К гуморальным факторам неспецифической защиты организма относятся. Неспецифические факторы защиты

гуморальные факторы - система комплемента. Комплемент - это комплекс 26 белков в сыворотке крови. Обозначается каждый белок, как фракция, латинскими буквами: С4, С2, СЗ и т. д. В условиях нормы система комплемента находится в неактивном состоянии. При попадании антигенов он активируется, стимулирующим фактором является комплекс антиген - антитело. С активации комплемента начинается любое инфекционное воспаление. Комплекс белков комплемента встраивается в клеточную мембрану микроба, что приводит к лизису клетки. Также комле-мент участвует в анафилаксии и фагоцитозе, так как обладает хемотаксической активностью. Таким образом, комплемент является компонентом многих им-мунолитических реакций, направленных на освобождение организма от микробов и других чужеродных агентов;

Спид

Открытию ВИЧ предшествовали работы Р. Галло и его со­трудников, которые на полученной ими культуре клеток Т-лимфоцитов выделили два Т-лимфотропных ретровируса человека. Один из них - HTLV-I (англ., humen T-lymphotropic virus type I), обнаруженный в конце 70-х годов, является возбудителем редкого, но злокачественного Т-лейкоза человека. Второй вирус, обозначенный HTLV-II, также вызывает Т-клеточные лейкозы и лимфомы.

После регистрации в США в начале 80-х годов первых боль­ных с синдромом приобретенного иммунодефицита (СПИД), тогда еще никому не известного заболевания, Р. Галло высказал предположение, что его возбудителем является ретровирус, близкий к HTLV-I. Хотя это предположение через несколько лет было опровергнуто, оно сыграло большую роль в открытии истинного возбудителя СПИДа. В 1983 г. из кусочка ткани увеличенного лимфатического узла гомосексуалиста Люк Монтенье с группой сотрудников Пастеровского института в Париже выделили в культуре Т-хелперов ретровирус. Дальнейшие иссле­дования показали, что этот вирус отличался от HTLV-I и HTLV-II - он репродуцировался только в клетках Т-хелперов и эффекторов, обозначаемых Т4, и не репродуцировался в клет­ках Т-супрессоров и киллеров, обозначаемых Т8.

Таким образом, введение в вирусологическую практику куль­тур лимфоцитов Т4 и Т8 позволило выделить три облигатно-лимфотропных вируса, два из которых вызывали пролиферацию Т-лимфоцитов, выражающуюся в разных формах лейкоза человека, а один - возбудитель СПИДа - вызывал их деструк­цию. Последний получил название вируса иммунодефицита человека - ВИЧ.

Структура и химический состав. Вирионы ВИЧ имеют сфери­ческую форму 100-120 нм в диаметре и по своей структуре близки к другим лентивирусам. Внешняя оболочка вирионов образована двойным липидным слоем с расположенными на нем гликопротеиновыми «шипами» (рис. 21.4). Каждый «шип» состо­ит из двух субъединиц (gp41 и gp!20). Первый пронизывает липидный слой, второй находится снаружи. Липидный слой происходит из внешней мембраны клетки хозяина. Образование обоих белков (gp41 и gp!20) с нековалентной связью между ними происходит при разрезании белка внешней оболочки ВИЧ (gp!60). Под внешней оболочкой расположена сердцевина вириона цилиндрической или конусовидной формы, образован­ная белками (р!8 и р24). В сердцевине заключены РНК, обрат­ная транскриптаза и внутренние белки (р7 и р9).

В отличие от других ретровирусов ВИЧ имеет сложный геном за счет наличия системы регуляторных генов. Без знания основных механизмов их функционирования невозможно понять уникальные свойства этого вируса, проявляющиеся в разнооб­разных патологических изменениях, которые он вызывает в ор­ганизме человека.

В геноме ВИЧ содержится 9 генов. Три структурных гена gag, pol и env кодируют компоненты вирусных частиц: ген gag - внутренние белки вириона, входящие в состав сердцевины и капсида; ген pol - обратную транскриптазу; ген env - типо-специфические белки, находящиеся в составе внешней оболочки (гликопротеины gp41 и gp!20). Большая молекулярная масса gp!20 обусловлена высокой степенью их гликозирования, что является одной из причин антигенной вариабельности данного вируса.

В отличие от всех известных ретровирусов ВИЧ имеет слож­ную систему регуляции структурных генов (рис. 21.5). Среди них наибольшее внимание привлекают гены tat и rev. Продукт гена tat увеличивает скорость транскрипции как структурных, так и регуляторных вирусных белков в десятки раз. Продукт гена rev также является регулятором транскрипции. Однако он контролирует транскрипцию либо регуляторных, либо структур­ных генов. В результате такого переключения транскрипции вместо регуляторных белков синтезируются капсидные белки, что увеличивает скорость репродукции вируса. Тем самым при участии гена rev может определиться переход от латентной инфекции к ее активной клинической манифестации. Ген nef контролирует прекращение репродукции ВИЧ и его переход в латентное состояние, а ген vif кодирует небольшой белок, усиливающий способность вириона отпочковываться от одной клетки и заражать другую. Однако эта ситуация еще более усложнится, когда окончательно будет выяснен механизм регу­ляции репликации провирусной ДНК продуктами генов vpr и vpu. Вместе с тем на обоих концах ДНК провируса, интегри­рованного в клеточный геном, имеются специфические марке­ры- длинные концевые повторы (ДКП), состоящие из идентич­ных нуклеотидов, которые участвуют в регуляции экспрессии рассмотренных генов. При этом существует определенный алгоритм включения генов в процессе вирусной репродукции в раз­ные фазы заболевания.

Антигены. Антигенными свойствами обладают белки серд­цевины и оболочечные гликопротеины (gp!60). Последние характеризуются высоким уровнем антигенной изменчивости, который определяется высокой скоростью замен нуклеотидов в генах env и gag, в сотни раз превышающей соответствующий показатель для других вирусов. При генетическом анализе многочисленных изолятов ВИЧ не оказалось ни одного с полным совпадением нуклеотидных последовательностей. Более глубокие различия отмечены у штаммов ВИЧ, выделенных от больных, проживающих в различных географических зонах (географиче­ские варианты).

Вместе с тем у вариантов ВИЧ имеются общие антигенные эпитопы. Интенсивная антигенная изменчивость ВИЧ происходит в организме больных в ходе инфекции и вирусоносителей. Она дает возможность вирусу «скрыться» от специфических антител и факторов клеточного иммунитета, что приводит к хронизации инфекции.

Повышенная антигенная изменчивость ВИЧ существенно ограничивает возможности создания вакцины для профилактики СПИДа.

В настоящее время известны два типа возбудителя - ВИЧ-1 и ВИЧ-2, которые различаются между собой по антигенным, патогенным и другим свойствам. Первоначально был выделен ВИЧ-1, который является основным возбудителем СПИДа в Европе и Америке, а через несколько лет в Сенегале - ВИЧ-2, который распространен в основном в Западной и Центральной Африке, хотя отдельные случаи заболевания встречаются и в Европе.

В США с успехом применяется живая аденовирусная вакцина для иммунизации военнослужащих.

Лабораторная диагностика. Для выявления вирусного антиге­на в эпителиальных клетках слизистой оболочки дыхательных путей применяют иммунофлюоресцентный и иммуноферментный методы, а в испражнениях - иммуноэлектронную микроскопию. Выделение аденовирусов проводится путем заражения чувстви­тельных культур клеток с последующей идентификацией вируса в РНК, а затем в реакции нейтрализации и РТГА.

Серодиагностика проводится в тех же реакциях с парными сыворотками больных людей.

Билет 38

Питательные среды

Микробиологическое исследование - это выделение чистых культур микроорганизмов, культивирование и изучение их свойств. Чистыми называются культуры, состоящие из микроорганизмов одного вида. Они нужны при диагностике инфекционных болезней, для определения видовой и типовой принадлежности микробов, в исследовательской работе, для получения продуктов жизнедеятельности микробов (токсинов, антибиотиков, вакцин и т. п.).

Для культивирования микроорганизмов (выращивание в искусственных условиях in vitro) необходимы особые субстраты - питательные среды. На средах микроорганизмы осуществляют все жизненные процессы (питаются, дышат, размножаются и т. д.), поэтому их еще называют «средами для культивирования».

Питательные среды

Питательные среды являются основой микробиологической работы, и их качество нередко определяет результаты всего исследования. Среды должны создавать оптимальные (наилучшие) условия для жизнедеятельности микробов.

Требования, предъявляемые к средам

Среды должны соответствовать следующим условиям:

1) быть питательными, т. е. содержать в легко усвояемом виде все вещества, необходимые для удовлетворения пищевых и энергетических потребностей. Ими являются источники органогенов и минеральных (неорганических) веществ, включая микроэлементы. Минеральные вещества не только входят в структуру клетки и активизируют ферменты, но и определяют физико-химические свойства сред (осмотическое давление, рН и др.). При культивировании ряда микроорганизмов в среды вносят факторы роста - витамины, некоторые аминокислоты, которые клетка не может синтезировать;

Внимание! Микроорганизмы, как все живые существа, нуждаются в большом количестве воды.

2) иметь оптимальную концентрацию водородных ионов - рН, так как только при оптимальной реакции среды, влияющей на проницаемость оболочки, микроорганизмы могут усваивать питательные вещества.

Для большинства патогенных бактерий оптимальна слабощелочная среда (рН 7,2-7,4). Исключение составляют холерный вибрион - его оптимум находится в щелочной зоне

(рН 8,5-9,0) и возбудитель туберкулеза, нуждающийся в слабокислой реакции (рН 6,2-6,8).

Чтобы во время роста микроорганизмов кислые или щелочные продукты их жизнедеятельности не изменили рН, среды должны обладать буферностью, т. е. содержать вещества, нейтрализующие продукты обмена;

3) быть изотоничными для микробной клетки, т. е. осмотическое давление в среде должно быть таким же, как внутри клетки. Для большинства микроорганизмов оптимальна среда, соответствующая 0,5% раствору натрия хлорида;

4) быть стерильными, так как посторонние микробы препятствуют росту изучаемого микроба, определению его свойств и изменяют свойства среды (состав, рН и др.);

5) плотные среды должны быть влажными и иметь оптимальную для микроорганизмов консистенцию;

6) обладать определенным окислительно-восстановительным потенциалом, т. е. соотношением веществ, отдающих и принимающих электроны, выражаемым индексом RH2. Этот потенциал показывает насыщение среды кислородом. Для одних микроорганизмов нужен высокий потенциал, для других - низкий. Например, анаэробы размножаются при RH2 не выше 5, а аэробы - при RH2 не ниже 10. Окислительно-восстановительный потенциал большинства сред удовлетворяет требованиям к нему аэробов и факультативных анаэробов;

7) быть по возможности унифицированным, т. е. содержать постоянные количества отдельных ингредиентов. Так, среды для культивирования большинства патогенных бактерий должны содержать 0,8-1,2 гл амин-ного азота NH2, т. е. суммарного азота аминогрупп аминокислот и низших полипептидов; 2,5-3,0 гл общего азота N; 0,5% хлоридов в пересчете на натрия хлорид; 1% пептона.

Желательно, чтобы среды были прозрачными - удобнее следить за ростом культур, легче заметить загрязнение среды посторонними микроорганизмами.

Классификация сред

Потребность в питательных веществах и свойствах среды у разных видов микроорганизмов неодинакова. Это исключает возможность создания универсальной среды. Кроме того, на выбор той или иной среды влияют цели исследования.

В настоящее время предложено огромное количество сред, в основу классификации которых положены следующие признаки.

1. Исходные компоненты. По исходным компонентам различают натуральные и синтетические среды. Натуральные среды готовят из продуктов животного и

растительного происхождения. В настоящее время разработаны среды, в которых ценные пищевые продукты (мясо и др.) заменены непищевыми: костной и рыбной мукой, кормовыми дрожжами, сгустками крови и др. Несмотря на то, что состав питательных сред из натуральных продуктов очень сложен и меняется в зависимости от исходного сырья, эти среды нашли широкое применение.

Синтетические среды готовят из определенных химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворенных в дважды дистиллированной воде. Важное преимущество этих сред в том, что состав их постоянен (известно, сколько и какие вещества в них входят), поэтому эти среды легко воспроизводимы.

2. Консистенция (степень плотности). Среды бывают жидкие, плотные и полужидкие. Плотные и полужидкие среды готовят из жидких веществ, к которым для получения среды нужной консистенции прибавляют обычно агар-агар или желатин.

Агар-агар - полисахарид, получаемый из определенных

сортов морских водорослей. Он не является для микроорганизмов питательным веществом и служит только для уплотнения среды. В воде агар плавится при 80- 100°С, застывает при 40-45°С.

Желатин - белок животного происхождения. При 25- 30°С желатиновые среды плавятся, поэтому культуры на них обычно выращивают при комнатной температуре. Плотность этих сред при рН ниже 6,0 и выше 7,0 уменьшается, и они плохо застывают. Некоторые микроорганизмы используют желатин как питательное вещество - при их росте среда разжижается.

Кроме того, в качестве плотных сред применяют свернутую сыворотку крови, свернутые яйца, картофель, среды с селикагелем.

3. Состав. Среды делят на простые и сложные. К первым относят мясопептонный бульон (МПБ), мясопептонный агар (МПА), бульон и агар Хоттингера, питательный желатин и пептонную воду. Сложные среды готовят, прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества, необходимые для размножения того или иного микроорганизма.

4. Назначение: а) основные (общеупотребительные) среды служат для культивирования большинства патогенных микробов. Это вышеупомянутые МП А, МПБ, бульон и агар Хоттингера, пептонная вода;

б) специальные среды служат для выделения и выращивания микроорганизмов, не растущих на простых средах. Например, для культивирования стрептококка к средам прибавляют сахар, для пневмо- и менингококков - сыворотку крови, для возбудителя коклюша - кровь;

в) элективные (избирательные) среды служат для выделения определенного вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Так, соли желчных кислот, подавляя рост кишечной палочки, делают среду

элективной для возбудителя брюшного тифа. Среды становятся элективными при добавлении к ним определенных антибиотиков, солей, изменении рН.

Жидкие элективные среды называют средами накопления. Примером такой среды служит пептонная вода с рН 8,0. При таком рН на ней активно размножается холерный вибрион, а другие микроорганизмы не растут;

г) дифференциально-диагностические среды позволяют отличить (дифференцировать) один вид микробов от другого по ферментативной активности, например среды Гисса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды;

д) консервирующие среды предназначены для первичного посева и транспортировки исследуемого материала; в них предотвращается отмирание патогенных микроорганизмов и подавляется развитие сапрофитов. Пример такой среды - глицериновая смесь, используемая для сбора испражнений при исследованиях, проводимых с целью обнаружения ряда кишечных бактерий.

Гепатит (А,Е)

Возбудитель гепатита A (HAV-Hepatitis A virus) относится к семейству пикорнавирусов, роду энтеровирусов. Вызыва­ет наиболее распространенный вирусный гепатит, который имеет несколько исторических названий (инфекционный, эпидемический гепатит, болезнь Боткина и др.). В нашей стране около 70 % случаев вирусного гепатита вызывается вирусом гепатита А. Вирус впервые был обнаружен С. Фейстоуном в 1979 г. в фекалиях боль­ных методом иммунной электронной микроскопии.

Структура и химический состав. По морфологии и структуре вирус гепатита А близок ко всем энтеровирусам (см. 21.1.1.1). В РНК вируса гепатита А обнаружены нуклеотидные после­довательности, общие с другими энтеровирусами.

Вирус гепатита А имеет один вирусспецифический антиген белковой природы. HAV отличается от энтеровирусов более высокой устойчивостью к действию физических и химических факторов. Он частично инактивируется при нагревании до 60°С в течение 1 ч, при 100 °С разрушается в течение 5 мин, чувст­вителен к действию.формалина и УФ-излучению.

Культивирование и репродукция. Вирус гепатита обладает пониженной способностью к репродукции в культурах клеток. Однако его удалось адаптировать к перевиваемым линиям кле­ток человека и обезьян. Репродукция вируса в культуре кле­ток не сопровождается ЦПД. HAV почти не выявляется в куль-туральной жидкости, поскольку ассоциирован с клетками, в ци­топлазме которых он репродуцируется:

Патогенез заболеваний человека и иммунитет. HAV так же, как и другие энтеровирусы, с пищей попадает в желудочно-кишечный тракт, где репродуцируется в эпителиальных клетках слизистой оболочки тонкой кишки и регионарных лимфатичес­ких узлах. Затем возбудитель проникает в кровь, в которой он обнаруживается в конце инкубационного периода и в первые дни заболевания.

В отличие от других энтеровирусов основной мишенью по­ражающего действия HAV являются клетки печени, в цитоплазме которых происходит его репродукция. Не исключена возможность поражения гепатоцитов NK-клетками (натуральными киллера­ми), которые в активированном состоянии могут взаимодейство­вать с ними, вызывая их разрушение. Активация NK-клеток происходит и в результате их взаимодействия с интерфероном, индуцированным вирусом. Поражение гепатоцитов сопровожда­ется развитием желтухи и повышением уровня трансаминаз в сыворотке крови. Далее возбудитель с желчью попадает в про­свет кишечника и выделяется с фекалиями, в которых отме­чается высокая концентрация вируса в конце инкубационного периода и в первые дни заболевания (до развития желтухи). Гепатит А обычно заканчивается полным выздоровлением, ле­тальные исходы редки.

После перенесения клинически выраженной или бессимптом­ной инфекции формируется пожизненный гуморальный иммуни­тет, связанный с синтезом противовирусных антител. Иммуно­глобулины класса IgM исчезают из сыворотки через 3-4 мес после начала заболевания, в то время как IgG сохраняются в течение многих лет. Установлен также синтез секреторных им­муноглобулинов SlgA.

Эпидемиология. Источником инфекции являются больные люди, в том числе и с распространенной бессимптомной фор­мой инфекции. Вирус гепатита А широко циркулирует среди на­селения. На Европейском континенте сывороточные антитела против HAV содержатся у 80 % взрослого населения, достигше­го 40-летнего возраста. В странах с низким социально-экономи­ческим уровнем инфицирование происходит уже в первые годы жизни. Гепатитом А часто болеют дети.

Больной наиболее опасен для окружающих в конце инкуба­ционного периода и в первые дни разгара болезни (до появле­ния желтухи) в связи с максимальным выделением вируса с фекалиями. Основной механизм передачи - фекально-ораль-ный - через пищу, воду, предметы обихода, детские игрушки.

Лабораторная диагностика проводится путем выявления ви­руса в фекалиях больного методом иммуноэлектронной микро-скопии. Вирусный антиген в фекалиях может Оыть также обна^ ружен с помощью иммуноферментного и радиоиммунного ана­лиза. Наиболее широко применяется серодиагностика гепатита - выявление теми же методами в парных сыворотках крови анти­тел класса IgM, которые достигают высокого титра в течение пер­вых 3-6 нед.

Специфическая профилактика. Вакцинопрофилактика гепа­тита А находится в стадии разработки. Испытываются инактивированная и живая культуральные вакцины, производство которых затруднено в связи со слабой репродукцией вируса в культурах клеток. Наиболее перспективной является разработка генно-инженерной вакцины. Для пассивной иммунопрофилактики гепатита А используют иммуноглобулин, полученный из смеси донорских сывороток.

Возбудитель гепатита Е имеет некоторое сходство с кали-цивирусами. Размер вирусной частицы 32-34 нм. Генетичес­кий материал представлен РНК. Передача вируса гепатита Е, так же как HAV, происходит энтеральным путем. Серодиагно­стика проводится путем определения антител к антигену Е-вируса.

Механизмы формирования защитных реакций

Защита организма от всего чужеродного (микроорганизмов, чужеродных макромолекул, клеток, тканей) осуществляется с помощью неспецифических факторов защиты и специфических факторов защиты – иммунных реакций.

Неспецифические факторы защиты возникли в филогенезе раньше, чем иммунные механизмы и первыми включаются в защиту организма от различных антигенных раздражителей, степень их активности не зависит от иммуногенных свойств и кратности воздействия патогена.

Иммунные факторы защиты действуют строго специфически (на антиген-А вырабатываются только анти-А-антитела или анти-А-клетки), и в отличие от неспецифических факторов защиты сила иммунной реакции регулируется анти­геном, его типом (белок, полисахарид), количеством и кратностью воздействия.

К неспецифическим факторам защиты организма относятся:

1. Защитные факторы кожи и слизистых оболочек.

Кожа и слизистые покровы образуют первый барьер защиты организма от инфекций и других вредных воздействий.

2.Воспалительные реакции.

3.Гуморальные вещества сыворотки и тканевой жидкости (гуморальные факторы защиты).

4.Клетки с фагоцитарными и цитотоксическими свойствами (клеточные факторы защиты),

Специфические факторы защиты или иммунные механизмы защиты включают:

1. Гуморальный иммунитет.

2. Клеточный иммунитет.

1. Защитные свойства кожи и слизистых оболочек обусловлены:

а) механической барьерной функцией кожи и слизистых покровов. Нор­мальная неповрежденная кожа и слизистые оболочки непроницаемы для микро­организмов;

б) присутствием на поверхности кожи жирных кислот, смазывающих и обеззараживающих поверхность кожи;

в) кислой реакцией секретов, выделяющихся на поверхность кожи и сли­зистых оболочек, содержанием в секретах лизоцима, пропердина и других фер­ментативных систем, действующих бактерицидно на микроорганизмы. На кожу открываются потовые и сальные железы, секреты которых имеют кислую рН.

В секретах желудка и кишечника содержатся пищеварительные фермен­ты, которые подавляют развитие микроорганизмов. Кислая реакция желудочно­го сока не пригодна для развития большинства микроорганизмов.



Слюна, слеза и другие секреты в норме обладают свойствами, не допус­кающими развития микроорганизмов.

Воспалительные реакции.

Воспалительная реакция является нормальной реакцией организма. Разви­тие воспалительной реакции приводит к привлечению к месту воспаления фагоцитирующих клеток и лимфоцитов, активации тканевых макрофагов и выделе­нию из клеток, вовлеченных в воспаление, биологически активных соединений и веществ с бактерицидными и бактериостатическими свойствами.

Развитие воспаления способствует локализации патологи­ческого процесса, элиминации из очага воспаления факторов, вызвавших вос­паление, восстановлению структурной целостности ткани и органа. Схематично процесс острого воспаления приведен на рис. 3-1.

Р и с. 3-1. Острое воспаление.

Слева направо представлены процессы, происходящие в тканях и сосудах при повреждении тканей и развитии в них воспаления. Как правило, повреждение тканей сопровождается развитием инфекции (на рисунке бактерии обозначены черными палочками). Центральную роль в остром воспалительном процессе играют тканевые тучные клетки, макрофаги и поступающие из крови полиморфно-ядерные лейкоциты. Они являются источником биологически активных веществ, провоспалительных цитокинов, лизосомных ферментов, всех факторов проявления воспаления: покраснение, жар, отек, болезненность. При переходе острого воспаления в хроническое основная роль в поддержании воспаления переходит к макрофагам и Т-лимфоцитам.

Гуморальные факторы защиты.

К неспецифическим гуморальным факторам защиты относятся: лизоцим, комплемент, пропердин, В-лизины, интерферон.

Лизоцим. Лизоцим открыт П. Л. Лащенко. В 1909 г. он впервые обнару­жил, что яичный белок содержит особое вещество, способное бактерицидно действовать на некоторые виды бактерий. Позже было установлено, что это действие обусловлено особым ферментом, который в 1922 г. Флемингом назван лизоцимом.

Лизоцим представляет собой фермент мурамидазу. По сво­ей природе лизоцим является белком, состоящим из 130-150 аминокислотных остатков. Оптимальную активность фермент проявляет при рН = 5,0-7,0 и темпе­ратуре +60С°

Лизоцим содержится во многих секретах человека (слезе, слюне, молоке, кишечной слизи), скелетных мышцах, спинном и головном мозге, в околоплод­ных оболочках и водах плода. В плазме крови его концентрация составляет 8,5±1,4 мкг/л. Основная масса лизоцима в организме синтезируется тканевыми макрофагами и нейтрофилами. Снижение титра лизоцима в сыворотке наблюдается при тяжелых инфекционных заболеваниях, воспалении легких и др.

Лизоцим оказывает следующие биологические эффекты:

1) повышает фагоцитоз нейтрофилов и макрофагов (лизоцим, изменяя по­верхностные свойства микробов, делает их легкодоступными фагоцитозу);

2) стимулирует синтез антител;

3) удаление лизоцима из крови приводит к снижению в сыворотке уровня комплемента, пропердина, В-лизинов;

4) усиливает литическое действие гидролитических ферментов на бакте­рии.

Комплемент. Система комплемента открыта в 1899 г. Ж. Борде. Ком­племент представляет собой комплекс белков сыворотки крови, состоящий бо­лее чем из 20 компонентов. Основные компоненты комплемента обозначаются буквой С и имеют номера от 1 до 9: С1, С2, СЗ, С4, С5, С6, С7.С8.С9. (Табл. 3-2.).

Т а б л и ц а 3-2. Характеристика белков системы комплемента человека.

Обозначение Содержание углеводов, % Молекулярная масса, кД Количество цепей PI Содержание в сыворотке, мг/л
Clq 8,5 10-10,6 6,80
С1r 2 9,4 11,50
C1s 7,1 16,90
С2 + 5,50 8,90
С4 6,9 6,40 8,30
СЗ 1,5 5,70 9,70
С5 1,6 4,10 13,70
С6 10,80
С7 5,60 19,20
С8 6,50 16,00
С9 7,8 4,70 9,60
Фактор D - 7,0; 7,4
Фактор В + 5,7; 6,6
Пропердин Р + >9,5
Фактор Н +
Фактор I 10,7
S-белок, Витронектин + 1(2) . 3,90
ClInh 2,70
C4dp 3,5 540, 590 6-8
DAF
C8bp
CR1 +
CR2 +
CR3 +
С3а - 70*
С4а - 22*
С5а 4,9*
Карбокси-пеп-тидаза М (ин-активатор анафила-токсинов)
Clq-I
M-Clq-I 1-2
Протектин (CD 59) + 1,8-20

* - в условиях полной активации

Продуцируются компоненты комплемента в печени, костном мозге, селе­зёнке. Основными клетками продуцентами комплемента являются макрофаги. С1-компонент продуцируется эпителиоцитами кишечника.

Компоненты комплемента представлены в виде: проферментов (эстераз, протеиназ), белковых молекул, не обладающих ферментативной активностью, и в виде ингибиторов системы комплемента. В обычных условиях компоненты комплемента находятся в неактивной форме. Факторами, активирующими систему комплемента, являются ком­плексы антиген-антитело, агрегированные иммуноглобулины, вирусы, бакте­рии.

Активация системы комплемента приводит к активации литических ферментов комплемента C5-C9, – так называемого мембрано-атакующего комплекса (МАК), который, встраиваясь в мембрану животных и микробных клеток, фор­мирует трансмембранную пору, что приводит к гипергидратации клетки и её гибели. (Рис. 3-2, 3-3).


Р и с. 3-2. Графическая модель активации комплемента.

Р и с. 3-3. Структура активированного комплемента.

Существует 3 пути активации системы комплемента:

Первый путь - классический. (Рис. 3-4).

Р и с. 3-4. Механизм классического пути активации комплемента.

Е – эритроцит или другая клетка. А – антитело.

При этом способе активация литических ферментов МАК С5-С9 осущест­вляется через каскадную активацию C1q, C1r, С1s, С4, С2, с последующим во­влечением в процесс центральных компонентов СЗ-С5 (Рис.3-2, 3-4). Основным ак­тиватором комплемента по классическому пути являются комплексы антиген-антитело, образованные иммуноглобулинами классов G или М.

Второй путь – обводной, альтернативный (Рис. 3-6).

Р и с. 3-6. Механизм альтернативного пути активации комплемента.

Этот механизм активации комплемента запускается вирусами, бактериями, агрегированными иммуноглобулинами, протеолитическими ферментами.

При этом способе активация литических ферментов МАК С5-С9 начина­ется с активации СЗ компонента. В этом механизме активации комплемента не участвуют первые три компонента комплемента С1, С4, С2, но в активации СЗ дополнительно участвуют факторы В и Д.

Третий путь представляет собой неспецифическую активацию системы комплемента протеиназами. Такими активаторами могут служить: трипсин, плазмин, калликреин, лизосомные протеазы и бактериальные ферменты. Акти­вация системы комплемента при этом способе может происходить на любом от­резке от С 1 до С5.

Активация системы комплемента способна вызывать следующие биоло­гические эффекты:

1) лизис микробных и соматических клеток;

2) содействие отторжению трансплантата;

3) высвобождение из клеток биологически активных веществ;

4) усиление фагоцитоза;

5) агрегацию тромбоцитов, эозинофилов;

6) усиление лейкотаксиса, миграцию нейтрофилов из костного мозга и высвобождение из них гидролитических ферментов;

7) через выделение биологически активных веществ и увеличение прони­цаемости сосудов содействие развитию воспалительной реакции;

8) содействие индукции иммунного ответа;

9) активация свёртывающей системы крови.

Р и с. 3-7. Схема классического и альтернативного путей активации комплемента.

Врожденный дефицит компонентов комплемента снижает устойчивость организма к инфекционным и аутоиммунным заболеваниям.

Пропердин. В 1954г. Пиллимер впервые обнаружил в крови особый вид белков, способных активировать комплемент. Этот белок получил название пропердин.

Пропердин относится к классу гамма-иммуноглобулинов, имеет м.м. 180 000 дальтон. В сыворотке здоровых людей он находится в неактивной форме. Активация пропердина происходит после соединения его с фактором В на поверхности клеток.

Активированный пропердин способствует:

1) активации комплемента;

2) освобождению гистамина из клеток;

3) продукции хемотаксических факторов, привлекающих фагоциты к месту воспаления;

4) процессу коагуляции крови;

5) формированию воспалительной реакции.

Фактор В. Представляет собой белок крови глобулиновой природы.

Фактор Д . Протеиназы, имеющие м.м. 23 000. В кро­ви представлены активной формой.

Факторы В и Д участвуют в активации комплемента по альтернативному пути.

В-лизины. Белки крови различной молекулярной массы, обладающие бактерицидными свойствами. Бактерицидное действие В-лизины проявляют как в присутствии, так и в отсутствие комплемента и анти­тел.

Интерферон. Комплекс молекул белко­вой природы, способных предотвращать и подавлять развитие вирусной инфек­ции.

Существует 3 типа интерферона:

1) альфа-интерферон (лейкоцитарный), продуцируется лейкоцитами, представлен 25 подтипами;

2) бета-интерферон (фибробластный), продуцируется фибробластами, представлен 2 подтипами;

3) гамма-интерферон (иммунный), продуцируется, главным образом, лимфоцитами. Гамма-интерферон известен как один тип.

Образование интерферона происходит спонтанно, а также под влиянием вирусов.

Все типы и подтипы интерферонов имеют единый механизм антивирусно­го действия. Он представляется следующим: ин­терферон, связываясь со специфическими рецепторами незараженных клеток, вызывает в них биохимические и генетические изменения, приводящие к снижению трансляции м-РНК в клетках и активации латентных эндонуклеаз, кото­рые, переходя в активную форму, способны вызывать деградацию м-РНК как вируса, так и самой клетки. Это приводит к тому, что клетки становятся нечув­ствительными к вирусной инфекции, создавая барьер вокруг очага инфекции.


Под резистентностью организма понимают его устойчивость против различных болезнетворных воздействий (от лат. resisteo – сопротивление). Резистентность организма к неблагоприятным воздействиям определяется многими факторами, многими барьерными приспособлениями, которые препятствуют негативному воздействию механических, физических, химических и биологических факторов.

Клеточные неспецифические факторы защиты

К числу клеточных неспецифических факторов защиты относят защитную функцию кожи, слизистых оболочек, костной ткани, местные воспалительные процессы, способность центра теплорегуляции изменять температуру тела, способность клеток организма вырабатывать интерферон, клетки системы мононуклеарных фагоцитов.

Кожа обладает барьерными свойствами благодаря многослойному эпителию и его производным (волосы, перья, копыта, рога), наличию рецепторных образований, клеток макрофагальной системы, секрета, выделяемого железистым аппаратом.

Неповрежденная кожа здоровых животных оказывает сопротивление механическим, физическим, химическим факторам. Она представляет собой непреодолимый барьер для проникновения большинства патогенных микробов, препятствует проникновению возбудителей болезни не только механически. Она обладает способностью к самоочищению путем постоянного слущивания поверхностного слоя, выделения секретов потовыми и сальными железами. Кроме того, кожа обладает бактерицидными свойствами по отношению ко многим микроорганизмам потовыми и сальными железами. Кроме того, кожа обладает бактерицидными свойствами по отношению ко многим микроорганизмам. Ее поверхность представляет собой среду, неблагоприятную для развития вирусов, бактерий, грибов. Это объясняется кислой реакцией, создаваемой секретами сальных и потовых желез (рН – 4,6) на поверхности кожи. Чем ниже показатель рН, тем выше бактерицидность. Большое значение придают сапрофитам кожи. Видовой состав постоянной микрофлоры слагается из эпидермальных стафилококков до 90%, некоторых других бактерий и грибов. Сапрофиты способны выделять вещества, губительно действующие на патогенных возбудителей. По видовому составу микрофлоры можно судить о степени сопротивляемости организма, об уровне резистентности.

Кожные покровы содержат клетки макрофагальной системы (клетки Лангерганса) способные передавать информацию об антигенах Т-лимфацитам.

Барьерные свойства кожи зависят от общего состояния организма, определяемого полноценным кормлением, уходом за покровными тканями, характером содержания, эксплуатации. Известно, что истощенные телята легче заражаются микроспорией, трихофетией.

Слизистые оболочки ротовой полости, пищевода, желудочно-кишечного тракта, дыхательных и мочеполовых путей, покрытые эпителием, представляют собой барьер, препятствие для проникновения различных вредных факторов. Неповрежденная слизистая оболочка представляет собой механическое препятствие для некоторых химических и инфекционных очагов. Благодаря наличию ресничек мерцательного эпителия с поверхности дыхательных путей выводятся во внешнюю среду инородные тела, микроорганизмы, попадающие с вдыхаемым воздухом.

При раздражении слизистых оболочек химическими соединениями, инородными предметами, продуктами жизнедеятельности микроорганизмов возникают защитные реакции в виде чихания, кашля, рвоты, диареи, что способствует удалению вредных факторов.

Повреждение слизистой оболочки ротовой полости предупреждается усиленным слюноотделением, повреждение конъюнктивы – обильным отделением слезной жидкости, повреждение слизистой оболочки носа – серозным экссудатом. Секреты желез слизистых оболочек обладают бактерицидными свойствами за счет наличия в них лизоцима. Лизоцим способен лизировать стафило- и стрептококков, сальмонелл, туберкулезных и многих других микроорганизмов. Благодаря наличию хлористоводородной кислоты желудочный сок подавляет размножение микрофлоры. Защитную роль играют микроорганизмы, заселяющие слизистую оболочку кишечника, мочеполовых органов здоровых животных. Микроорганизмы принимают участие в переработке клетчатки (инфузории преджелудков жвачных), синтезе белка, витаминов. Основным представителем нормальной микрофлоры в толстом кишечнике является кишечная палочка (Escherichia coli). Она ферментирует глюкозу, лактозу, создает неблагоприятные условия для развития гнилостной микрофлоры. Снижение резистентности животных, особенно у молодняка, превращает кишечную палочку в патогенного возбудителя. Защиту слизистых оболочек осуществляют макрофаги, предупреждающие проникновение чужеродных антигенов. На поверхности слизистых оболочек сконцентрированы секреторные иммуноглобулины, основу которых составляет иммуноглобулины класса А.

Костная ткань выполняет многообразные защитные функции. Одна из них – защита центральных нервных образований от механических повреждений. Позвонки предохраняют спинной мозг от травм, а кости черепа защищают головной мозг, покровные структуры. Ребра, грудная кость выполняют защитную функцию в отношении легких и сердца. Длинные трубчатые кости оберегают основной орган кроветворения – красный костный мозг.

Местные воспалительные процессы, прежде всего, стремятся предупредить распространение, генерализацию патологического процесса. Вокруг очага воспаления начинает формироваться защитный барьер. Первоначально он обусловлен скоплением экссудата – жидкости, богатой белками, адсорбирующими токсические продукты. В последующем на границе между здоровой и поврежденной тканями образуется демаркационный вал из соединительно-тканных элементов.

Способность центра теплорегуляции изменять температуру тела имеет важное значение для борьбы с микроорганизмами. Высокая температура тела стимулирует обменные процессы, функциональную активность клеток ретикуломакрофагальной системы, лейкоцитов. Появляются молодые формы клеток белой крови – юные и палочкоядерные нейтрофилы, богатые ферментами, что повышает их фагоцитарную активность. Лейкоциты в повышенных количествах начинают продуцировать иммуноглобулины, лизоцим.

Микроорганизмы при высокой температуре теряют устойчивость к антибиотикам, другим лекарственным препаратам, а это создает условия для эффективного лечения. Естественная резистентность при умеренных лихорадках возрастает за счет эндогенных пирогенов. Они стимулируют иммунную, эндокринную, нервную системы, определяющие устойчивость организма. В настоящее время в ветеринарных клиниках применяются бактериальные очищенные пирогены, стимулирующие естественную резистентность организма и понижающие сопротивляемость патогенной микрофлоры к антибактериальным препаратам.

Центральным звеном клеточных факторов защиты является система мононуклеарных фагоцитов. К этим клеткам относятся моноциты крови, гистиоциты соединительной ткани, купферовские клетки печени, легочные, плевральные и перитонеальные макрофаги, свободные и фиксированные макрофаги, свободные и фиксированные макрофаги лимфоузлов, селезенки, красного костного мозга, макрофаги синовиальных оболочек суставов, остеокласты костной ткани, клетки микроглии нервной системы, эпителиоидные и гигантские клетки воспалительных очагов, эндотелиальные клетки. Макрофаги осуществляют бактерицидную активность благодаря фагоцитозу, а также они способны секретировать большое количество биологически активных веществ, обладающих цитотоксическими свойствами в отношении микроорганизмов и опухолевых клеток.

Фагоцитоз – это способность определенных клеток организма поглощать и переваривать чужеродные начала (вещества). Клетки, противостоящие возбудителям заболеваний, освобождающие организм от собственных, генетически чужеродных клеток, их обломков, инородных тел, были названы И.И. Мечниковым (1829 г.) фагоцитами (от греческого phaqos – пожирать, cytos – клетка). Все фагоциты подразделяют на микрофаги и макрофаги. К микрофагам относят нейтрофилы и эозинофилы, к макрофагам – все клетки системы мононуклеарных фагоцитов.

Процесс фагоцитоза сложный, многоэтажный. Начинается он сближением фагоцита с возбудителем, затем наблюдают прилипание микроорганизма к поверхности фагоцитирующей клетки, дальше поглощение с образованием фагосомы, внутриклеточное объединение фагосомы с лизосомой и, наконец, переваривание объекта фагоцитоза лизосомальными ферментами. Однако не всегда клетки взаимодействуют подобным образом. Вследствие ферментативной недостаточности лизосомальных протеаз фагоцитоз может быть неполным (незавершенным), т.е. протекает только три стадии и микроорганизмы могут сохраняться в фагоците в латентном состоянии. При неблагоприятных для макроорганизма условиях бактерии становятся способными к размножению и, разрушая фагоцитарную клетку, вызывают инфекцию.

Гуморальные неспецифические факторы защиты

К гуморальным факторам, обеспечивающим резистентность организма, относят комплимент, лизоцим, интерферон, пропердин, С-реактивный белок, нормальные антитела, бактерицидин.

Комплемент – сложная многофункциональная система белков сыворотки крови, которая участвует в таких реакциях, как опсонизация, стимуляция фагоцитоза, цитолиз, нейтрализация вирусов, индукция иммунного ответа. Известно 9 фракций комплемента, обозначаемых С 1 – С 9 , находящихся в сыворотке крови в неактивном состоянии. Активизация комплемента происходит под действием комплекса антиген-антитела и начинается с присоединения к этому комплексу С 1 1 . Для этого необходимо присутствие солей Са и Мq. Бактерицидная активность комплемента проявляется с самых ранних этапов жизни плода, однако, в период новорожденности активность комплемента наиболее низкая по сравнению с другими возрастными периодами.

Лизоцим – представляет собой фермент из группы гликозидаз. Впервые лизоцим описан Флетингом в 1922 году. Он секретируется постоянно, выявляется во всех органах и тканях. В организме животных лизоцим находится в крови, слезной жидкости, слюне, секрете слизистых оболочек носа, в желудочном и дуоденальном соке, молоке, амниотической жидкости плодов. Особенно богаты лизоцимом лейкоциты. Способность лизоцима лизировать микроорганизмы чрезвычайно велика. Он не теряет этого свойства даже в разведении 1:1000000. Первоначально считалось, что лизоцим активен лишь в отношении грамположительных микроорганизмов, однако в настоящее время установлено, что в отношении грамотрицательных бактерий он действует совместно с комплементом цитолитически, проникая через поврежденную им клеточную стенку бактерий к объектам гидролиза.

Пропердин (от лат. perdere – разрушать) белок сыворотки крови глобулинового типа, обладающий бактерицидными свойствами. В присутствии комплимента и ионов магния проявляет бактерицидное действие в отношении граммположительных и граммотрицательных микроорганизмов, а также способен инактивировать вирусы гриппа, герпеса, проявляет бактерицидность по отношению ко многим патогенным и условно-патогенным микроорганизмам. Уровень пропердина в крови животных отражает состояние их резистентности, чувствительность к инфекционным заболеваниям. Выявлено снижение его содержания у облученных животных, больных туберкулезом, при стрептококковой инфекции.

С-реактивный белок – подобно иммуноглобулинам, обладает способностью инициировать реакции преципитации, агглютинации, фагоцитоза, связывание комплемента. Кроме того С-реактивный белок повышает подвижность лейкоцитов, что дает основание говорить об его участии в формировании неспецифической устойчивости организма.

С-реактивный белок находят в сыворотке крови при острых воспалительных процессах, и он может служить показателями активности этих процессов. В нормальной сыворотке крови этот белок не определяется. Он не проходит через плаценту.

Нормальные антитела присутствуют в сыворотке крови практически всегда и принимают постоянное участие в неспецифической защите. Образуются в организме как нормальный компонент сыворотки в результате контакта животного с очень большим количеством различных микроорганизмов окружающей среды или некоторых белков рациона.

Бактерицидин представляет собой фермент, который в отличие от лизоцима действует на внутриклеточные субстанции.



Неспецифические факторы естественной резистентности защищают организм от микробов при первой встрече с ними. Эти же факторы участвуют и в формировании приобретенного иммунитета.

Ареактивность клеток является наиболее стойким фактором есте­ственной защиты. При отсутствии клеток, чувствительных к данному микробу, токсину, вирусу организм полностью защищен от них. Так, например, крысы нечувствительны к дифтерийному токсину.

Кожа и слизистые оболочки представляют собой механический ба­рьер для большинства патогенных микробов. Кроме того, на микробы губительно действуют выделения потовых и сальных желез, содержа­щие молочную и жирные кислоты. Чистая кожа обладает более силь­ными бактерицидными свойствами. Удалению микробов с кожи спо­собствует слущивание эпителия.

В секретах слизистых оболочек содержится лизоцим (lysozyme) -фермент, лизирующий клеточную стенку бактерий, главным образом, грамположительных. Лизоцим содержится в слюне, секрете конъюнк­тивы, а также в крови, в макрофагах, в слизи кишечника. Открыт впер­вые П.Н. Лащенковым в 1909 г. в белке куриного яйца.

Эпителий слизистых оболочек дыхательных путей является препят­ствием для проникновения патогенных микробов в организм. Частицы пыли и капли жидкости выбрасываются наружу со слизью, выде­ляющейся из носа. Из бронхов и трахеи попавшие сюда частицы выводятся движением ресничек эпителия, направленным кнаружи. Эта функция мерцательного эпителия обычно нарушена у злостных ку­рильщиков. Немногие частички пыли и микробы, достигшие легочных альвеол, захватываются фагоцитами и обезвреживаются.

Секрет пищеварительных желез. Желудочный сок губительно дей­ствует на микробов, поступающих с водой и пищей, благодаря нали­чию соляной кислоты и ферментов. Пониженная кислотность же­лудочного сока способствует ослаблению сопротивляемости к кишеч­ным инфекциям, таким как холера, брюшной тиф, дизентерия. Бакте­рицидным действием обладают также желчь и ферменты кишечного содержимого.



Лимфатические узлы. Микробы, проникшие через кожу и слизис­тые оболочки, задерживаются в регионарных лимфатических узлах. Здесь они подвергаются фагоцитозу. В лимфатических узлах также со­держатся так называемые нормальные (естественные) киллеры-лим­фоциты (англ, killer - убийца), несущие функцию противоопухолевого надзора - разрушение собственных клеток организма, измененных вследствие мутаций, а также клеток, содержащих вирусы. В отличие от иммуных лимфоцитов, формирующихся в результате иммунного ответа, естественные киллеры распознают чужеродные агенты без пред­варительного контакта с ними.

Воспаление (сосудисто-клеточная реакция)- одна из филогенетически древних защитных реакций. В ответ на проникновение микробов формируется местный воспалительный очаг в результате сложных из­менений микроциркуляции, системы крови и клеток соединительной ткани. Воспалительная реакция способствует удалению микробов или задерживает их развитие и поэтому играет защитную роль. Но в ряде случаев, при повторном попадании агента, вызвавшего воспале­ние, оно может принять характер повреждающей реакции.

Гуморальные факторы защиты . В крови, лимфе и других жидкостях организма (лат. humor - жидкость) находятся вещества, обладающие антимикробной активностью. К гуморальным факторам неспе­цифической защиты относятся: комплемент, лизоцим, бета-лизины, лейкины, противовирусные ингибиторы, нормальные антитела, интерфероны.

Комплемент - важнейший гуморальный защитный фактор крови, представляет собой комплекс белков, которые обозначаются как С1, С2, СЗ, С4, С5, ... С9. Вырабатываются клетками печени, макрофагами и нейтрофилами. В организме комплемент находится в неактивном со­стоянии. Активируясь, белки приобретают свойства ферментов.

Лизоцим вырабатывается моноцитами крови и тканевыми макро­фагами, оказывает лизирующее действие на бактерии, термостабилен.

Бета-лизин выделяется тромбоцитами, обладает бактерицидными свойствами, термостабилен.

Нормальные антитела содержатся в крови, возникновение их не связано с заболеванием, они оказывают антимикробное действие, спо­собствуют фагоцитозу.

Интерферон - белок, вырабатываемый клетками в организме, а также культурами клеток. Интерферон подавляет развитие вируса в клетке. Явление интерференции заключается в том, что в клетке, зара­женной одним вирусом, вырабатывается белок, подавляющий разви­тие других вирусов. Отсюда название - интерференция (лат. inter - между + ferens - переносящий). Интерферон открыли А. Айзеке и Дж. Линденман в 1957 г.

Защитное действие интерферона оказалось неспецифическим в от­ношении вируса, так как один и тот же интерферон защищает клетки от разных вирусов. Но он обладает видовой специфичностью. Поэто­му в организме человека действует тот интерферон, который образо­ван клетками человека.

В дальнейшем было обнаружено, что синтез интерферона в клет­ках может быть индуцирован не только живыми вирусами, но и убиты­ми вирусами, бактериями. Индукторами интерферона могут быть не­которые лекарственные средства.

В настоящее время известно несколько интерферонов. Они не толь­ко препятствуют размножению вируса в клетке, но и задерживают рост опухолей и оказывают иммуномодулирующее действие, то есть норма­лизуют иммунитет.

Интерфероны разделяют на три класса: альфа-интерферон (лейкоци­тарный), бета-интерферон (фибробластный), гамма-интерферон (иммунный).

Лейкоцитарный а-интерферон продуцируют в организме в основ­ном макрофаги и В-лимфоциты. Донорский препарат альфа-интерферона получают в культурах донорских лейкоцитов, подвергнутых действию индуктора интерферона. Применяется как противовирусное средство.

Фибробластный бета-интерферон в организме продуцируют фибробласты и эпителиальные клетки. Препарат бета-интерферона получают в культурах диплоидных клеток человека. Обладает противовирусным и противоопухолевым действием.

Иммунный гамма-интерферон в организме продуцируют, в основном, Т-лимфоциты, стимулированные митогенами. Препарат гамма-интерферо-на получают в культуре лимфобластов. Обладает иммуностимулирую­щим действием: усиливает фагоцитоз и активность естественных килле­ров (NK-клеток).

Продукция интерферона в организме играет роль в процессе выз­доровления больного инфекционным заболеванием. При гриппе, на­пример, продукция интерферона возрастает в первые дни заболевания, в то время как титр специфических антител достигает максимума толь­ко к 3-й неделе.

Способность людей продуцировать интерферон выражена в разной степени. "Интерфероновый статус" (ИФН-статус) характеризует состояние системы интерферона:

2) способность лейкоцитов, полученных от пациента, вырабаты­вать интерферон в ответ на действие индукторов.

В лечебной практике применяют альфа-, бета-, гамма-интерфероны естест­венного происхождения. Получены также рекомбинантные (генноинженерные) интерфероны: реаферон и другие.

Эффективным в лечении многих заболеваний является применение индукторов, способствующих выработке в организме эндогенного ин­терферона.

И.И.Мечников и его учение о невосприимчивости к инфекционным болезням. Фагоцитарная теория иммунитета. Фагоцитоз: фагоцитирующие клетки, стадии фагоцитоза и их характеристика. Показатели для характеристики фагоцитоза.

Фагоцитоз - процесс активного поглощения клетками организма микробов и других чужеродных частиц (греч. phagos - пожирающий + kytos - клетка), в том числе собственных погибших клеток организма. И.И. Мечников - автор фагоцитарной теории иммунитета - по­казал, что явление фагоцитоза - это проявление внутриклеточного пе­реваривания, которое у низших животных, например, у амеб, является способом питания, а у высших организмов фагоцитоз является меха­низмом защиты. Фагоциты освобождают организм от микробов, а так­же уничтожают старые клетки собственного организма.

По Мечникову, все фагоцитирующие клетки подразделяются на макрофаги и микрофаги. К микрофагам относятся полиморфноядерные гранулоциты крови: нейтрофилы, базофилы, эозинофилы. Макро­фаги - это моноциты крови (свободные макрофаги) и макрофаги раз­личных тканей организма (фиксированные) - печени, легких, соедини­тельной ткани.

Микрофаги и макрофаги происходят из единого предшественни­ка - стволовой клетки костного мозга. Гранулоциты крови - это зрелые короткоживущие клетки. Моноциты периферической крови - не­зрелые клетки и, выходя из кровяного русла, попадают в печень, селе­зенку, легкие и другие органы, где созревают в тканевые макрофаги.

Фагоциты выполняют разнообразные функции. Они поглощают и уничтожают чужеродные агенты: микробы, вирусы, отмирающие клетки самого организма, продукты распада тканей. Макрофаги при­нимают участие в формировании иммунного ответа, во-первых, путем презентации (представления) антигенных детерминант (эпитопов на своей мембране и, во-вторых, путем выработки биологически актив­ных веществ - интерлейкинов, которые необходимы для регуляции иммунного ответа.

В процессе фагоцитоза различают несколько стадий :

1) приближение и присоединение фагоцита к микробу - осуще­ствляется благодаря хемотаксису - передвижению фагоцита в направ­лении чужеродного объекта. Передвижение наблюдается вследствие понижения поверхностного натяжения клеточной мембраны фагоци­та и образования псевдоподий. Присоединение фагоцитов к микробу происходит благодаря наличию рецепторов на их поверхности,

2) поглощение микроба (эндоцитоз). Мембрана клетки проги­бается, образуется впячивание, в результате формируемся фагосома -фагоцитарная вакуоль. Этот процесс сшивается при участии ком­племента и специфических антител. Для фагоцитоза микробов, обладающих антифагоцитарной активностью, участие указанных факторов является необходимым;

3) внутриклеточная инактивация микроба. Фагосома сливается с лизосомой клетки, образуется фаголизосома, в которой накаплива­ются бактерицидные вещества и ферменты, в результате действия которых настутет гибель микроба;

4) переваривание микроба и других фагоцитированных частиц происходит в фаголизосомах.

Фагоцитоз, который при­водит к инактивации микро­ба , то есть включает в себя все четыре стадии, называет­ся завершенным. Незавершен­ный фагоцитоз не приводит к гибели и перевариванию мик­робов. Захваченные фагоцита­ми микробы выживают и даже размножаются внутри клетки (например, гонококки).

При наличии приобретен­ного иммунитета к данному микробу антитела-опсонины специфически усиливают фа­гоцитоз. Такой фагоцитоз называется иммунным. В отношении патогенных бактерий, обладающих антифагоцитарной активностью, например, стафилококков, фагоци­тоз возможен только после опсонизации.

Функция макрофагов не ограничивается только фагоцитозом. Мак­рофаги вырабатывают лизоцим, белковые фракции комплемента, уча­ствуют в формировании иммунного ответа: взаимодействуют с Т- и В-лимфоцитами, продуцируют интерлейкины, регулирующие иммунный ответ. В процессе фагоцитоза частицы и вещества самого организма, такие как отмирающие клетки и продукты распада тканей, перевари­ваются макрофагами полностью, то есть до аминокислот, моносахаридов и других соединений. Чужеродные агенты, такие как микро­бы и вирусы, не могут быть полностью разрушены ферментами макро­фага. Чужеродная часть микроба (детерминантная группа- эпитоп) остается непереваренной, передается Т- и В- лимфоцитам, и таким образом начинается формирование иммунного ответа. Макрофаги продуцируют интерлейкины, регулирующие иммунный ответ.

Гуморальные факторы неспецифической защиты

К основным гуморальным факторам неспецифической защиты организма относят - лизоцим, интерферон, систему комплемента, пропердин, лизины, лактоферрин.

Лизоцим относится к лизосомальным ферментам, содержится в слезах, слюне, носовой слизи, секрете слизистых оболочек, сыворотке крови. Он обладает свойством лизировать живые и убитые микроорганизмы.

Интерфероны - белки, обладающие противовирусным, противоопухолевым, иммуномодулирующим действием. Интерферон действует посредством регуляции синтеза нуклеиновых кислот и белков, активируя синтез ферментов и ингибиторов, блокирующих трансляцию вирусных и - РНК.

К неспецифическим гуморальным факторам относят систему комплемента (сложный белковый комплекс, постоянно присутствует в крови и является важным фактором иммунитета). Система комплемента состоит из 20-ти взаимодействующих белковых компонентов, которые могут активироваться без участия антител, образовывать мембраноатакующий комплекс с последующей атакой мембраны чужеродной бактериальной клетки, приводящей к ее разрушению. Цитотоксическая функция комплемента в этом случае активируется непосредственно чужеродным внедрившимся микроорганизмом.

Пропердин принимает участие в разрушении микробной клетки, нейтрализации вирусов и играет значительную роль в неспецифической активации комплемента.

Лизины -- белки сыворотки крови, обладающие способностью лизировать некоторые бактерии.

Лактоферрин является фактором местного иммунитета, защищающий от микробов эпителиальные покровы.

Безопасность технологических процессов и производств

Все существующие защитные меры по принципу их выполнения можно разделить на три основные группы: 1) Обеспечение недоступности для человека токоведущих частей электрооборудования...

Газообразные продукты сгорания

Дымообразование - сложный физико-химический процесс, состоящий из нескольких стадий, вклад которых зависит от условий пиролиза и горения строительных отделочных материалов. Как показали исследования...

Защита от внутреннего облучения при работе с радиоактивными веществами

Санитарные правила (ОСП-72) детально регламентируют правила работы с радиоактивными веществами и меры защиты от переоблучения.Исходя из целей конкретного применения радиоактивных веществ, работы с ними можно разделить на две категории...

Индивидуальные средства защиты работников

Индивидуальные средства защиты. Тушение пожаров

В комплексе защитных мероприятий важное значение имеет обеспечение населения средствами индивидуальной защиты и практическое обучение правильному пользованию этими средствами в условиях применения противником оружия массового поражения...

Обеспечение безопасности людей в чрезвычайных ситуациях

События, происходящие в нашей стране в последнее время, вызвали изменения во всех сферах общественной жизни. Увеличение частоты проявления разрушительных сил природы, числа промышленных аварий и катастроф...

Опасные атмосферные явления (признаки приближения, поражающие факторы, предупреждающие мероприятия и меры защиты)

Охрана и безопасность труда. Анализ производственного травматизма

Молниезащита (громозащита, грозозащита) -- это комплекс технических решений и специальных приспособлений для обеспечения безопасности здания, а также имущества и людей, находящихся в нем. На земном шаре ежегодно происходит до 16-и миллионов гроз...

Пожарная безопасность электроустановок компрессорной станции по перекачке аммиака

Положения эргономики. Безопасность при эксплуатации технических систем. Пожары в населенных пунктах

Для населенных пунктов, расположенных в лесных массивах, органами местного самоуправления должны быть разработаны и выполнены мероприятия...

Понятие "Здоровье" и составляющие здорового образа жизни

Здоровье человека - результат сложного взаимодействия социальных, средовых и биологических факторов. Считается, что вклад различных влияний в состояние здоровья следующий: 1. наследственность - 20%; 2. окружающая среда - 20%; 3...

В жизненном цикле человек и окружающая его среда обитания образуют постоянно действующую систему «человек - среда обитания». Среда обитания - окружающая человека среда, обусловленная в данный момент совокупностью факторов (физических...

Пути обеспечения жизнедеятельности человека

Химические вещества широко используются человеком на производстве и в быту (консервирующие, моющие, чистящие, дезинфицирующие средства, а также средства для покраски и склеивания различных предметов). Все химические вещества...

Пути обеспечения жизнедеятельности человека

Формы существования живой материи на Земле чрезвычайно многообразны: от одноклеточных простейших до высокоорганизованных биологических организмов. С первых дней жизни человека окружает мир биологических существ...

Система физической защиты ядерного объекта

На каждом ЯОО проектируется и реализуется СФЗ. Цель создания СФЗ - предотвращение несанкционированных действий (НСД) по отношению к предметам физической защиты (ПФЗ): ЯМ, ЯУ и ПХЯМ...

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека