, но точного подтверждения эта теория не нашла. Именно по этой причине считается, что прокалывать уши можно только у грамотного специалиста, который знает координаты. И это ещё одна загадка - как устроено ухо человека. Ведь, согласно японской теории, если найти биологически активные точки и массировать или воздействовать на них при помощи иглоукалывания, то можно даже лечить некоторые болезни.

Наружное ухо – самая ранимая часть этого органа. Она часто травмируется, поэтому за ней нужно регулярно следить и оберегать от вредных воздействий. Ушную раковину можно сравнить с наружной частью колонок. Она принимает звуки, и их дальнейшее преобразование уже происходит в среднем ухе.

Среднее ухо

Оно состоит из барабанной перепонки, молоточка, наковальни и стремечка. Общая площадь составляет около 1 кубического сантиметра. Вы не сможете увидеть наружно, как устроено человеческое ухо среднее без специальных приборов, так как эта область находится под височной костью. Отделяет среднее ухо от наружного барабанная перепонка. Их функция состоит в образовании и преобразовании звуков, как это происходит внутри акустической колонки. Эта область соединяется с носоглоткой при помощи евстахиевой трубы. Если у человека заложен нос, то это неизменно отражается на восприятии звуков. Многие замечают, что слух во время простуды резко ухудшается. И то же самое происходит, если воспалена область среднего уха, особенно при таких болезнях, как гнойный отит. Поэтому важно во время морозов беречь уши, так как это потом на всю жизнь может отразиться на вашем слухе. Благодаря евстахиевой трубе происходит нормализация давления в ухе. Если звук очень сильный, то может произойти её разрыв. Чтобы этого не случилось, специалисты советуют во время очень громких звуков открывать рот. Тогда звуковые волны не полностью попадают в ухо, что частично снижает риск разрыва. Эту область при помощи специальных приборов может увидеть только врач-отоларинголог.

Внутреннее ухо

Как устроено человеческое ухо , которое находится глубоко внутри? Оно напоминает сложный лабиринт. Эта область состоит из височной части и костной. Внешне этот механизм напоминает улитку. При этом височный лабиринт находится внутри костного. В этой области расположен вестибулярный аппарат, и она заполнена специальной жидкостью - эндолимфой. Внутреннее ухо связано с передачей звуков в мозг. Этот же орган позволяет сохранять равновесие. Нарушения в области внутреннего уха могут привести к неадекватной реакции на громкие звуки: начинает болеть голова, тошнота и даже рвота. Различные заболевания мозга, например, менингит, тоже вызывают похожие симптомы.

Гигиена слуха

Чтобы слуховой аппарат прослужил вам как можно дольше, врачи советуют соблюдать следующие правила:

Держать уши в тепле, особенно, когда на улице мороз, а также не ходить в холодную погоду без головного убора. Помните, что в такой ситуации больше всего может пострадать область ушей;

Избегать громких и резких звуков;

Не пытаться чистить уши самостоятельно острыми предметами;

При ухудшении слуха, головной боли при резких звуках и выделениях из ушей следует обратиться к отоларингологу.

Соблюдая эти правила, вы сможете надолго сохранить свой слух. Однако даже при современном развитии медицины ещё не всё известно о том, как устроено ухо человека. Учёные продолжают исследования и постоянно узнают много нового об этом органе слуха.

Поперечный разрез периферического отдела слуховой системы подразделяется на наружное, среднее и внутреннее ухо.

Наружное ухо

Наружное ухо состоит из двух основных компонентов: ушной раковины и наружного слухового прохода. Оно выполняет различные функции. Прежде всего, длинный (2,5 см) и узкий (5-7 мм) наружный слуховой проход выполняет защитную функцию.

Во-вторых, наружное ухо (ушная раковина и наружный слуховой проход) имеют собственную резонансную частоту. Так, наружный слуховой проход у взрослых имеет резонансную частоту, равную приблизительно 2500 Гц, в то время как ушная раковина - равную 5000 Гц. Это обеспечивает усиление поступающих звуков каждой из этих структур на их резонансной частоте до 10-12 дБ. Усиление или увеличение в уровне звукового давления за счет наружного уха может быть продемонстрировано гипотетически экспериментом.

Используя два миниатюрных микрофона, при расположении одного у ушной раковины, а другого - у барабанной перепонки, можно определить этот эффект. При предъявлении чистых тонов различной частоты интенсивностью, равной 70 дБ УЗД (при измерении микрофоном, расположенным у ушной раковины), на уровне барабанной перепонки будут определены уровни.

Так, на частотах ниже 1400 Гц у барабанной перепонки определяется УЗД, равный 73 дБ. Эта величина лишь на 3 дБ выше уровня, измеряемого у ушной раковины. При повышении частоты эффект усиления значительно увеличивается и достигает максимальной величины, равной 17 дБ, на частоте 2500 Гц. Функция отражает роль наружного уха в качестве резонатора или усилителя высокочастотных звуков.

Расчетные изменения звукового давления, создаваемого источником, расположенным в свободном звуковом поле, в месте измерения: ушная раковина, наружный слуховой проход, барабанная перепонка (результирующая кривая) (по Shaw, 1974)


Резонанс наружного уха был определен при расположении источника звука непосредственно перед исследуемым на уровне глаз. При поднимании источника звука над головой завал на частоте 10 кГц смещается в сторону высоких частот, а пик кривой резонанса расширяется и перекрывает больший частотный диапазон. При этом каждая линия отображает различные утлы смещения источника звука. Таким образом, наружное ухо обеспечивает "кодирование" смещения объекта в вертикальной плоскости, выраженное в амплитуде спектра звука и, особенно, на частотах выше 3000 Гц.


Кроме того, четко продемонстрировано, что частотнозависимое повышение УЗД при измерении в свободном звуковом поле и у барабанной перепонки обусловлено в основном эффектами ушной раковины и наружного слухового прохода.

И, наконец, наружное ухо выполняет также локализационную функцию. Расположение ушной раковины обеспечивает наиболее эффективное восприятие звуков от источников, расположенных перед исследуемым. Ослабление же интенсивности звуков, исходящих от источника, расположенного позади испытуемого, и лежит в основе локализации. И, прежде всего, это относится к звукам высоких частот, имеющих короткие длины волн.

Таким образом, к основным функциям наружного уха относятся:
1. защитная;
2. усиление высокочастотных звуков;
3. определение смещения источника звука в вертикальной плоскости;
4. локализация источника звука.

Среднее ухо

Среднее ухо состоит из барабанной полости, клеток сосцевидного отростка, барабанной перепонки, слуховых косточек, слуховой трубы. У человека барабанная перепонка имеет коническую форму с эллиптическими контурами и площадью около 85 мм2 (лишь 55 мм2 из которых подвержены воздействию звуковой волны). Большая часть барабанной перепонки, pars tensa, состоит из радиальных и циркулярных коллагеновых волокон. При этом центральный фиброзный слой является наиболее важным в структурном отношении.

С помощью метода голографии было установлено, что барабанная перепонка колеблется не как единое целое. Ее колебания неравномерно распределены по ее площади. В частности, между частотами 600 и 1500 Гц имеются два выраженных участка максимального смещения (максимальной амплитуды) колебаний. Функциональное значение неравномерного распределения колебаний по поверхности барабанной перепонки продолжает изучаться.

Амплитуда колебаний барабанной перепонки при максимальной интенсивности звука по данным, полученным голографическим методом, равна 2x105 см, в то время как при пороговой интенсивности стимула она равна 104 см (измерения Дж. Бекеши). Колебательные движения барабанной перепонки достаточно сложны и неоднородны. Так, наибольшая амплитуда колебаний при стимуляции тоном частотой 2 кГц имеет место ниже umbo. При стимуляции низкочастотными звуками точка максимального смещения соответствует задневерхнему отделу барабанной перепонки. Характер колебательных движений усложняется при увеличении частоты и интенсивности звука.

Между барабанной перепонкой и внутренним ухом располагаются три косточки: молоточек, наковальня и стремя. Непосредственно с перепонкой соединяется рукоятка молоточка, в то время как головка его находится в контакте с наковальней. Длинный отросток наковальни, а, именно, его лентикулярный отросток, соединяется с головкой стремени. Стремя, самая маленькая косточка у человека, состоит из головки, двух ножек и подножной пластинки, располагающейся в окне преддверия и фиксирующейся в нем при помощи аннулярной связки.

Таким образом, непосредственная связь барабанной перепонки с внутренним ухом осуществляется через цепь трех слуховых косточек. К среднему уху относятся также две мышцы, располагающиеся в барабанной полости: мышца, натягивающая барабанную перепонку (т.tensor tympani) и имеющая длину до 25 мм, и стременная мышца (т.stapedius), длина которой не превышает 6 мм. Сухожилие стременной мышцы прикрепляется к головке стремени.

Отметим, что акустический стимул, достигнувший барабанной перепонки, может передаваться через среднее ухо к внутреннему уху тремя путями: (1) путем костного звукопроведения через кости черепа непосредственно к внутреннему уху, минуя среднее ухо; (2) через воздушное пространство среднего уха и (3) через цепь слуховых косточек. Как будет продемонстрировано ниже, наиболее эффективным является третий путь звукопроведения. Однако, обязательным условием при этом является уравнивание давления в барабанной полости с атмосферным, что и осуществляется при нормальном функционировании среднего уха через слуховую трубу.

У взрослых слуховая труба направлена книзу, что обеспечивает эвакуацию жидкостей из среднего уха в носоглотку. Таким образом, слуховая труба осуществляет две основные функции: во-первых, через нее выравнивается давление воздуха по обе стороны барабанной перепонки, что является обязательным условием для вибрации барабанной перепонки, и, во-вторых, слуховая труба обеспечивает дренажную функцию.

Выше указывалось, что звуковая энергия передается от барабанной перепонки через цепь слуховых косточек (подножную пластинку стремени) к внутреннему уху. Однако, если предположить, что звук передается непосредственно через воздух к жидкостям внутреннего уха, необходимо напомнить о большей величине сопротивления жидкостей внутреннего уха, по сравнению с воздухом. Каково же значение косточек?

Если представить себе двух людей, пытающихся общаться, когда один находится в воде, а другой на берегу, то следует иметь в виду, что порядка 99,9% звуковой энергии будут потеряны. Это означает, что около 99,9% энергии будут поражены и лишь 0,1% звуковой энергии достигнет жидкой среды. Отмеченная потеря соответствует снижению звуковой энергии приблизительно на 30 дБ. Возможные потери компенсируются средним ухом посредством двух следующих механизмов.

Как было отмечено выше, эффективной в плане передачи звуковой энергии является поверхность барабанной перепонки, площадью в 55 мм2. Площадь же подножной пластинки стремени, находящейся в непосредственном контакте с внутренним ухом, составляет около 3,2 мм2. Давление может быть определено как сила, приложенная к единице площади. И, если сила приложенная к барабанной перепонке, равна силе, достигающей подножной пластинки стремени, то давление у подножной пластинки стремени будет больше звукового давления, измеренного у барабанной перепонки.

Это означает, что различие в площадях барабанной перепонки к подножной пластинки стремени обеспечивает усиление давления, измеренного у подножной пластинки, в 17 раз (55/3,2), что в децибелах соответствует 24,6 дБ. Таким образом, если при непосредственной передаче из воздушной среды в жидкостную теряются около 30 дБ, то благодаря различиям в площадях поверхности барабанной перепонки и подножной пластинки стремени отмеченная потеря компенсируется на 25 дБ.

Передаточная функция среднего уха, демонстрирующая увеличение давления в жидкостях внутреннего уха, по сравнению с давлением на барабанную перепонку, на различных частотах, выраженная в дБ (по von Nedzelnitsky, 1980)


Передача энергии от барабанной перепонки к подножной пластинке стремени зависит от функционирования слуховых косточек. Косточки действуют подобно рычажной системе, что, прежде всего, определяется тем, что длина головки и шейки молоточка больше длины длинного отростка наковальни. Эффект же рычажной системы косточек соответствует 1,3. Дополнительное усиление энергии, поступающей к подножной пластинке стремени, обусловливается конической формой барабанной перепонки, что при ее вибрации сопровождается увеличением усилий, приложенных к молоточку, в 2 раза.

Все изложенное выше свидетельствует о том, что энергия, приложенная к барабанной перепонке, при достижении подножной пластинки стремени усиливается в 17x1,3x2=44,2 раза, что соответствует 33 дБ. Однако, безусловно, усиление, имеющее место между барабанной перепонкой и подножной пластинкой, зависит от частоты стимуляции. Так, следует, что на частоте 2500 Гц увеличение давления соответствует 30 дБ и выше. Выше этой частоты коэффициент усиления уменьшается. Кроме того, следует подчеркнуть, что отмеченные выше резонансный диапазон раковины и наружного слухового прохода обусловливают достоверное усиление в широком частотном диапазоне, что весьма существенно для восприятия звуков, подобных речи.

Неотъемлемой частью рычажной системы среднего уха (цепи слуховых косточек) являются мышцы среднего уха, которые, обычно находятся в состоянии натяжения. Однако при предъявлении звука интенсивностью в 80 дБ по отношению к порогу слуховой чувствительности (ПЧ) происходит рефлекторное сокращение стременной мышцы. При этом звуковая энергия, передаваемая через цепь слуховых косточек, ослабляется. Величина этого ослабления составляет 0,6-0,7 дБ на каждый децибел увеличения интенсивности стимула над порогом акустического рефлекса (около 80 дБ ПЧ).

Ослабление составляет от 10 до 30 дБ для громких звуков и более выражено на частотах ниже 2 кГц, т.е. имеет частотную зависимость. Время рефлекторного сокращения (латентный период рефлекса) колеблется от минимальных значений, равных 10 мс, при предъявлении высокоинтенсивных звуков, до 150 мс - при стимуляции звуками относительно низкой интенсивности.

Другой функцией мышц среднего уха является ограничение искажений (нелинейностей). Это обеспечивается как наличием эластических связок слуховых косточек, так и непосредственным сокращением мышц. С анатомических позиций интересно отметить, что мышцы располагаются в узких костных каналах. Это предотвращает вибрацию мышц при стимуляции. В противном случае имели бы место гармонические искажения, которые передавались бы к внутреннему уху.

Движения слуховых косточек неодинаковы на различных частотах и уровнях интенсивности стимуляции. Благодаря размерам головки молоточка и тела наковальни их масса равномерно распределена вдоль оси, проходящей через две большие связки молоточка и короткого отростка наковальни. На средних уровнях интенсивности цепь слуховых косточек движется таким образом, что подножная пластинка стремени совершает колебания вокруг оси, мысленно проведенной вертикально через заднюю ножку стремени, подобно дверям. Передняя часть подножной пластинки входит и выходит из улитки подобно пистону.

Подобные движения возможны благодаря асимметричной длине аннулярной связки стремени. На очень низких частотах (ниже 150 Гц) и на очень высоких интенсивностях характер вращательных движений резко изменяется. Так новая ось вращения становится перпендикулярной отмеченной выше вертикальной оси.

Движения стремени приобретают качательный характер: оно колеблется подобно детским качелям. Это выражается тем, что когда одна половина подножной пластинки погружается в улитку, другая движется в противоположном направлении. В результате этого гасятся перемещения жидкостей внутреннего уха. На очень высоких уровнях интенсивности стимуляции и частотах, превышающих 150 Гц, подножная пластинка стремени осуществляет одновременно вращения вокруг обеих осей.

Благодаря столь сложным ротационным движениям дальнейшее повышение уровня стимуляции сопровождается лишь незначительными движениями жидкостей внутреннего уха. Именно эти сложные движения стремени и защищают внутреннее ухо от чрезмерной стимуляции. Однако в экспериментах на кошках было продемонстрировано, что стремя совершает пистонообразные движения при стимуляции низкими частотами даже при интенсивности 130 дБ УЗД. При 150 дБ УЗД добавляются вращательные движения. Однако, учитывая то, что мы сегодня имеем дело с тугоухостью, обусловленной воздействием производственного шума, можно заключить, что ухо человека не обладает истинно адекватными защитными механизмами.

При изложении основных свойств акустических сигналов в качестве существенной их характеристики был рассмотрен акустический импеданс. Физические свойства акустического сопротивления или импеданса проявляется в полной мере в функционировании среднего уха. Импеданс или акустическое сопротивление среднего уха складывается из компонентов, обусловленных жидкостями, косточками, мышцами и связками среднего уха. Составными частями его являются резистентность (истинное акустическое сопротивление) и реактивность (или реактивное акустическое сопротивление). Основным резистивным компонентом среднего уха является сопротивление, оказываемое жидкостями внутреннего уха подножной пластинке стремени.

Сопротивление, возникающее при смещении подвижных частей, также следует учитывать, однако величина его значительно меньше. Следует помнить, что резистивный компонент импеданса не зависит от частоты стимуляции, в отличие от реактивного компонента. Реактивность определяется двумя составляющими. Первая - это масса структур среднего уха. Она оказывает влияние, прежде всего на высокие частоты, что выражается в увеличении импеданса, обусловленного реактивностью массы при повышении частоты стимуляции. Вторая составляющая - свойства сокращения и растяжения мышц и связок среднего уха.

Когда мы говорим о том, что пружина легко растягивается, мы имеем в виду, что она податлива. Если же пружина растягивается с трудом, мы говорим о ее жесткости. Эти характеристики вносят наибольший вклад при низких частотах стимуляции (ниже 1 кГц). На средних частотах (1-2 кГц) оба реактивных компонента подавляют друг друга, и в импедансе среднего уха преобладает резистивный компонент.

Одним из способов измерения импеданса среднего уха является использование электроакустического моста. Если система среднего уха достаточно жестка, давление, в полости будет выше, чем при высокой податливости структур (когда звук абсорбируется барабанной перепонкой). Таким образом, звуковое давление, измеренное при помощи микрофона, может быть использовано для изучения свойств среднего уха. Часто импеданс среднего уха, измеренный при помощи электроакустического моста, выражается в единицах податливости. Это объясняется тем, что импеданс, как правило, измеряется на низких частотах (220 Гц), и в большинстве случаев измеряются лишь свойства сокращения и растяжения мышц и связок среднего уха. Итак, чем выше податливость, тем меньше импеданс и тем легче работает система.

При сокращении мышц среднего уха вся система становится менее податливой (т.е. более жесткой). С эволюционных позиций нет ничего странного в том, что при выходе из воды на сушу для нивелирования различий в сопротивлении жидкостей и структур внутреннего уха и воздушных полостей среднего уха эволюция предусмотрела передаточное звено, а именно цепь слуховых косточек. Однако, какими же путями передается звуковая энергия к внутреннему уху при отсутствии слуховых косточек?

Прежде всего, внутреннее ухо стимулируется непосредственно вибрациями воздуха в полости среднего уха. И опять-таки, из-за больших различий в импедансе жидкостей и структур внутреннего уха и воздуха жидкости смещаются лишь незначительно. Кроме того, при непосредственной стимуляции внутреннего уха посредством изменений звукового давления в среднем ухе, имеет место дополнительное ослабление передаваемой энергии за счет того, что одновременно задействуются оба входа к внутреннему уху (окно преддверия и окно улитки), а на некоторых частотах звуковое давление передается также и в фазе.

Учитывая то, что окно улитки и окно преддверия расположены по разные стороны от основной мембраны, положительное давление, приложенное к мембране окна улитки, будет сопровождаться отклонением основной мембраны в одну сторону, а давление, приложенное к подножной пластинке стремени - отклонением основной мембраны в противоположную сторону. При приложении к обоим окнам одновременно одинакового давления основная мембрана не будет перемещаться, что само по себе исключает восприятие звуков.

Снижение слуха, равное 60 дБ, часто определяется у больных, у которых отсутствуют слуховые косточки. Таким образом, следующей функцией среднего уха является обеспечение пути передачи стимула к овальному окну преддверия, что, в свою очередь, обеспечивает смещения мембраны окна улитки, соответствующие колебаниям давления во внутреннем ухе.

Другим путем стимуляции внутреннего уха является костное проведение звука, при котором изменения акустического давления вызывают вибрации костей черепа (прежде всего височной кости), и эти вибрации передаются непосредственно к жидкостям внутреннего уха. Из-за колоссальных различий в импедансе костей и воздуха стимуляция внутреннего уха за счет костного проведения не может рассматриваться как важная составляющая часть нормального слухового восприятия. Однако, если источник вибраций прикладывается непосредственно к черепу, внутренне ухо стимулируется за счет проведения звуков через кости черепа.

Различия в импедансе костей и жидкостей внутреннего уха весьма незначительны, что способствует частичной передаче звука. Измерение слухового восприятия при костном проведении звуков имеет большое практическое значение при патологии среднего уха.

Внутреннее ухо

Прогресс в изучении анатомии внутреннего уха определился развитием методов микроскопии и, в частности, трансмиссионной и сканирующей электронной микроскопии.


Внутреннее ухо млекопитающих состоит из ряда мембранозных мешков и протоков (формирующих мембранозный лабиринт), заключенных в костную капсулу (костный лабиринт), расположенную, в свою очередь, в твердой височной кости. Костный лабиринт подразделяется на три основные части: полукружные каналы, преддверие и улитку. В двух первых образованиях расположена периферическая часть вестибулярного анализатора, в улитке же расположен периферический отдел слухового анализатора.

Улитка у человека имеет 2 3/4 завитка. Самый большой завиток - это основной завиток, самый маленький - верхушечный завиток. К структурам внутреннего уха также относятся овальное окно, в котором расположена подножная пластинка стремени, и круглое окно. Улитка слепо заканчивается в третьем завитке. Центральная ось ее называется модиолюсом.

Поперечный разрез улитки, из которого следует, что улитка подразделена на три отдела: лестницу преддверия, а также барабанную и срединную лестницы. Спиральный канал улитки имеет длину 35 мм и частично разделяется по всему длиннику тонкой костной спиральной пластинкой, отходящей от модиолюса (osseus spiralis lamina). Продолжает ее, основная мембрана (membrana basilaris) соединяющаяся с наружной костной стенкой улитки у спиральной связки, завершая тем самым разделение канала (за исключением небольшого отверстия у верхушки улитки, называемого helicotrema).

Лестница преддверия простирается от овального окна, расположенного в преддверии, до helicotrema. Барабанная лестница простирается от круглого окна и также до helicotrema. Спиральная связка, являясь соединяющим звеном между основной мембраной и костной стенкой улитки, поддерживает в то же время и сосудистую полоску. Большая часть спиральной связки состоит из редких фиброзных соединений, кровеносных сосудов и клеток соединительной ткани (фиброцитов). Зоны же, расположенные вблизи от спиральной связки и спирального выступа, включают больше клеточных структур, а также большие митохондрии. Спиральный выступ отделяется от эндолимфатического пространства слоем эпителиальных клеток.


От костной спиральной пластинки кверху в диагональном направлении отходит тонкая Рейсснерова мембрана, прикрепляемая к наружной стенке улитки несколько выше основной мембраны. Она простирается вдоль всего хтинника улитки и соединяется с основной мембраной у helicotrema. Таким образом, формируется улитковый ход (ductus cochlearis) или, срединная лестница, ограниченный сверху Рейсснеровой мембраной, снизу -основной мембраной, и снаружи - сосудистой полоской.

Сосудистая полоска - это основная сосудистая зона улитки. Она имеет три основных слоя: маргинальный слой темных клеток (хромофилы), средний слой светлых клеток (хромофобы), а также основной слой. В пределах этих слоев проходит сеть артериол. Поверхностный слой полоски формируется исключительно из больших маргинальных клеток, которые содержат множество митохондрий и ядра которых расположены вблизи к эндолимфатической поверхности.

Маргинальные клетки составляют основную часть сосудистой полоски. Они имеют пальцеобразные отростки, обеспечивающие тесную связь с аналогичными отростками клеток срединного слоя. Базальные клетки прикрепляются к спиральной связке имеют плоскую форму и длинные отростки, проникающие в маргинальный и срединный слои. Цитоплазма базальных клеток аналогична цитоплазме фиброцитов спиральной связки.

Кровоснабжение сосудистой полоски осуществляется спиральной модиолярной артерией через сосуды, проходящие через лестницу преддверия к латеральной стенке улитки. Собирающие венулы, расположенные в стенке барабанной лестницы, направляют кровь в спиральную модиолярную вену. Сосудистая полоска осуществляет основной метаболический контроль улитки.

Барабанная лестница и лестница преддверия содержат жидкость, называемую перилимфой, в то время как срединная лестница содержит эндолимфу. Ионный состав эндолимфы соответствует составу, определяемому внутри клетки, и характеризуется высоким содержанием калия и низкой концентрацией натрия. Например, у человека концентрация Na равна 16 мМ; К - 144,2 мМ; Сl -114 мэкв/л. Перилимфа, наоборот, содержит высокие концентрации натрия и низкие концентрации калия (у человека Na - 138 мМ, К- 10,7 мМ, Сl - 118,5 мэкв/л) что по составу соответствует экстрацеллюлярной или спинномозговой жидкостям. Поддержание отмеченных различий в ионном составе эндо- и перилимфы обеспечивается наличием в мембранозном лабиринте эпителиальных пластов, имеющих множество плотных, герметичных соединений.


Большая часть основной мембраны состоит из радиальных волокон диаметром 18-25 мкм, формирующих компактный однородный слой, заключенный в гомогенную основную субстанцию. Структура основной мембраны существенно отличается от основания улитки к верхушке. У основания - волокна и покровный слой (со стороны барабанной лестницы) расположены более часто, по сравнению с верхушкой. Кроме того, в то время как костная капсула улитки уменьшается по направлению к верхушке, основная мембрана при этом расширяется.

Так у основания улитки основная мембрана имеет ширину 0,16 мм, в то время как у helicotrema ширина ее достигает 0,52 мм. Отмеченный структурный фактор лежит в основе градиента жесткости вдоль длинника улитки, определяющий распространение бегущей волны и способствующий пассивной механической настройке основной мембраны.


Поперечные разрезы органа Корти у основания (а) и верхушки (б) свидетельствуют о различиях в ширине и толщине основной мембраны, (в) и (г) - сканирующие электронные микрофотограммы основной мембраны (вид со стороны барабанной лестницы) у основания и верхушки улитки (д). Суммарные физические характеристики основной мембраны человека


Измерение различных характеристик основной мембраны легло в основу модели мембраны, предложенной Бекеши, описавшего в своей гипотезе слухового восприятия сложный паттерн ее движений. Из его гипотезы следует, что основная мембрана человека представляет собой толстый слой плотно расположенных волокон длиной порядка 34 мм, направленных от основания к helicotrema. Основная мембрана у верхушки шире, более мягкая и без какого-либо натяжения. Базальный конец ее уже, более жесткий, чем апикальный, может находиться в состоянии некоторого натяжения. Перечисленные факты представляют определенный интерес при рассмотрении вибраторных характеристик мембраны в ответ на акустическую стимуляцию.



ВВК- внутренние волосковые клетки; НВК - наружные волосковые клетки; НСК, ВСК - наружные и внутренние столбовые клетки; ТК - туннель Корти; ОС - основная мембрана; ТС - тимпанальный слой клеток ниже основной мембраны; Д, Г - опорные клетки Дейтерса и Гензена; ПМ - покровная мембрана; ПГ - полоска Гензена; КВБ - клетки внутренней бороздки; РВТ-радиальное нервное волокно туннеля


Таким образом, градиент жесткости основной мембраны обусловлен различиями в ширине ее, которая увеличивается по направлению к верхушке, толщине, которая уменьшается по направлению к верхушке, и анатомическим строением мембраны. Справа представлена базальная часть мембраны, слева -верхушечная. На сканирующих электронномикрограммах продемонстрирована структура основной мембраны со стороны барабанной лестницы. Четко определяются отличия в толщине и частоте расположения радиальных волокон между основанием и верхушкой.

В срединной лестнице на основной мембране расположен орган Корти. Наружные и внутренние столбовые клетки формируют внутренний туннель Корти, заполненный жидкостью, называемой кортилимфой. Кнутри от внутренних столбов располагается один ряд внутренних волосковых клеток (ВВК), а кнаружи от наружных столбов - три ряда клеток меньшего размера, называемых наружными волосковыми клетками (НВК), и опорные клетки.

,
иллюстрирующая опорную структуру органа Корти, состоящую из клеток Дейтерса (д) и их фалангеальных отростков (ФО) (опорная система наружного третьего ряда НВК (НВКЗ)). Фалангеальные отростки, отходящие от верхушки клеток Дейтерса, формируют часть ретикулярной пластинки у верхушки волосковых клеток. Стереоцилии (Сц) располагаются над ретикулярной пластинкой (по I.Hunter-Duvar)


Клетки Дейтерса и Гензена поддерживают НВК сбоку; аналогичную функцию, но по отношению к ВВК, выполняют пограничные клетки внутренней бороздки. Второй тип фиксации волосковых клеток осуществляется ретикулярной пластинкой, которая удерживает верхние концы волосковых клеток, обеспечивая их ориентацию. Наконец, третий тип осуществляется также клетками Дейтерса, но расположенными ниже волосковых клеток: одна клетка Дейтерса приходится на одну волосковую клетку.

Верхний конец цилиндрической клетки Дейтерса имеет чашеобразную поверхность, на которой и располагается волосковая клетка. От этой же поверхности отходит к поверхности органа Корти тонкий отросток, формирующий фалангеальный отросток и часть ретикулярной пластинки. Эти клетки Дейтерса и фалангеальные отростки и формируют основной вертикальный опорный механизм для волосковых клеток.

А. Трансмиссионная электрономикрофотограмма ВВК. Стереоцилии (Сц) ВВК проецируются в срединную лестницу (СЛ), а их основание погружено в кутикулярную пластинку (КП). Н - ядро ВВК, ВСП - нервные волокна внутреннего спирального узла; ВСК, НСК - внутренние и наружные столбовые клетки туннеля Корти (ТК); НО - нервные окончания; ОМ - основная мембрана
Б. Трансмиссионная электрономикрофотограмма НВК. Определяется четкое различие в форме НВК и ВВК. НВК располагается на углубленной поверхности клетки Дейтерса (Д). У основания НВК определяются эфферентные нервные волокна (Э). Пространство между НВК называется Нуэлевым пространством (НП) В пределах его определяются фалангеальные отростки (ФО)


Форма НВК и ВВК существенно отличается. Верхняя поверхность каждой ВВК покрыта кутикулярной мембраной, в которую погружены стереоцилии. Каждая ВВК имеет около 40 волосков, выстроенных в два или более рядов U-образной формы.

Свободным от кутикулярной пластинки остается лишь небольшой участок поверхности клетки, где и располагается базальное тело или измененная киноцилия. Базальное тело расположено у наружного края ВВК, в удалении от модиолюса.

Верхняя поверхность НВК содержит около 150 стереоцилий, расположенных в трех или более рядах V- или W-образной формы на каждой НВК.


Четко определяются один ряд ВВК и три ряда НВК. Между НВК и ВВК видны головки внутренних столбовых клеток (ВСК). Между верхушками рядов НВК определяются верхушки фалангеальных отростков (ФО). Опорные клетки Дейтерса (Д) и Гензена (Г) располагаются у наружного края. W-образная ориентация ресничек НВК наклонена по отношению к ВВК. При этом наклон различен для каждого ряда НВК (по I.Hunter-Duvar)


Верхушки самых длинных волосков НВК (в ряду, удаленном от модиолюса) находятся в контакте с гелеобразной покровной мембраной, которая может быть описана как бесклеточный матрикс, состоящий из золокон, фибрилл и гомогенной субстанции. Она простирается от спирального выступа к наружному краю ретикулярной пластинки. Толщина покровной мембраны увеличивается от основания улитки к верхушке.

Основная часть мембраны состоит из волокон диаметром 10-13 нм, исходящих от внутренней зоны и идущих под углом 30° к верхушечному завитку улитки. По направлению к наружным краям покровной мембраны волокна распространяются в продольном направлении. Средняя длина стереоцилий зависит от положения НВК вдоль длинника улитки. Так, у верхушки их длина достигает 8 мкм, в то время как у основания - не превышает 2 мкм.

Количество же стереоцилий уменьшается по направлению от основания к верхушке. Каждая стереоцилия имеет форму булавы, которая расширяется от основания (у кутикулярной пластинки - 130 нм) к верхушке (320 нм). Между стереоцилиями существует мощная сеть перекрестов, таким образом, большое количество горизонтальных соединений связывают стереоцилии, расположенные как в одном и том же, так и в разных рядах НВК (латерально и ниже верхушки). Кроме того, от верхушки более короткой стереоцилии НВК отходит тонкий отросток, соединяющийся с более длинной стереоцилией следующего ряда НВК.


ПС - перекрестные соединения; КП - кутикулярная пластинка; С - соединение в пределах ряда; К - корень; Сц - стереоцилия; ПМ - покровная мембрана


Каждая стереоцилия покрыта тонкой плазматической мембраной, под которой расположен цилиндрический конус, содержащий длинные волокна, направленные вдоль длинника волоска. Эти волокна состоят из актина и других структурных протеинов, находящихся в кристаллообразном состоянии и придающих ригидность стереоцилиям.

Я.А. Альтман, Г. А. Таварткиладзе

Слуховая сенсорная система человека воспринимает и различает огромный диапазон звуков. Их разнообразие и богатство служит для нас как источником информации о происходящих событиях окружающей действительности, так и важным фактором, влияющим на эмоциональное и психическое состояние нашего организма. В данной статье мы рассмотрим анатомию уха человека, а также особенности функционирования периферического отдела слухового анализатора.

Механизм различения звуковых колебаний

Ученые установили, что восприятие звука, который, по сути, является колебаниями воздуха в слуховом анализаторе, трансформируется в процесс возбуждения. Ответственной за ощущение звуковых раздражителей в слуховом анализаторе является периферическая его часть, содержащая рецепторы и входящая в состав уха. Она воспринимает амплитуду колебаний, называемую звуковым давлением, в интервале от 16 Гц до 20 кГц. В нашем организме слуховой анализатор выполняет еще и такую важнейшую роль, как участие в работе системы, ответственной за развитие членораздельной речи и всей психоэмоциональной сферы. Вначале ознакомимся с общим планом строения органа слуха.

Отделы периферической части слухового анализатора

Анатомия уха выделяет три структуры, называемые наружным, средним и внутренним ухом. Каждая из них выполняет специфические функции, не только взаимосвязанные между собой, но и все вместе осуществляющие процессы приема звуковых сигналов, их преобразования в нервные импульсы. По слуховым нервам они передаются в височную долю коры головного мозга, где происходит трансформация звуковых волн в форму разнообразных звуков: музыку, пение птиц, шум морского прибоя. В процессе филогенеза биологического вида "Человек разумный" орган слуха сыграл важнейшую роль, так как обеспечил проявление такого феномена, как человеческая речь. Отделы органа слуха сформировались в ходе эмбрионального развития человека из наружного зародышевого листка - эктодермы.

Наружное ухо

Эта часть периферического отдела улавливает и направляет колебания воздуха к барабанной перепонке. Анатомия наружного уха представлена хрящевой раковиной и наружным слуховым проходом. Как это выглядит? Внешняя форма ушной раковины имеет характерные изгибы - завитки, и сильно отличается у разных людей. На одном из них может находиться Дарвинов бугорок. Он считается рудиментарным органом, и по происхождению гомологичен заостренному верхнему краю уха млекопитающих, особенно приматов. Нижняя часть называется мочкой и представляет собой соединительную ткань, покрытую кожей.

Слуховой проход - структура наружного уха

Далее. Слуховой проход - это трубка, состоящая из хрящевой и частично из костной ткани. Она покрыта эпителием, содержащим видоизмененные потовые железы, выделяющие серу, которая увлажняет и обеззараживает полость прохода. Мышцы ушной раковины у большинства людей атрофированы, в отличие от млекопитающих, чьи уши активно реагируют на внешние звуковые раздражители. Патологии нарушения анатомии строения уха фиксируются в ранний период развития жаберных дуг человеческого эмбриона и могут иметь вид расщепления мочки, сужения наружного слухового прохода или агенезии - полного отсутствия ушной раковины.

Полость среднего уха

Слуховой проход заканчивается эластичной пленкой, отделяющей наружное ухо от средней его части. Это - барабанная перепонка. Она принимает звуковые волны и начинает колебаться, что вызывает аналогичные движения слуховых косточек - молоточка, наковальни и стремечка, расположенных в среднем ухе, в глубине височной кости. Молоточек своей рукояткой присоединен к барабанной перепонке, а головкой связан с наковальней. Она, в свою очередь, своим длинным концом смыкается со стремечком, а оно прикрепляется к окошку преддверия, за которым находится внутреннее ухо. Все очень просто. Анатомия ушей выявила, что к длинному отростку молоточка присоединяется мышца, уменьшающая натяжение барабанной перепонки. А к короткой части этой слуховой косточки прикрепляется так называемый "антагонист". Особая мышца.

Евстахиева труба

С глоткой среднее ухо соединяется посредством канала, названного в честь ученого, описавшего его строение, - Бартоломео Эустахио. Труба служит приспособлением, выравнивающим давление атмосферного воздуха на барабанную перепонку с двух сторон: от наружного слухового прохода и полости среднего уха. Это необходимо для того, чтобы колебания барабанной перепонки без искажений передавались жидкости перепончатого лабиринта внутреннего уха. Евстахиева труба неоднородна по своему гистологическому строению. Анатомия ушей выявила, что она содержит не только костную часть. Также и хрящевую. Опускаясь вниз от полости среднего уха, труба заканчивается глоточным отверстием, располагающимся на латеральной поверхности носоглотки. Во время глотания мышечные фибриллы, прикрепленные к хрящевому отделу трубы, сокращаются, ее просвет расширяется, и порция воздуха входит в барабанную полость. Давление на перепонку в этот момент становится одинаковым с обеих ее сторон. Вокруг глоточного отверстия находится участок лимфоидной ткани, образующий узлы. Он называется миндалиной Герлаха и входит в состав иммунной системы.

Особенности анатомии внутреннего уха

Эта часть периферического отдела слуховой сенсорной системы расположена в глубине височной кости. Она состоит из полукружных каналов, относящихся к органу равновесия и костного лабиринта. Последняя структура содержит улитку, внутри которой расположен кортиев орган, являющийся звуковоспринимающей системой. По ходу спирали улитка разделена тонкой вестибулярной пластинкой и более плотной основной мембраной. Обе перепонки разделяют улитку на каналы: нижний, средний и верхний. У ее широкого основания верхний канал начинается овальным окном, а нижний закрыт круглым окном. Оба они заполнены жидким содержимым - перилимфой. Ее считают видоизмененным ликвором - веществом, заполняющим спинномозговой канал. Эндолимфа - еще одна жидкость, заполняющая каналы улитки и скапливающаяся в полости, где расположены нервные окончания органа равновесия. Продолжим изучать анатомию ушей и рассмотрим те части слухового анализатора, которые отвечают за перекодировку звуковых колебаний в процесс возбуждения.

Значение кортиева органа

Внутри улитки находится перепончатая стенка, называемая основной мембраной, на которой располагается скопление клеток двух типов. Одни выполняют функцию опоры, другие являются сенсорными - волосковыми. Они воспринимают колебания перилимфы, преобразуют их в нервные импульсы и передают далее чувствительным волокнам преддверноулиткового (слухового) нерва. Далее возбуждение достигает коркового центра слуха, находящегося в височной доле головного мозга. В ней происходит различение звуковых сигналов. Клиническая анатомия уха подтверждает тот факт, что для определения направления звука важно то, что мы слышим двумя ушами. Если звуковые колебания достигают их одновременно, человек воспринимает звук спереди и сзади. А если волны придут в одно ухо раньше, чем в другое, то восприятие происходит справа или слева.

Теории звукового восприятия

На сегодняшний момент нет единого мнения о том, как именно функционирует система, анализирующая звуковые вибрации и переводящая их в форму звуковых образов. Анатомия строения уха человека выделяет следующие научные представления. Например, резонансная теория Гельмгольца утверждает, что основная мембрана улитки функционирует как резонатор и способна раскладывать сложные колебания на более простые компоненты, так как ее ширина неодинакова на верхушке и у основания. Поэтому при появлении звуков происходит резонанс, как в струнном инструменте - арфе или рояле.

Другая теория объясняет процесс появления звуков тем, что в жидкости улитки возникает бегущая волна как ответ на колебания эндолимфы. Вибрирующие волокна основной мембраны входят в резонанс с конкретной частотой колебаний, в волосковых клетках возникают нервные импульсы. Они поступают по слуховым нервам в височную часть коры головного мозга, где и происходит конечный анализ звуков. Все предельно просто. Обе эти теории звукового восприятия базируются на знаниях анатомии уха человека.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека