В чем истинное значение крови для организма человека? Кровь, ее значение, состав и общие свойства. Крупы и зерновые

Еще с незапамятных времен люди поняли, какое важное значение для организма имеет кровь. Они не знали ни законов ее движения, ни состава, но неоднократно наблюдали, что раненое животное или человек, потерявшие много крови, умирали. Жизнь покидала их вместе с вытекавшей из организма кровью.

Эти наблюдения привели людей к мысли, что именно в крови заключается жизненная сила.

Многие века истинное значение крови для организма, ее состав, законы, по которым совершается кровообращение, оставались загадкой. Изучать процесс кровообращения ученые начали с давних времен. Но им приходилось скрывать свои исследования, так как за смелые попытки раскрыть тайны природы всемогущая в те времена церковь жестоко карала. Многие замечательные ученые были заточены в тюрьмы и сожжены на кострах. Но вот миновало мрачное средневековье. Наступила эпоха Возрождения, освободившая науку от церковного гнета. XVII век дал человечеству два замечательных открытия: англичанин Уильям Гарвей (1578- 1657) открыл законы кровообращения, а голландец Антони ван Левенгук (1632-1729) создал микроскоп, позволивший изучать строение всех тканей человеческого организма и клеточный состав самой удивительной ткани - крови. В это время и возникла наука о крови - гематология.

Однако подлинный прогресс гематологии начался с XIX в.; тогда многие ученые за границей и в России занялись изучением состава, свойств и роли крови в жизнедеятельности организма.

Ученые выяснили, что через стенки тончайших кровеносных сосудов - капилляров кровь снабжает все ткани и клетки организма кислородом, водой, питательными веществами, солями и витаминами. Вместе с тем кровь уносит из тканей вредные продукты, образовавшиеся в процессе обмена веществ: углекислоту, аммиак, мочевину, мочевую кислоту и другие продукты распада. Наружу они выводятся через легкие, почки и кожу.

Благодаря своей подвижности кровь поддерживает постоянную связь между всеми органами и тканями человеческого тела, а содержащиеся в ней химические вещества, главным образом гормоны (см. ст. «»), осуществляют их взаимное влияние друг на друга.

Что же такое кровь и каковы ее свойства?

Кровь - это особая жидкая ткань красного цвета, слабощелочной реакции, постоянно движущаяся по кровеносным сосудам живого организма. Взрослый человек имеет около 5-6 л крови.

Если взятую у человека кровь поместить в сухую пробирку и, предохранив от свертывания, дать отстояться, то она разделится на два слоя. Сверху будет слой, состоящий из прозрачной светло-желтой жидкости - плазмы (около 60% объема крови), а снизу - осадок из клеток крови.

В плазму крови входит множество простых и сложных веществ. 90% плазмы составляет вода и только 10% ее приходится на сухой остаток. Но как разнообразен его состав! Здесь и сложнейшие белки (альбумины, глобулины и фибриноген), жиры и углеводы, металлы и галоиды - все элементы таблицы Менделеева, соли, щелочи и кислоты, различные газы, витамины, ферменты, гормоны и пр. Любое вещество органической или неорганической природы в больших, меньших или мельчайших количествах содержится в плазме крови и имеет строго определенное и чрезвычайно важное значение.

На вопрос, что такое кровь человека наверняка ответит каждый, однако большинство респондентов озвучат свой ответ общими фразами, так как не имеют достаточных знаний о внутренней среде. Ответы, как правило, сводятся к избитым, банальным выражениям, а, между тем, предмет, раскрывающий значение крови для человека увлекателен и обширен. Для многих изучение реологических свойств кровяной жидкости представляет наибольший интерес из всех дисциплин, связанных с медициной. Поэтому есть смысл подробней остановиться на данном вопросе и раскрыть его главную суть, в чем истинное значение крови для организма человека.

Человек во все времена позиционировал кровь с чем-то магическим, придавал ей волшебные свойства, наделял властью над людьми. Жидкую подвижную соединительную ткань внутренней среды организма использовали для колдовства, с ее помощью насылали проклятья, излечивали, ворожили – одним словом кровь для древних людей была не просто жидкостью. Ее боготворили, пили в знак единения и согласия. Отчасти для древних она являлась таковой из-за отсутствия знаний. Многие тысячелетия ее состав был тайной за семью печатями.

Долгое время лекари средневековья не могли понять причин смерти своих пациентов, когда лечили их с помощью переливаний крови. Для одних трансфузия оказывалась спасительной, для других – источником смерти. Поэтому данная лечебная процедура связывалась с высокими рисками. Только на заре 20 века стало известно, почему кровь одного человека может не подойти другому.

Открытием групп крови человечество обязано австрийскому врачу Карлу Ландштейнеру. В 1900 году он систематизировал ее состав и обозначил каждую группу как — «A», «B», и «C». Двумя годами позже адепты западноевропейского врача А Штурли и А Декастелло сформулировали на практике четвертую группу «AB». Эти без преувеличения грандиозные события послужили толчком к новым, еще более лавинообразным открытиям в изучении свойств крови.


Так, были сделаны первые шаги на пути к пониманию системы «AB0», проведены исследования в области свертываемости крови, ее консервирования и хранения. В наши дни состав крови человека фактически не имеет тайн, однако знать о ней подробно обязан каждый уважающий себя врач. Сегодня для многих людей помимо ее свойств, представляют интерес различные теории относительно качеств кровяной жидкости. Так, согласно одной из последних, у человечества сначала была всего одна группа крови – первая.

Вопрос о четвертой группе

Ее обладатели – это первобытные охотники. Они питались мясом, рыбой, кореньями, ягодами. С течением времени, человек научился возделывать почву, сеять культуры, убирать урожай. Так появились обладатели второй группы крови – земледельцы. Расселение породило новую формацию — кочевников. Они не обживали пристанища и фактически все время находились в пути. В их жилах текла третья группа крови. Образование четвертой группы – окутано мраком. Согласно двум основным теориям, она появилась несколько тысячелетий назад, однако, что послужило толчком — не ясно до сих пор. Имеет значение напомнить самые популярные из них.

  1. Состав крови четвертой группы сформировался вследствие смешения рас (переселение народов, смешанные браки и т.д.).
  2. Она появилась в результате поражения людей вирусными или инфекционными заболеваниями.

В любом случае, четвертую группу крови считают самой молодой из всех открытых. Сегодня о внутренней соединительной жидкой среде организма человека известно фактически все. Отброшены в скрижали истории, все домыслы и волшебные свойства кровяной жидкости, давно сформулированы и определены механизмы, вещества крови, ее состав. Однако в Японии, например, до сих пор существует правило, согласно которому, кандидату на освободившуюся должность могут отказать только лишь потому, что он не подходит для нее по группе крови.


К счастью, наши работодатели избавлены от нетипичных предрассудков. И все же. В чем ее значение для человека, для организма? По признанию многих врачей, состав кровяной жидкости универсален. И действительно, в ней нет ничего лишнего. И самое главное – она служит лакмусовой бумажкой для определения развития любых патологических процессов – в особенности сложных и опасных. Обычный анализ наподобие открытой книги может рассказать врачу о состоянии здоровья человека, стоит только доктору взглянуть на заполненный лаборантом бланк, где отражен состав крови.

Зачем нужны тромбоциты

Главное ее предназначение – это обеспечивать всем необходимым клеточную структуру организма и защищать процессы жизнедеятельности. Жидкая соединительная ткань непрерывным потоком доставляет во все органы тела питательные вещества, в числе которых кислород, необходимый элемент для жизни человека. Обратно кровь забирает продукты метаболизма:

Путем химических реакций они распадаются на простые вещества и выводятся наружу с помощью ЖТК, мочеполовой системы, потовых желез и легких. Постоянное совершенствование знаний о крови помогает врачам глубже проникать в тайны сложных и опасных заболеваний, а соответственно, эффективней их лечить. Если взглянуть на внутреннюю жидкую среду под микроскопом, можно увидеть много интересного. Плазма, как еще называют кровь, «наполнена жизнью». В ней бесконечным потоком циркулируют клеточные элементы: тромбоциты, лейкоциты, эритроциты. С первого взгляда на ум приходит мысль, что это движение хаотично, но, если знать о крови достаточно, приходишь к выводу – этот процесс упорядочен и имеет свою структуру.



Состав крови не имеет лишних элементов. Например, тромбоциты (кровяные пластинки) обеспечивают прочность стенок сосудов. В сравнении с другими клетками, содержащимися в крови они самые маленькие, но роль, которая им отведена, не может не восхищать. При малейшей царапине, они «лягут костьми», чтобы предотвратить обильное кровотечение, то есть сразу образуют тромбозную пробку. Именно эти отважные белки все мы видим, когда кровь на глазах начинает сворачиваться.

Не менее интересна работа гемостаза в организме — баланса, который поддерживает функциональность тромбоцитов. Он не позволяет им свернуться в кровяном русле и одновременно активизирует процессы при малейшей травме.

Другая функция тромбоцитов, обеспечивать рабочее состояние внутренних поверхностей сосудов и по мере надобности лечить и питать их. То есть, их значение для организма трудно переоценить. У здорового человека их насчитывается 200-400 х10 9 /л. Меньше всего у новорожденных 100-400 х10 9 /л.

Поставщики кислорода

Как уже было сказано, состав крови универсален и эритроциты лишний раз доказывают справедливое утверждение. Эти дискообразные клетки вогнутой формы с двух сторон играют ключевую роль в жизни каждого из нас. Они питают клетки кислородом и забирают углекислый газ. То есть без них, человек просто не смог бы жить. Эритроцитов в крови больше всего. На один кубический миллилитр приходится пять миллионов красных телец. Несложно догадаться, какое значение эритроцитов получится, если рассчитать их количество, беря за основу весь объем человеческой крови, а его в здоровом теле около пяти литров. Имея губчатое строение, поры эритроцитов забиты гемоглобином. Именно такая форма обеспечивает отличный газообмен в организме.


Проносясь через легкие, они захватывают свежий воздух и несут его в каждую клеточку. Обратно – по венозной крови, эритроциты доставляют в легкие углекислый газ. Во всех этих процессах напрямую участвует гемоглобин – несет кислород и отдает отработанное соединение «CO 2 ». Их считают неисправимыми трудоголиками в организме, чем объясняется короткий срок жизни красных клеток. В среднем, каждый эритроцит существует 3-4 месяца, а дальше по причине изношенности попадает на «кладбище», в селезенку. Там он разрушается и выводится с органами выделения. Этот процесс не стоит на месте. Костный мозг тут же восполняет их недостаток, однако по ряду причин их количество может снижаться. Тогда врач будет констатировать заболевание, анемию.

Лейкоциты – бесстрашные защитники

Не менее интересно узнать, какое влияние на жизнедеятельность человека оказывают лейкоциты. Состав крови каждого человека содержит разное количество этих белых клеток. Здесь все зависит от половой принадлежности и возраста.

  • У взрослого мужчины норма составляет 4,2 до 9 × 10 9 Ед/л.
  • У женщины 3,98 до 10,4 × 10 9 Ед/л.
  • У новорожденного от 7 до 32 × 10 9 Ед/л.

Ближе к преклонному возрасту значение нормы лейкоцитов постепенно снижается. Без преувеличения можно сказать, что уровень биологической жизни каждого из нас зависит от этих маленьких белых клеток. Лейкоциты – это защитники организма. Они четко отслеживают чужеродное вторжение и не жалея собственной жизни, сразу же бросаются на врага. Увлекательный процесс битвы с патогенным микроорганизмом можно описать так. Лейкоцит обнаруживает микроб по специфическому веществу и немедленно направляется к нему. Далее он образует отросток, захватывает им «агрессора», втягивает в себя и переваривает. Эта функция, свойственная белой клетке называется фагоцитоз. Однако в борьбе с чужеродными организмами гибнут и лейкоциты. Если рассмотреть гной под микроскопом, то можно убедиться, что основное содержимое составляют мертвые тела лейкоцитов.

Благодаря особым свойствам, амебоидным движениям, лейкоциты могут проникать сквозь стенки сосудов и отслеживать ситуацию в межклеточных пространствах. Если количество лейкоцитов превышено – это означает лейкоцитоз. Если их меньше нормы – лейкопения. Теперь несложно сделать выводы, насколько кровь человека является универсальной жидкостью и в чем ее значение.

Каковы функции крови в организме животного?

Какого цвета бывает кровь у животных и почему?

Транспортная (питательная), выделительная, терморегуляторная, гуморальная, защитная

Цвет крови животных зависит от металлов, которые входят в состав кровяных телец (эритроцитов), или веществ, растворённых в плазме. У всех позвоночных животных, а также у дождевого червя, пиявок, комнатной мухи и некоторых моллюсков в сложном соединении с гемоглобином крови находится окисное железо. Поэтому их кровь красная. В крови многих морских червей, вместо гемоглобина, содержится сходное вещество - хлорокруорин. В его составе найдено закисное железо, и поэтому цвет крови этих червей зелёный. А у скорпионов, пауков, речного рака, осьминогов и каракатиц кровь голубая. Вместо гемоглобина она содержит гемоцианин, с медью в качестве металла. Медь и придает их крови синеватый цвет.

Стр. 82-83

1. Из каких компонентов состоит внутренняя среда? Как они связаны между собой?

Внутреннюю среду организма составляют кровь, тканевая жидкость и лимфа. Кровь движется по системе замкнутых сосудов и непосредственно не контактирует с клетками ткани. Тканевая жидкость образуется из жидкой части крови. Она получила такое название потому, что находится среди тканей тела. Питательные вещества из крови попадают в тканевую жидкость и в клетки. Продукты распада перемещаются в обратном направлении. Лимфа. Избыток тканевой жидкости попадает в вены и лимфатические сосуды. В лимфатических капиллярах она изменяет свой состав и становится лимфой. Лимфа медленно движется по лимфатическим сосудам и в конце кон¬цов попадает снова в кровь. Предварительно лимфа проходит через особые образования - лимфатические узлы, где она фильтруется и обеззараживается, обогащается лимфатическими клетками.

2. Каков состав крови и каково ее значение для организма?

Кровь - это красная непрозрачная жидкость, состоящая из плазмы и форменных элементов. Различают красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). В организме человека кровь связывает каждый орган, каждую клетку тела между собой. Кровь разносит питательные вещества, полученные из пищи в органах пищеварения. Она доставляет к клеткам кислород из легких, а углекислый газ, вредные, отработанные вещества несет к тем органам, которые их обезвреживают или выводят из организма.

3. Назовите форменные элементы крови и их функции.

Тромбоциты - кровяные пластинки. Они участвуют в свертывании крови. Эритроциты - красные кровяные клетки. Окраска красных кровяных клеток, эритроцитов, зависит от содержащегося в них гемоглобина. Гемоглобин способен легко соединяться с кислородом и легко отдавать его. Красные кровяные клетки переносят кислород от легких ко всем органам. Лейкоциты - белые кровяные клеши. Лейкоциты чрезвычайно разнообразны и борются с микробами разными способами.

4. Кто открыл явление фагоцитоза? Как он осуществляется?

Способность определенных клеток лейкоцитов захватывать микробы и уничтожать их была открыта И.И. Мечниковым - великим русским ученым, лауреатом Нобелевской премии. Клетки лейкоцитов этого типа И.И. Мечников назвал фагоцитами, т. е. пожирателями, а сам процесс уничтожения микробов фагоцитами - фагоцитозом

5. Каковы функции лимфоцитов?

Лимфоцит имеет вид шарика, на его поверхности находятся многочисленные ворсинки, похожие на щупальца. С их помощью лимфоцит обследует поверхность других клеток, отыскивая чужеродные соединения - антигены. чаще всего они встречаются на поверхности фагоцитов, уничтоживших чужеродные тела. Если на поверхности клеток встречаются только «свои» молекулы, лимфоцит движется дальше, а если чужие - щупальца, как клешни рака, смыкаются. Затем лимфоцит посылает через кровь химические сигналы другим лимфоцитам, и те начинают вырабатывать по найденному образцу химические противоядия - антитела, состоящие из белка гамма-глобулина. Этот белок выбрасывается в кровь и оседает на различных клетках, например на эритроцитах. Антитела нередко выходят за пределы кровеносных сосудов и размещаются на поверхности клеток кожи, дыхательных путей, кишечника. Они являются своеобразными ловушками для чужеродных тел, например для микробов и вирусов. Антитела либо склеивают их, либо разрушают, либо растворяют, короче говоря, выводят из строя. При этом постоянство внутренней среды восстанавливается.

6. Как происходит свертывание крови?

Когда кровь из раны вытекает на поверхность кожи, кровяные пластинки склеиваются и разрушаются, а содержащиеся в них ферменты попадают в плазму крови. При наличии солей кальция и витамина К плазменный белок фибриноген образует нити фибрина. В них застревают эритроциты и другие клетки крови, и образуется тромб. Он то и не дает крови вытекать наружу

7. Чем эритроциты человека отличаются от эритроцитов лягушки?

1) У человеческих эритроцитов нет ядра, эритроциты лягушки ядерные.

2) Эритроциты человека имеют форму двояковогнутого диска, а эритроциты лягушки овальные.

3) Эритроциты человека в диаметре 7-8 мкм, эритроциты лягушки 15-20 мкм в длину и около10 мкм в ширину и толщину.

Внутренняя среда организма. Клетки, ткани и органы организма могут существовать и нормально функционировать только в определенных условиях, которые создаются внутренней средой, к которой они приспособились в ходе эволюционного развития. Внутренняя среда обеспечивает возможность поступления в клетки необходимых для их жизнедеятельности веществ и вывод про­дуктов обмена. Благодаря поддержанию определенного состава внутренней среды клетки функционируют в постоянных условиях. Сохранение постоянства внутренней среды называется гомеостазом.

В организме на относительно постоянном уровне поддерживаются кровяное давление, температура тела, осмотическое давление крови и тканевой жидкости, содержание в них белков и сахара, ионов натрия, калия, кальция, хлора и др.

Гомеостаз поддерживается комплексам динамических процессов. Значительная роль в поддержании гомеостаза принадлежит регуляторным системам - нервной и эндокринной. Сохранение по­стоянства внутренней среды возможно только при функционировании системы дыхания, сердечно-сосудистой системы, органов пищеварения и выделения.

Внутренней средой организма человека являются кровь, лимфа и тканевая жидкость.

Значение крови. Поступающие в организм питательные вещества и кислород крови разносятся по организму и из крови поступают в лимфу и тканевую жидкость. В обратном порядке осуществляется выделение продуктов обмена. Находясь в непрерывном движении, кровь обеспечивает постоянство состава тканевой жидкости, непосредственно соприкасающейся с клетками. Следовательно, кровь выполняет важнейшую роль в обеспечении постоянства внутренней среды. Поглощение кровью кислорода и вынос углекислого газа называют дыхательной функцией крови. В легких кровь обогащается кислородом и отдает углекислый газ, который затем удаляется в окружающую среду с выдыхаемым воздухом. Протекая через капилляры различных тканей и органов, кровь отдает им кислород и поглощает углекислый газ.

Кровь осуществляет транспортную функцию - перенос пита­тельных веществ из органов пищеварения в клетки и ткани орга­низма и вынос продуктов распада. В процессе обмена веществ в клетках постоянно образуются вещества, которые уже не могут быть использованы для нужд организма, а часто оказываются и вредными для него. Из клеток эти вещества поступают в тканевую жидкость, а затем в кровь. Кровью эти продукты доставляются к почкам, потовым железам, легким и выводятся из организма.

Кровь выполняет защитную функцию. В организм могут по­ступать ядовитые вещества или микробы. Они подвергаются разрушению и уничтожению некоторыми клетками крови или склеиваются и обезвреживаются особыми защитными веществами.

Кровь участвует в гуморальной регуляции деятельности организма, выполняет терморегуляторную функцию, охлаждая энергоемкие органы и согревая органы, теряющие тепло.

Количество и состав крови. Количество крови в организме человека меняется с возрастом. У детей крови относительно массы тела больше, чем у взрослых (табл. 15). У новорожденных кровь составляет 14,7% массы, у детей одного года-10,9%, у детей 14 лет - 7%. Это связано с более интенсивным протеканием об­мена веществ в детском организме. У взрослых людей массой 60-70 кг общее количество крови 5-5,5 л.

Обычно не вся кровь циркулирует в кровеносных сосудах. Некоторая ее часть находится в кровяных депо. Роль депо крови выполняют сосуды селезенки, кожи, печени и легких. При уси­ленной мышечной работе, при потере больших количеств крови при ранениях и хирургических операциях, некоторых заболеваниях запасы крови из депо поступают в общий кровоток. Депо крови участвуют в поддержании постоянного количества циркулирующей крови.

Плазма крови. Артериальная кровь представляет собой красную непрозрачную жидкость. Если принять меры, предупреждающие свертывание крови, то при отстаивании, а еще лучше при центрифугировании она отчетливо разделяется на два слоя. Верхний слой - слегка желтоватая жидкость - плазма, осадок темно-красного цвета. На границе между осадком и плазмой имеется тонкая светлая пленка. Осадок вместе с пленкой образован форменными элементами крови - эритроцитами, лейкоцитами и кровяными пластинками - тромбоцитами. Все клетки крови живут определенное время, после чего разрушаются. В кроветворных органах (костном мозге, лимфатических узлах, селезенке) проис­ходит непрерывное образование новых клеток крови.

У здоровых людей соотношение между плазмой и форменными элементами колеблется незначительно (55% плазмы и 45% форменных элементов). У детей раннего возраста процентное содержание форменных элементов несколько выше.

Плазма состоит на 90-92% из воды, 8-10% составляют органические и неорганические соединения. Концентрация растворенных в жидкости веществ создает определенное осмотическое давление. Поскольку концентрация органических веществ (белки, углеводы, мочевина, жиры, гормоны и др.) невелика, осмотиче­ское давление определяется в основном неорганическими солями.

Постоянство осмотического давления крови имеет важное значение для жизнедеятельности клеток организма. Мембраны мно­гих клеток, в том числе и клеток крови, обладают избирательной проницаемостью. Поэтому при помещении клеток крови в раство­ры с различной концентрацией солей, следовательно, и с разным осмотическим давлением в клетках крови могут произойти серьезные изменения.

Растворы, которые по своему качественному составу и концентрации солей соответствуют составу плазмы, называют физиологическими растворами. Они изотоничны. Такие жидкости используют как заменители крови при кровопотерях.

Осмотическое давление в организме поддерживается на постоянном уровне за счет регулирования поступления воды и минеральных солей и их выделения почками и потовыми железами. В плазме поддерживается также постоянство реакции, которая обозначается как рН крови; она определяется концентрацией ионов водорода. Реакция крови слабощелочная (рН равняется 7,36). Поддержание постоянства рН достигается наличием в крови буферных систем, которые нейтрализуют избыточно поступившие в организм кислоты и щелочи. К ним относятся белки крови, бикарбонаты, соли фосфорной кислоты. В постоянстве реакции крови важная роль принадлежит также легким, через которые удаляется углекислый газ, и органам выделения, выводящим избыток веществ, имеющих кислую или щелочную реакцию.

Форменные элементы крови. Форменные элементы, определяющие возможность осуществления важнейшей функции крови - дыхательной,- эритроциты (красные кровяные клетки). Количество эритроцитов в крови взрослого человека 4,5-5,0 млн. в 1 мм 3 крови.

Если расположить все эритроциты человека в один ряд, то получилась бы цепочка длиной около 150 тыс. км; если положить эритроциты один на другой, то образовалась бы колонна высотой, превосходящей длину экватора земного шара (50- 60 тыс. км). Количество эритроцитов не строго постоянно. Оно может значительно увеличиваться при недостатке кислорода на больших высотах, при мышечной работе. У людей, живущих в высокогорных районах, эритроцитов примерно на 30% больше, чем у жителей морского побережья. При переезде из низменных районов в высокогорные количество эритроцитов в крови увеличивается. Когда же потребность в кислороде уменьшается, количество эритроцитов в крови снижается.

Осуществление эритроцитами дыхательной функции связано с наличием в них особого вещества - гемоглобина, являющегося переносчиком кислорода. В состав гемоглобина входит двухвалентное железо, которое, соединяясь с кислородом, образует непрочное соединение оксигемоглобин. В капиллярах такой оксигемоглобин легко распадается на гемоглобин и кислород, который поглощается клетками. Там же в капиллярах тканей гемоглобин соединяется с углекислым газом. Это соединение распадается в легких, углекислый газ выделяется в атмосферный воздух.

Содержание гемоглобина в крови измеряется либо в абсолютных величинах, либо в процентах. За 100% принято наличие 16,7 г гемоглобина в 100 мл крови. У взрослого человека обычно в крови содержится 60-80% гемоглобина. Содержание гемоглобина зависит от количества эритроцитов в крови, питания, в кото­ром важно наличие необходимого для функционирования гемоглобина железа, пребывания на свежем воздухе и других причин.

Содержание эритроцитов в 1 мм 3 крови меняется с возрастом. В крови новорожденных количество эритроцитов может пре­вышать 7 млн. в 1 мм 3 , кровь новорожденных характеризуется высоким содержанием гемоглобина (свыше 100%). К 5-6-му дню жизни эти показатели снижаются. Затем к 3-4 годам количест­во гемоглобина и эритроцитов несколько увеличивается, в 6-7 лет отмечается замедление в нарастании числа эритроцитов и содержании гемоглобина, с 8-летнего возраста вновь нарастает число эритроцитов и количество гемоглобина.

Снижение числа эритроцитов ниже 3 млн. и количества гемоглобина ниже 60% свидетельствует о наличии анемического состояния (малокровия).

Если кровь предохранить от свертывания и оставить на несколько часов в капиллярных трубочках, то эритроциты в силу тяжести начинают оседать. Они оседают с определенной скоростью; у мужчин 1 -10 мм/ч, у женщин - 2-15 мм/ч. С возрастом изменяется скорость оседания эритроцитов. Скорость оседания эритроцитов (СОЭ) широко используется как важный диагностический показатель, свидетельствующий о наличии воспалительных процессов и других патоло­гических состояний. Поэтому важное значение имеет знание нормативных показателей СОЭ у детей разного возраста.

У новорожденных скорость оседания эритроцитов низкая (от 1 до 2 мм/ч). У детей до 3 лет величина СОЭ колеблется в пределах от 2 до 17 мм/ч. В возрасте от 7 до 12 лет величина СОЭ не превышает 12 мм/ч.

Лейкоциты - белые кровяные клетки. Важнейшей функцией! лейкоцитов является защита от попадающих в кровь микроорганизмов и токсинов. Защитная функция лейкоцитов связана с их способностью передвигаться самостоятельно к тому участку, куда проникли микробы или инородное тело. Приблизившись к ним, лейкоциты обволакивают их, втягивают внутрь и переваривают. Явление поглощения микроорганизмов лейкоцитами называется фагоцитозом.

Рис.5. Фагоцитоз бактерии лейкоцитом (три последние стадии)

Впервые оно было открыто выдающимся русским ученым И. И. Мечниковым. Важным фактором, определяющим защитные свойства лейкоцитов, является также их участие в иммунных механизмах.

По форме, строению и функции различают разные типы лейкоцитов. Основные из них: лимфоциты, моноциты, нейтрофилы. Лимфоциты образуются в основном в лимфатических узлах. Они не способны к фагоцитозу, но, вырабатывая антитела, играют большую роль в обеспечении иммунитета. Нейтрофилы вырабатываются в красном костном мозге: они являются самыми многочис­ленными лейкоцитами и выполняют основную роль в фагоцитозе. Один нейтрофил может поглотить 20-30 микробов. Через час все они оказываются переваренными внутри нейтрофила. Это происходит при участии специальных ферментов, разрушающих микроорганизмы. Если инородное тело по своим размерам превы­шает лейкоцит, то вокруг него накапливаются группы нейтрофилов, образуя барьер.

Развитие иммунитета в онтогенезе . В отличие от системы специфического иммунитета факторы неспецифической защиты у новорожденных выражены хорошо. Они формируются раньше специфических и берут на себя основную функцию защиты организма плода и новорожденного. В околоплодных водах и в крови плода отмечается высокая активность лизоцима, которая сохраняется до рождения ребенка, а затем снижается. Способность к образованию интерферона сразу после рождения высока, на протяжении года она снижается, но с возрастом постепенно увеличивается и достигает максимума к 12-18 годам.

Новорожденный получает от матери значительное количество гамма-глобулинов. Эта неспецифическая защита оказывается достаточ­ной при первоначальном столкновении организма с микрофлорой окружающей среды. К тому же у новорожденного отмечается «физиологический лейкоцитоз» - количество лейкоцитов в 2 раза выше, чем у взрослого, как естественная подготовка организма к новым условиям существования. Однако многочисленные лимфоциты новорожденных представлены незрелыми формами и не способны синтезиро­вать необходимое количество глобулинов и интерферона. Фагоциты тоже недостаточно активны. В результате этого детский организм отвечает на проникновение микроорганизмов генерализованным воспалением. Часто такую реакцию вызывает бытовая микрофлора, безопасная для взрослого. В организме новорожденного специфические иммунные системы не сформированы, иммунной памяти нет, неспецифические механизмы тоже еще не созрели. Поэтому столь важно кормление материнским молоком, в котором содержатся иммунореактивные вещества. В возрасте от 3 до 6 месяцев иммунная система ребенка уже реагирует на вторжение микроорганизмов, но практически не формируется иммунная память. В это время неэффективны прививки, заболевание не оставляет после себя стойкого иммунитета. Второй год жизни ребенка выделяется как «критический» период в развитии иммунитета. В этом возрасте расширяются возможности и повышается эффективность иммунных реакций, однако система местного иммунитета еще недостаточно развита и дети чувствительны к респираторным вирусным инфекциям. В возрасте 5-6 лет созревает неспецифический клеточный иммунитет. Формирование собственной системы неспеци­фической гуморальной иммунной защиты завершается на 7-м году жизни, в результате чего заболеваемость респираторными вирусными инфекциями снижается.

Особенности гормональной регуляции функций . Регуляция функций в организме человека осуществляется нервным и гуморальным путем. Нервная регуляция обусловлена скоростью проведения нервного импульса, гуморальная - скоростью движения крови по сосудам или скоростью диффузии молекул химических веществ в межклеточную жидкость. Нервная регуляция более быстрая, поэтому она является ведущей в организме, но и у нее есть свои недостатки. Нервный импульс приводит лишь к кратковременному изменению поляризации мембраны клетки. Для долговременного воздействия нервные импульсы должны поступать один за другим, что приводит к утомлению нервных центров, в результате чего нервное влияние ослабевает. При гуморальном воздействии информация поступает ко всем клеткам, хотя воспринимается лишь той клеткой, которая имеет специализированный рецептор. Информационная молекула, достигнув такой клетки, прикрепляется к ее мембране, изменяет ее свойства и остается там до тех пор, пока не достигается ожидаемый результат, после чего специальные механизмы разрушают эту молекулу. Таким образом, если управляющее влияние должно быть срочным и кратковременным - преимущество за нервной регуляцией, а если продолжительным - за гуморальной. Поэтому в организме существу­ют и нервный, и гуморальный способы регуляции, которые действу­ют согласованно в зависимости от условий.

Среди биологически активных веществ для физиологической регуляции функций организма наиболее важны медиаторы, гормоны, ферменты и витамины. Медиаторы представлены веществами небелковой природы, которые выделяются окончаниями нервных клеток в результате прохождения нервного импульса. Чаще всего в качестве медиатора выступают ацетилхолин, адреналин, норадреналин, дофамин и гамма-аминомасляная кислота.

Способны к фагоцитозу и моноциты - клетки, образующиеся в селезенке и печени.

В крови взрослого человека содержится 4000-9000 лейкоцитоз в 1 мкл. Существует определенное соотношение между разными типами лейкоцитов, выраженное в процентах, так называемая лейкоцитарная формула. При патологических состояниях изменяется как общее число лейкоцитов, так и лейкоцитарная формула.

Количество лейкоцитов и их соотношение изменяются с воз­растом. У новорожденного лейкоцитов значительно больше, чем у взрослого человека (до 20 тыс. в 1 мм 3 крови). В первые сутки жизни число лейкоцитов возрастает (происходит рассасывание продуктов распада тканей ребенка, тканевых кровоизлияний, воз­можных во время родов) до 30 тыс. в 1 мм 3 крови.

Начиная со вторых суток жизни число лейкоцитов, снижается и к 7-12-му дню достигает 10-12 тыс. Такое количество лейкоцитов сохраняется у детей первого года жизни, после чего оно снижается и к 13-15 годам достигает величин взрослого чело­века. Чем меньше возраст ребенка, тем его кровь содержит боль­ше незрелых форм лейкоцитов.

Лейкоцитарная формула в первые годы жизни ребенка харак­теризуется повышенным содержанием лимфоцитов и пониженным числом нейтрофилов. К 5-6 годам количество этих форменных элементов выравнивается, после этого процент нейтрофилов не­уклонно растет, а процент лимфоцитов понижается. Малым со­держанием нейтрофилов, а также недостаточной их зрелостью отчасти объясняется большая восприимчивость детей младших возрастов к инфекционным болезням. К тому же фагоцитарная ак­тивность нейтрофилов у детей первых лет жизни наиболее низкая.

Тромбоциты и свертывание крови. Тромбоциты (кровяные пластины) - самые мелкие из форменных элементов крови. Количе­ство их варьирует от 200 до 400 тыс. в 1 мм 3 (мкл). Днем их больше, а ночью меньше. После тяжелой мышечной работы ко­личество кровяных пластинок увеличивается в 3-5 раз.

Образуются тромбоциты в красном костном мозге и селезенке. Основная функция тромбоцитов связана с их участием в свертывании крови. При ранении кровеносных сосудов тромбоциты разрушаются. При этом из них выходят в плазму вещества, необходимые для формирования кровяного сгустка - тромба.

В нормальных условиях кровь в неповрежденных кровеносных сосудах не свертывается благодаря наличию в организме противосвертывающих факторов. При некоторых воспалительных процес­сах, сопровождающихся повреждением внутренней стенки сосуда, и при сердечно-сосудистых заболеваниях происходит свертывание крови, образуется тромб.

Нормальное функционирование кровообращения, препятствующее как кровопотере, так и свертыванию крови внутри сосуда, достигается определенным равновесием двух существующих в организме систем - свертывающей и противосвертывающей.

Свертывание крови у детей в первые дни после рождения замедленно, особенно это заметно на 2-й день жизни ребенка. С 3-го по 7-й день жизни свертывание крови ускоряется и при­ближается к норме взрослых. У детей дошкольного и школьного возраста время свертывания крови имеет широкие индивидуаль­ные колебания. В среднем начало свертывания в капле крови наступает через 1-2 мин, конец свертывания - через 3-4 мин.

Группы крови и переливание крови. При переливании крови от одного человека к другому необходимо учитывать группы кро­ви. Это связано с тем, что в форменных элементах крови - эритроцитах содержатся особые вещества антигены, или агглютиногены, а в белках плазмы агглютинины, при определенном сочета­нии этих веществ происходит склеивание эритроцитов - агглютинация. Классификация групп основана на наличии в крови тех или иных агглютининов и агглютиногенов. Агглютиногенов в эритроцитах два типа, их обозначают буквами латинского алфавита А, В. В эритроцитах они могут быть по одному или вместе либо отсутствовать. Агглютининов (склеивающих эритроцитов) в плазме тоже два, их обозначают греческими буквами а и р. В крови разных людей содержится либо один, либо два, либо ни одного агглютинина. Агглютинация наступает в том случае, если агглютиногены донора встречаются с одноименными агглютининами реципиента (человека, которому переливают кровь). Понятно, что в крови каждого человека агглютинины и агглютиногены разноименные. В случае если агглютинин а взаимодействует с агтлютиногеном А или агглютинин в с агглютиногеном В - наступает агглютинация, грозящая организму гибелью. У людей имеется 4 комбинации агглютиногенов и агглютининов и соответственно выделяют 4 группы крови: I группа - в плазме содержатся агглютинины а и в, в эритроцитах агглютиногенов нет; II группа - в плазме содержится агглютинин в, а в эритроцитах агглютиноген А; III группа - в плазме находится агглютинин а, в эритроцитах агглютиноген В; IV группа - агглютининов в плазме нет, а в эритроцитах содержатся агглютиногены А и В.

I группу имеют примерно 40% людей, II - 39%, Ш группу - 15%, IV -6%.

В крови имеются также и другие агглютиногены, не входящие в систему классификации групп. Среди них один из наиболее су­щественных, который надо учитывать при переливании,- резус-фактор. Он содержится у 85% людей (резус-положительные), у 15% этого фактора в крови нет (резус-отрицательные). При переливании резус-положительной крови резус-отрицательному че­ловеку в крови появляются резус-отрицательные антитела, и при повторном переливании резус-положительной крови могут наступить серьезные осложнения в виде агглютинации. Резус-фактор в особенности важно учитывать при беременности. Если отец резус-положительный, а мать резус-отрицательная, кровь плода будет резус-положительная, так как это доминантный признак. Агглютиногены плода, поступая в кровь матери, вызовут образование антител (агглютининов) к резус-положительным эритроцитам. Если эти антитела через плаценту проникнут в кровь плода, наступит агглютинация и плод может погибнуть. Поскольку при повторных беременностях в крови матери увеличивается количество антител, опасность для детей возрастает. В таком случае либо женщине с резус-отрицательной кровью вводят заблаговременно антирезус гаммаглобулин, либо только что родившемуся ребенку производят заменное переливание крови.

Переливание крови - один из методов лечения, незаменимый при острых кровопотерях (ранения, операции). К переливанию крови часто прибегают при шоке и различного рода болезнях, где необходимо повысить сопротивляемость организма. Переливание может быть произведено непосредственно от дающего кровь (донора) к получающему ее (реципиенту). Однако более удобно использование донорской консервированной крови, так как в распоряжении всегда будет кровь необходимой группы. Донорство получило широкое распространение в нашей стране. Кровь берется только от лиц, которые не больны какой-либо инфекционной болезнью.

Малокровие, его профилактика. Малокровие - резкое снижение гемоглобина крови и уменьшение количества эритроцитов.

Различного рода заболевания и особенно неблагоприятные условия для жизни детей и подростков приводят к малокровию. Малокровие сопровождается головными болями, головокружением, обмороками, отрицательно сказывается на работоспособности и успешности обучения. Кроме того, у малокровных учащихся резко снижается сопротивляемость организма и они часто и длительно болеют.

Первейшей профилактической мерой против малокровия оказываются: правильная организация режима дня, рациональное питание, богатое минеральными солями и витаминами, строгое норми­рование учебной, внеклассной, трудовой и творческой деятельности, чтобы не развивалось переутомление, необходимый объем суточной двигательной активности в условиях открытого воздуха и разумное использование естественных факторов природы.

Поступающие в организм питательные вещества и кислород крови разносятся по организму и из крови поступают в лимфу и тканевую жидкость. В обратном порядке осуществляется выделение продуктов обмена. Находясь в непрерывном движении, кровь обеспечивает постоянство состава тканевой жидкости, непосредственно соприкасающейся с клетками. Следовательно, кровь выполняет важнейшую роль в обеспечении постоянства внутренней среды. Поглощение кровью кислорода и вынос углекислого газа называют дыхательной функцией крови. В легких кровь обогащается кислородом и отдает углекислый газ, который затем удаляется в окружающую среду с выдыхаемым воздухом. Протекая через капилляры различных тканей и органов, кровь отдает им кислород и поглощает углекислый газ.

Кровь осуществляет транспортную функцию,-- перенос питательных веществ из органов пищеварения в клетки и ткани организма и вынос продуктов распада. В процессе обмена веществ в клетках постоянно образуются вещества, которые уже не могут быть использованы для нужд организма, а часто оказываются и вредными для него. Из клеток эти вещества поступают в тканевую жидкость, а затем в кровь. Кровью эти продукты доставляются к почкам, потовым железам, легким и выводятся из организма.

Кровь выполняет защитную функцию. В организм могут поступать ядовитые вещества или микробы. Они подвергаются разрушению и уничтожению некоторыми клетками крови или склеиваются и обезвреживаются особыми защитными веществами.

Кровь участвует в гуморальной регуляции деятельности организма, выполняет терморегуляторнию функцию, охлаждая энергоемкие органы и согревая органы, теряющие тепло.

Количество и состав крови. Количество крови в организме человека меняется с возрастом. У детей крови относительно массы тела больше, чем у взрослых. У новорожденных кровь составляет 14,7% массы, у детей одного года--10,9%, у детей 14 лет--7%. Это связано с более интенсивным протеканием обмена веществ в детском организме. У взрослых людей массой 60--70 кг общее количество крови 5--5,5 л.

Обычно не вся кровь циркулирует в кровеносных сосудах. Некоторая ее часть находится в кровяных депо. Роль депо крови выполняют сосуды селезенки, кожи, печени и легких. При усиленной мышечной работе, при потере больших количеств крови при ранениях и хирургических операциях, некоторых заболеваниях запасы крови из депо поступают в общий кровоток. Депо крови участвуют в поддержании постоянного количества циркулирующей крови.

Плазма крови. Артериальная кровь представляет собой красную непрозрачную жидкость. Если принять меры, предупреждающие свертывание крови, то при отстаивании, а еще лучше при центрифугировании она отчетливо разделяется на два слоя. Верхний слой--слегка желтоватая жидкость--плазма, осадок темно-красного цвета. На границе между осадком и плазмой имеется тонкая светлая пленка. Осадок вместе с пленкой образован форменными элементами крови--эритроцитами, лейкоцитами и кровяными пластинками--тромбоцитами. Все клетки крови живут определенное время, после чего разрушаются. В кроветворных органах (костном мозге, лимфатических узлах, селезенке) происходит непрерывное образование новых клеток крови.

У здоровых людей соотношение между плазмой и форменными элементами колеблется незначительно (55% плазмы и 45% форменных элементов). У детей раннего возраста процентное содержание форменных элементов несколько выше.

Плазма состоит на 90--92% из воды, 8--10% составляют органические и неорганические соединения. Концентрация растворенных в жидкости веществ создает определенное осмотическое давление. Поскольку концентрация органических веществ (белки, углеводы, мочевина, жиры, гормоны и др.) невелика, осмотическое давление определяется в основном неорганическими солями.

Постоянство осмотического давления крови имеет важное значение для жизнедеятельности клеток организма. Мембраны многих клеток, в том числе и клеток крови, обладают избирательной проницаемостью. Поэтому при помещении клеток крови в растворы с различной концентрацией солей, а следовательно, и с разным осмотическим давлением в клетках крови могут произойти серьезные изменения.

Растворы, которые по своему качественному составу и концентрации солей соответствуют составу плазмы, называют физиологическими растворами. Они изотоничны. Такие жидкости используют как заменители крови при кровопотерях.

Осмотическое давление в организме поддерживается на постоянном уровне за счет регулирования поступления воды и минеральных солей и их выделения почками и потовыми железами. В плазме поддерживается также постоянство реакции, которая обозначается как рН крови; она определяется концентрацией ионов водорода. Реакция крови слабощелочная (рН равняется 7,36). Поддержание постоянства рН достигается наличием в крови буферных систем, которые нейтрализуют избыточно поступившие в организм кислоты и щелочи. К ним относятся белки крови, бикарбонаты, соли фосфорной кислоты. В постоянстве реакции крови важная роль принадлежит также легким, через которые удаляется углекислый газ, и органам отделения, выводящим избыток веществ, имеющих кислую или щелочную реакцию.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека