Зрение у насекомых называется. Краткое описание класса насекомые

Считается, что до 90% знаний о внешнем мире человек получает при помощи своего стереоскопического зрения. Зайцы обзавелись боковым зрением, благодаря которому они могут видеть объекты, находящиеся сбоку и даже позади себя. У глубоководных рыб глаза могут занимать до половины головы, а теменной «третий глаз» миноги позволяет ей неплохо ориентироваться в воде. Змеи способны видеть только движущийся объект, а самыми зоркими в мире признаны глаза сокола-сапсана, способного выследить добычу с высоты 8 км!

Но как видят мир представители самого многочисленного и разнообразного класса живых существ на Земле - насекомых? Наряду с позвоночными животными, которым они проигрывают только по размерам тела, именно насекомые обладают наиболее совершенным зрением и сложноустроенными оптическими системами глаза. Хотя фасеточные глаза насекомых не обладают аккомодацией, вследствие чего их можно назвать близорукими, однако они, в отличие от человека, способны различать чрезвычайно быстро двигающиеся объекты. А благодаря упорядоченной структуре своих фоторецепторов многие из них обладают настоящим «шестым чувством» - поляризационным зрением.

Меркнет зрение - сила моя,
Два незримых алмазных копья...

А. Тарковский (1983)

Трудно переоценить значение света (электромагнитного излучения видимого спектра) для всех обитателей нашей планеты. Солнечный свет служит основным источником энергии для фотосинтезирующих растений и бактерий, а опосредованно через них - и для всех живых организмов земной биосферы. Свет непосредственно влияет на протекание всего многообразия жизненных процессов животных, от размножения до сезонной смены окраски. И, конечно, благодаря восприятию света специальными органами чувств, животные получают значительную (а часто и бо льшую) часть сведений об окружающем мире, могут различать форму и цвет объектов, определять движение тел, ориентироваться в пространстве и т. п.

Зрение особенно важно для животных, способных активно передвигаться в пространстве: именно с возникновением подвижных животных начал формироваться и совершенствоваться зрительный аппарат - сложнейший из всех известных сенсорных систем. К таким животным относятся позвоночные и среди беспозвоночных - головоногие моллюски и насекомые. Именно эти группы организмов могут похвалиться самыми сложноустроенными органами зрения.

Однако зрительный аппарат у этих групп значительно различается, как и восприятие образов. Считается, что насекомые в целом более примитивны по сравнению с позвоночными, не говоря уже о высшем их звене - млекопитающих, и, естественно, человеке. Но вот насколько различается их зрительное восприятие? Иными словами, намного ли отличается от нашего мир, увиденный глазами маленького создания по имени муха?

Мозаика из шестигранников

Зрительная система насекомых в принципе не отличается от таковой у других животных и состоит из периферических органов зрения, нервных структур и образований центральной нервной системы. Но что касается морфологии органов зрения, то здесь различия просто бросаются в глаза.

Всем знакомы сложные фасеточные глаза насекомых, которые встречаются у взрослых насекомых или у личинок насекомых, развивающихся с неполным превращением , т. е. без стадии куколки. Исключений из этого правила не так много: это блохи (отряд Siphonaptera), веерокрылые (отряд Strepsiptera), большинство чешуйниц (семейство Lepismatidae) и весь класс скрыточелюстных (Entognatha).

Фасеточный глаз по виду напоминает корзинку спелого подсолнуха: он состоит из набора фасеток (омматидиев ) - автономных приемников светового излучения, имеющих все необходимое для регуляции светового потока и формирования изображения. Число фасеток сильно варьирует: от нескольких у щетинохвосток (отряд Thysanura) до 30 тыс. у стрекоз (отряд Aeshna). Удивительно, но число омматидиев может варьироваться даже внутри одной систематической группы: например, ряд видов жуков-жужелиц, обитающих на открытых пространствах, имеют хорошо развитые фасеточные глаза с большим количеством омматидиев, в то время как у жужелиц, обитающих под камнями, глаза сильно редуцированы и состоят из небольшого числа омматидиев.

Верхний слой омматидиев представлен роговицей (хрусталиком) - участком прозрачной кутикулы, секретируемой специальными клетками, которая представляет собой своеобразную шестигранную двояковыпуклую линзу. Под роговицей у большинства насекомых располагается прозрачный кристаллический конус, структура которого может различаться у разных видов. У некоторых видов, особенно ведущих ночной образ жизни, в светопреломляющем аппарате имеются дополнительные структуры, играющие главным образом роль антибликового покрытия и увеличивающие светопропускание глаза.

Изображение, сформированное хрусталиком и кристаллическим конусом, попадает на светочувствительные ретинальные (зрительные) клетки, представляющие собой нейрон с коротким хвостиком-аксоном. Несколько ретинальных клеток образуют единый цилиндрический пучок - ретинулу . Внутри каждой такой клетки на стороне, обращенной внутрь омматидия, расположен рабдомер - особое образование из множества (до 75–100 тыс.) микроскопических трубочек-ворсинок, в мембране которых содержится зрительный пигмент. Как и у всех позвоночных, этим пигментом является родопсин - сложный окрашенный белок. Благодаря огромной площади этих мембран фоторецепторный нейрон содержит большое количество молекул родопсина (например, у плодовой мушки Drosophila это число превышает 100 млн!).

Рабдомеры всех зрительных клеток, объединенные в рабдом , и являются светочувствительными, рецепторными элементами фасеточного глаза, а все ретинулы в совокупности составляют аналог нашей сетчатки.

Светопреломляющий и светочувствительный аппарат фасетки по периметру окружают клетки с пигментами, которые играют роль световой изоляции: благодаря им световой поток, преломляясь, попадает на нейроны только одного омматидия. Но так устроены фасетки в так называемых фотопических глазах, приспособленных к яркому дневному свету.

Для видов, ведущих сумеречный или ночной образ жизни, характерны глаза другого типа - скотопические . Такие глаза имеют ряд приспособлений к недостаточному световому потоку, например, очень большие рабдомеры. Кроме того, в омматидиях таких глаз светоизолирующие пигменты могут свободно мигрировать внутри клеток, благодаря чему световой поток может попадать на зрительные клетки соседних омматидиев. Этот феномен лежит в основе и так называемой темновой адаптации глаз насекомых - увеличении чувствительности глаза при недостаточном освещении.

При поглощении рабдомерами фотонов света в ретинальных клетках генерируются нервные импульсы, которые по аксонам направляются в парные зрительные доли головного мозга насекомых. В каждой зрительной доле имеется по три ассоциативных центра, где и осуществляется переработка потока зрительной информации, одновременно идущей от множества фасеток.

От одного до тридцати

Согласно древним легендам, у людей некогда имелся «третий глаз», отвечающий за сверхчувственное восприятие. Доказательств этому нет, однако та же минога и другие животные, такие как ящерица-гаттерия и некоторые земноводные, имеют необычные светочувствительные органы в «неположенном» месте. И в этом смысле насекомые не отстают от позвоночных: помимо обычных фасеточных глаз у них встречаются небольшие дополнительные глазки - оцелли , расположенные на лобно-теменной поверхности, и стеммы - по бокам головы.

Оцелли имеются в основном у хорошо летающих насекомых: взрослых особей (у видов с полным превращением) и личинок (у видов с неполным превращением). Как правило, это три глазка, расположенные в виде треугольника, но иногда срединный либо два боковых могут отсутствовать. По строению оцелли сходны с омматидиями: под светопреломляющей линзой у них находится слой прозрачных клеток (аналог кристаллического конуса) и сетчатка-ретинула.

Стеммы можно обнаружить у личинок насекомых, развивающихся с полным превращением. Их число и расположение варьирует в зависимости от вида: с каждой стороны головы может располагаться от одного до тридцати глазков. У гусениц чаще встречается шесть глазков, расположенных так, что каждый из них имеет обособленное поле зрения.

В разных отрядах насекомых стеммы могут отличаться друг от друга по строению. Эти различия связаны, возможно, с их происхождением от разных морфологических структур. Так, число нейронов в одном глазке может составлять от нескольких единиц до нескольких тысяч. Естественно, это сказывается на восприятии насекомыми окружающего мира: если некоторые из них могут видеть лишь перемещение светлых и темных пятен, то другие способны распознавать размеры, форму и цвет предметов.

Как мы видим, и стеммы, и омматидии представляют собой аналоги одиночных фасеток, пусть и видоизмененные. Однако у насекомых имеются и другие «запасные» варианты. Так, некоторые личинки (особенно из отряда двукрылых) способны распознать свет даже при полностью затененных глазках с помощью фоточувствительных клеток, расположенных на поверхности тела. А некоторые виды бабочек имеют так называемые генитальные фоторецепторы.

Все такие фоторецепторные зоны устроены схожим образом и представляют собой скопление из нескольких нейронов под прозрачной (или полупрозрачной) кутикулой. За счет подобных дополнительных «глаз» личинки двукрылых избегают открытых пространств, а самки бабочек используют их при откладке яиц в затененных местах.

Фасеточный поляроид

На что способны сложноустроенные глаза насекомых? Как известно, у любого оптического излучения можно выделить три характеристики: яркость , спектр (длину волны) и поляризацию (ориентированность колебаний электромагнитной составляющей).

Спектральную характеристику света насекомые используют для регистрации и распознавания объектов окружающего мира. Практически все они способны воспринимать свет в диапазоне от 300–700 нм, в том числе и недоступную для позвоночных ультрафиолетовую часть спектра.

Как правило, разные цвета воспринимаются различными областями сложного глаза насекомых. Такая «локальная» чувствительность может различаться даже в пределах одного вида в зависимости от половой принадлежности особи. Нередко в одном и том же омматидии могут находиться различные цветовые рецепторы. Так, у бабочек рода Papilio два фоторецептора имеют зрительный пигмент с максимумом поглощения 360, 400 или 460 нм, еще два - 520 нм, а остальные - от 520 до 600 нм (Kelber et al., 2001).

Но это далеко не все, что умеет глаз насекомого. Как упоминалось выше, в зрительных нейронах фоторецепторная мембрана микроворсинок рабдомера свернута в трубку круглого или гексагонального сечения. За счет этого часть молекул родопсина не участвуют в поглощении света из-за того, что дипольные моменты этих молекул располагаются параллельно ходу светового луча (Говардовский, Грибакин, 1975). В результате микроворсинка приобретает дихроизм - способность к различному поглощению света в зависимости от его поляризации. Повышению поляризационной чувствительности омматидия способствует и то, что молекулы зрительного пигмента не располагаются в мембране хаотично, как у человека, а ориентированы в одном направлении, да к тому же жестко закреплены.

Если глаз способен различить два источника света на основе их спектральных характеристик вне зависимости от интенсивности излучения, можно говорить о цветовом зрении . Но если он делает это, фиксируя поляризационный угол, как в данном случае, мы имеем все основания говорить о поляризационном зрении насекомых.

Как же воспринимают насекомые поляризованный свет? Исходя из структуры омматидия, можно предположить, что все фоторецепторы должны быть одновременно чувствительными как к определенной длине (длинам) световых волн, так и к степени поляризации света. Но в таком случае могут возникнуть серьезные проблемы - так называемое ложное восприятие цвета . Так, свет, отраженный с глянцевой поверхности листьев или водной глади, частично поляризуется. В этом случае мозг, анализируя данные фоторецепторов, может ошибиться в оценке интенсивности окраски либо формы отражающей поверхности.

Насекомые научились успешно справляться с подобными трудностями. Так, у ряда насекомых (в первую очередь мух и пчел) в омматидиях, воспринимающих только цвет, формируется рабдом закрытого типа , в котором рабдомеры не контактируют между собой. При этом у них имеются также омматидии с обычными прямыми рабдомами, чувствительные и к поляризационному свету. У пчел такие фасетки располагаются по краю глаза (Wehner, Bernard, 1993). У некоторых бабочек искажения при восприятии цвета снимаются за счет значительного искривления микроворсинок рабдомеров (Kelber et al., 2001).

У многих других насекомых, особенно у чешуекрылых, во всех омматидиях сохраняются обычные прямые рабдомы, поэтому их фоторецепторы способны одновременно воспринимать и «цветной», и поляризованный свет. При этом каждый из этих рецепторов чувствителен лишь к определенному поляризационному углу преференции и определенной длине световой волны. Такое сложное зрительное восприятие помогает бабочкам при питании и откладке яиц (Kelber et al., 2001).

Незнакомая Земля

Можно бесконечно углубляться в особенности морфологии и биохимии глаза насекомых и все равно затруднится в ответе на такой простой и одновременно невероятно сложный вопрос: как видят насекомые?

Человеку трудно даже представить образы, возникающие в головном мозге насекомых. Но все нужно заметить, что популярная сегодня мозаичная теория зрения , согласно которой насекомое видит изображение в виде своеобразного пазла из шестигранников, не совсем точно отражает суть проблемы. Дело в том, что хотя каждая единичная фасетка фиксирует отдельный образ, являющийся лишь частью цельной картины, эти изображения могут перекрываться с изображениями, полученными с соседних фасеток. Поэтому изображение мира, полученное с помощью огромного глаза стрекозы, состоящего из тысяч миниатюрных камер-фасеток, и «скромного» шестифасеточного глаза муравья, будет сильно различаться.

Что касается остроты зрения (разрешающей способности , т. е. способности различать степень расчлененности объектов), то у насекомых она определяется количеством фасеток, приходящихся на единицу выпуклой поверхности глаза, т. е. их угловой плотностью. В отличие от человека, глаза насекомых не обладают аккомодацией: радиус кривизны светопроводящей линзы у них не меняется. В этом смысле насекомых можно назвать близорукими: они видят тем больше деталей, чем ближе к объекту наблюдения находятся.

При этом насекомые с фасеточными глазами способны различать очень быстро движущиеся объекты, что объясняется высокой контрастностью и малой инерционностью их зрительной системы. К примеру, человек может различать лишь около двадцати вспышек в секунду, а пчела - в десять раз больше! Такое свойство жизненно важно для быстролетающих насекомых, которым нужно принимать решения непосредственно в полете.

Цветовые образы, воспринимаемые насекомыми, также могут быть гораздо сложнее и необычнее, чем у нас. К примеру, цветок, кажущийся нам белым, часто скрывает в своих лепестках множество пигментов, способных отражать ультрафиолетовый свет. И в глазах насекомых-опылителей он сверкает множеством красочных оттенков - указателей на пути к нектару.

Считается, что насекомые «не видят» красный цвет, который в «чистом виде» и встречается в природе чрезвычайно редко (исключение - тропические растения, опыляемые колибри). Однако цветы, окрашенные в красный цвет, часто содержат и другие пигменты, способные отражать коротковолновые излучения. А если учесть, что многие из насекомых способны воспринимать не три основных цвета, как человек, а больше (иногда до пяти!), то их зрительные образы должны представлять собой просто феерию красок.

И, наконец, «шестое чувство» насекомых - поляризационное зрение. С его помощью насекомым удается увидеть в окружающем мире то, о чем человек может получить лишь слабое представление с помощью специальных оптических фильтров. Насекомые же таким способом могут безошибочно определять местонахождение солнца на облачном небе и использовать поляризованный свет в качестве «небесного компаса». А водные насекомые в полете обнаруживают водоемы по частично поляризованному свету, отраженному от зеркала воды (Schwind, 1991). Но вот какие при этом они «видят» образы, человеку просто невозможно себе представить...

У всех, кто по той или иной причине интересуется зрением насекомых, может возникнуть вопрос: почему у них не сформировался камерный глаз, подобный человеческому глазу, со зрачком, хрусталиком и прочими приспособлениями?

На этот вопрос в свое время исчерпывающе ответил выдающийся американский физик-теоретик, Нобелевский лауреат Р. Фейнман: «Этому мешает несколько довольно интересных причин. Прежде всего, пчела слишком мала: если бы она имела глаз, похожий на наш, но соответственно уменьшенный, то размер зрачка оказался бы порядка 30 мкм, а поэтому дифракция была бы столь велика, что пчела все равно не могла бы видеть лучше. Слишком маленький глаз - это не очень хорошо. Если же такой глаз сделать достаточного размера, то он должен быть не меньше головы самой пчелы. Ценность сложного глаза в том и состоит, что он практически не занимает места - просто тоненький слой на поверхности головы. Так что, прежде чем давать советы пчеле, не забывайте, что у нее есть свои собственные проблемы!»

Поэтому неудивительно, что насекомые выбрали свой путь в зрительном познании мира. Да и нам, чтобы видеть его с точки зрения насекомых, пришлось бы, для сохранения привычной остроты зрения, обзавестись громадными фасеточными глазами. Вряд ли такое приобретение оказалось бы нам полезным с точки зрения эволюции. Каждому - свое!

Литература
1. Тыщенко В. П. Физиология насекомых. М.: Высшая школа, 1986, 304 с.
2. Klowden M. J. Physiological Systems in Insects. Academ Press, 2007. 688 p.
3. Nation J. L. Insect Physiology and Biochemistry. Second Edition: CRC Press, 2008.

Способность видеть окружающий мир во всем спектре его цветов и оттенков - уникальный дар природы человеку. Мир красок, который способны воспринимать наши глаза, яркий и удивительный. Но человек не единственное живое существо на этой планете. Животные и насекомые также видят предметы, цвета, ночные очертания? Как видят мухи или пчелы нашу комнату, к примеру, или цветок?

Глаза насекомого

Современная наука с помощью специальных приборов сумела увидеть мир глазами разных животных. Это открытие стало сенсацией в свое время. Оказывается, многие братья наши меньшие, а особенно насекомые, видят совсем не ту картинку, которую наблюдаем мы. Видят ли мухи вообще? Да, но совсем не так, и получается, что мы и мухи, да и другие летающие и ползающие, живем вроде в одном мире, но совсем непохожем.

Все дело в У насекомых он не один или, вернее, не совсем один. Глаз насекомого - это собранные воедино тысячи или фасеток, или омматидий. Выглядят они как конусные линзы. Каждый такой омматидий видит разную, только ему доступную часть картинки. Как видят мухи? Изображение, которое они наблюдают, похоже на картинку, собранную из мозаики, или пазл.

Острота зрения насекомых зависит от количества омматидий. Самая зрячая - стрекоза, у нее омматидий - аж около 30 тысяч. Бабочки тоже зрячие - около 17 тысяч, для сравнения: у мухи - 4 тысяч, у пчелы - 5. Самый слабовидящий - муравей, его глаз вмещает всего 100 фасеток.

Круговая оборона

Еще одна способность насекомых, отличительная от человеческой, - возможность кругового обзора. Глаз-линза способен видеть все на 360 о. Среди млекопитающих самый большой угол зрения у зайца - 180 о. Поэтому он и прозван косым, а что делать, если врагов столько. Лев вот врагов не боится, и глаза у него рассматривают меньше 30 о горизонта. У маленьких насекомых природа компенсировала нехватку роста способностью видеть всех, кто к ним подкрадывается. Чем еще отличается зрительное восприятие насекомых, так это быстротой смены картинки. За время быстрого полета они успевают заметить все, что люди на такой скорости лицезреть не могут. Например, как видят мухи телевизор? Если бы наш глаз был таким, как у мухи или пчелы, крутить пленку нужно было бы в десять раз быстрее. Поймать муху сзади практически нереально, она видит взмах руки быстрее, чем он происходит. Человек кажется насекомым медлительной черепахой, а черепаха - вообще неподвижным камнем.

Цвета радуги

Практически все насекомые - дальтоники. Цвета они различают, но по-своему. Интересно, что глаза насекомых и даже некоторых млекопитающих не воспринимают красный цвет совсем или видят его как синий, фиолетовый. Для пчелы красные цветы выглядят черными. Растения, которым нужно опыление пчел, не цветут красным. Большинство ярких цветов алые, розовые, оранжевые, бордовые, но не красные. Те редкие, которые позволяют себе красный наряд, опыляются другим образом. Вот такая взаимосвязь в природе. Трудно представить, каким образом удалось ученым выяснить, как видят мухи расцветку комнаты, но оказывается, что любимым их цветом является желтый, а голубой и зеленый их раздражает. Вот так вот. Чтобы в кухне было мух меньше, просто нужно ее правильно покрасить.

Видят ли мухи в темноте?

Мухи, как большинство летающих насекомых, ночью спят. Да-да, им тоже нужен сон. Если муху постоянно сгонять и не давать ей спать на протяжении трех суток, она умирает. Мухи видят в темноте плохо. Это насекомые с круглыми глазами, но близорукие. Им не нужны глаза для поиска пищи.

В отличие от мух рабочие пчелы видят ночью хорошо, что позволяет им работать и в ночную смену тоже. Ночью цветы благоухают резче и соперников на нектар меньше.

Хорошо видят ночью но несомненным лидером по зрению в темноте признан американский таракан.

Форма предмета

Интересно восприятие формы предмета разными насекомыми. Специфика в том, что они могут совсем не воспринимать простые формы, которые не нужны для их жизнеспособности. Пчелы, бабочки не видят предметов простых форм, особенно неподвижных, зато их привлекает все, что имеет сложные формы цветов, особенно если они движутся, колышутся. Этим объясняется, в частности, и то, что пчелы и осы редко жалят стоящего неподвижно человека, а если и жалят, то в область губ, когда он разговаривает (движет губами). Мухи и некоторые другие насекомые человека не воспринимают, садятся они на него просто в поисках еды, которую ищут по запаху и видят датчиками на лапах.

Общие особенности зрения насекомых

  • Красный цвет способны различить только бабочки - они и опыляют редкие цветы такой гаммы.
  • Строение глаза у всех фасеточное, разница - в количестве омматидий.
  • Трихромазия, или способность преображать цвета в три основных: фиолетовый, зеленый и ультрафиолетовый.
  • Способность переламывать и отражать световые лучи и видеть картинку окружающей действительности целиком.
  • Способность рассматривать картинки, которые меняются очень быстро.
  • Насекомые умеют ориентироваться по солнечному свету, поэтому ночные бабочки слетаются к лампе.
  • Бинокулярное зрение помогает хищникам в мире насекомых точно определять расстояния до своей жертвы.

Функции хордотональных органов, по-видимому, различны. В тех случаях, когда сенсиллы примыкают к кутикуле, они, как правило, служат для восприятия низкочастотных вибраций. Правда, в отдельных случаях (хордотональные органы, расположенные в антеннах комаров) они чувствительны и к колебаниям высокой частоты. Внутренние хордотональные органы, вероятно, регистрируют изменения давления и механических напряжений, возникающих в теле насекомого.

Настоящими слуховыми органами насекомых являются тимпанальные органы, в которых сколпофоры связаны с тонкими кутикулярными мембранами (тимпанальными мембранами), играющими роль барабанных перепонок.

Типичным строением обладают тимпанальные органы кузнечиков, расположенные на голенях передних ног. В верхней части голени имеются по две узкие продольные щели, ведущие в два барабанных кармана. Внутренние стенки кармашков, обращенные друг к другу, тонки и представляют собой барабанные перепонки, наружные же утолщены и называются барабанными крышечками. Между обеими барабанными перепонками, вплотную примыкая к ним, проходят два трахейных ствола, которые, быть может, служат в качестве резонаторов. Наконец, главную часть тимпанального органа составляют три группы сколпофоров. Сколпофоры примыкают частью к барабанной перепонке, частью к резонирующей трахее. Центральные отростки чувствительных клеток образуют тимпанальный нерв. Точно по такому же принципу - сочетание сколпофоров и тимпанальных перепонок - устроены тимпанальные органы и других насекомых - саранчовых, сверчков, бабочек и др. Правда, располагаться они могут в разных местах тела - на передних сегментах брюшка, у основания крыльев и т. п.

Хордотональные сенсиллы тимпанальных органов служат для восприятия колебаний различной частоты - имеются "высокочастотные" и "низкочастотные" сенсиллы. Как правило, одна из таких групп настроена на частоты, максимально представленные в звуках, издаваемых особями того же вида. В целом насекомые воспринимают звуки в очень широком диапазоне: от инфразвука (8-10 Гц) до ультразвука (45000 Гц).

Насекомые способны не только воспринимать, но и издавать звуки. Эта особенность характерна для представителей многих групп: прямокрылых , жуков , перепончатокрылых , бабочек и др. Звуковые органы насекомых очень разнообразны.


Стрекотание прямокрылых, например, вызывается развитием известных стрекочущих приспособлений, которые чаще всего связаны с крыльями. Так, у кузнечиковых эти органы находятся на передних крыльях. Некоторые жилки левого крыла становятся зазубренными и превращаются в так называемый смычок, которым животное водит по правому крылу, где в соответствующем месте находится резонатор. Последний состоит из ограниченной высокой жилкой площадки на крыле - зеркальца. Движение зазубренного смычка по краю зеркальца приводит к вибрации растянутой на нем части поверхности крыла.

У саранчовых смычок образован рядом мельчайших зубчиков на бедрах задних ног. При трении бедер о верхние крылья зубчики задевают за сильно выдающуюся у самца радиальную жилку крыла. У самцов цикад есть своеобразный "голосовой аппарат" на нижней стороне заднегруди: действие его основано на чрезвычайно быстром колебании хитиновой перепонки, приводимой в движение сокращением мышц. Значение способности издавать звуки заключается, по-видимому, в привлечении стрекочущими самцами самок.

Хеморецепторы насекомых представлены обонятельными и вкусовыми сенсиллами. Кутикулярные образования обонятельных сенсилл очень разнообразны по форме: щетинки, конусовидные придатки, пластинки и т. п. Общая черта - наличие тонких пор, пронизывающих кутикулу. Через эти поры открыт доступ к чувствительным элементам сенсиллы для молекул пахучих веществ. Обонятельные сенсиллы располагаются главным образом на сяжках и челюстных щупиках.


Обоняние служит насекомым как для отыскания пищи, так и при спаривании: самцы часто находят самок по запаху. Последние выделяют особые пахучие вещества - половые аттрактанты. Достаточно ничтожного количества (100 молекул в 1 см 3 воздуха) такого вещества, чтобы вызвать возбуждение у самцов шелкопряда.

Вкусовые сенсиллы располагаются у насекомых на ротовых конечностях и дистальных члениках лапок. Их кутикулярные элементы представлены волосками или конусовидными придатками и также пронизаны порами. В состав каждой сенсиллы входит несколько рецепторных клеток, каждая из которых реагирует на определенный вкусовой раздражитель: одна клетка реагирует на соли, другая на сахаристые вещества, третья на чистую воду. Одна из чувствительных клеток вкусовой сенсиллы является механорецепторной. Таким образом, у насекомых, так же как и у позвоночных, вкусовое ощущение сопровождается осязательным.

Наиболее сложными из органов чувств у насекомых являются органы зрения . Последние представлены образованиями нескольких типов, из которых важнейшие - сложные фасетированные глаза примерно такого же строения, как и сложные глаза ракообразных.

Глаза состоят из отдельных омматидиев, количество которых определяется главным образом биологическими особенностями насекомых. Активные хищники и хорошие летуны, стрекозы обладают глазами, насчитывающими до 28 000 фасеток в каждом. В то же время муравьи (отр. Перепончатокрылые), особенно рабочие особи видов, обитающих под землей, имеют глаза, состоящие из 8-9 омматидиев.



Каждый омматидий представляет совершенную фотооптическую сенсиллу. В его состав входят оптический аппарат, включающий роговицу, - прозрачный участок кутикулы над омматидием и так называемый хрустальный конус. В совокупности они выполняют роль линзы. Воспринимающий аппарат омматидия представлен несколькими (4-12) рецепторными клетками; специализация их зашла очень далеко, о чем говорит полная утрата ими жгутиковых структур. Собственно чувствительные части клеток - рабдомеры - представляют скопления плотно упакованных микроворсинок, располагаются в центре омматидия и тесно прилегают друг к другу. В совокупности они образуют светочувствительный элемент глаза - рабдом.

По краям омматидия залегают экранирующие пигментные клетки; последние довольно существенно отличаются у дневных и ночных насекомых. В первом случае пигмент в клетке неподвижен и постоянно разделяет соседние омматидии, не пропуская световые лучи из одного глазка в другой. Во втором случае пигмент способен перемещаться в клетках и скапливаться только в их верхней части. При этом лучи света попадают на чувствительные клетки не одного, а нескольких соседних омматидиев, что заметно (почти на два порядка) повышает общую чувствительность глаза. Естественно, что подобного рода адаптация возникла у сумеречных и ночных насекомых. От чувствительных клеток омматидия отходят нервные окончания, образующие зрительный нерв.

Кроме сложных глаз многие насекомые имеют еще и простые глазки, строение которых не соответствует строению одного омматидия. Светопреломляющий аппарат линзообразной формы, сразу же под ним расположен слой чувствительных клеток. Весь глазок одет чехлом из пигментных клеток. Оптические свойства простых глазков таковы, что воспринимать изображения предметов они не могут.

Личинки насекомых в большинстве случаев обладают только простыми глазками, отличающимися, однако, по строению от простых глазков взрослых стадий. Никакой преемственности между глазками взрослых особей и личинок не существует. Во время метаморфоза глаза личинок полностью резорбируются.

Зрительные способности насекомых совершенны. Однако структурные особенности сложного глаза предопределяют особый физиологический механизм зрения. Животные, имеющие сложные глаза, обладают "мозаичным" зрением. Малые размеры омматидиев и их обособленность друг от друга приводят к тому, что каждая группа чувствительных клеток воспринимает лишь небольшой и сравнительно узкий пучок лучей. Лучи, падающие под значительным углом, поглощаются экранирующими пигментными клетками и не достигают светочувствительных элементов омматидиев. Таким образом, схематично каждый омматидии получает изображение только одной небольшой точки объекта, находящегося в поле зрения всего глаза. Вследствие этого изображение складывается из стольких световых точек, отвечающих различным частям объекта, на сколько фасеток падают перпендикулярно лучи от объекта. Общая картина комбинируется как бы из множества мелких частичных изображений путем приложения их одного к другому.

Восприятие цвета насекомыми также отличается известным своеобразием. Представители высших групп Insecta имеют цветовое зрение, основанное на восприятии трех основных цветов, смешение которых и дает все красочное многообразие окружающего нас мира. Однако у насекомых по сравнению с человеком наблюдается сильный сдвиг в коротковолновую часть спектра: они воспринимают зелено-желтые, синие и ультрафиолетовые лучи. Последние для нас невидимы. Следовательно, цветовое восприятие мира насекомыми резко отличается от нашего.

Функции простых глазков взрослых насекомых требуют еще серьезного изучения. По-видимому, они в какой-то мере "дополняют" сложные глаза, влияя на активность поведения насекомых в разных условиях освещенности. Кроме того, было показано, что простые глазки наряду со сложными глазами способны воспринимать поляризованный свет.

Помимо перечисленных органов чувств насекомые обладают еще рядом рецепторных аппаратов. Таковы сенсиллы, воспринимающие температуру окружающей среды, ее влажность. Водные насекомые способны регистрировать изменения давления и т. п.

Органы дыхания. Для дыхания служит сложно развитая система трахей. По бокам тела находится до 10 пар, иногда меньше, дыхалец, или стигм: они лежат на средне- и заднегруди и на 8 члениках брюшка.



Стигмы часто снабжены особыми замыкательными аппаратами и ведут каждая в короткий поперечный канал, а все поперечные каналы соединены между собой парой (или больше) главных продольных трахейных стволов. От стволов берут начало более тонкие трахеи, ветвящиеся многократно и опутывающие своими разветвлениями все органы. Заканчивается каждая трахея концевой клеткой с радиально расходящимися отростками, пронизанными конечными канальцами трахеи. Концевые веточки этой клетки (трахеолы) проникают даже внутрь отдельных клеток тела. Иногда трахеи образуют местные расширения, или воздушные мешки, которые служат у наземных насекомых для улучшения вентиляции воздуха в трахейной системе, а у водных, вероятно, в качестве резервуаров, увеличивающих запас воздуха в теле животного. Трахеи возникают у зародыша насекомых в виде глубоких впячиваний эктодермы; как и остальные эктодермальные образования, они выстланы кутикулой. В поверхностном слое последней образуется спиральное утолщение, придающее трахее эластичность и препятствующее спадению стенок.

В простейших случаях поступление кислорода в трахейную систему и удаление из нее углекислого газа происходит путем диффузии через постоянно открытые стигмы. Это наблюдается, однако, только у малоактивных насекомых, обитающих в условиях повышенной влажности.

Страница 3 из 5

Насекомое и человек смотрят на мир буквально разными глазами. Глаза всех насекомых - будь то комнатная муха, шершень, бабочка или жук - сложные (фасеточные), состоящие из отдельных глазков. (Многие виды обладают еще и простыми глазами.) У некоторых бабочек и стрекоз сложный глаз состоит из 30 000 элементов; у муравьев - всего из шести. В каждом глазке имеется свой хрусталик, фокусное расстояние которого фиксированно, и он не аккомодируется. Насекомое видит мозаичную картинку (так выглядит сильно увеличенная газетная фотография - из отдельных пятнышек) и плохо различает форму предметов. Зато сложный глаз превосходно видит движение, что помогает насекомому избегать хищников и обнаруживать добычу.

Глаза у мухи и стрекозы занимают большую часть поверхности головы, обеспечивая обзор почти на 360, так что можно заметить хищника, приближающегося сзади, сверху и снизу. Муравьи, проводящие большую часть времени под землей, обходятся недоразвитыми глазами, а некоторые виды слепы.

Строение фасеточного глаза

Сколько глаз у стрекозы?

Для хищных, а также быстро летающих насекомых зрение имеет большое значение. Их глаза состоят из множества отдельных глаз. Такой фасеточный глаз у стрекоз может состоять из 30 000 отдельных линзочек. Проходя через линзы и прозрачные кристаллические конусы, свет достигает чувствительных клеток. Они превращают его в электрические импульсы, которые затем передаются в мозг, где и собирается полное изображение. Картинка эта будто разделена на клеточки и состоит из множества точек - как газетная фотография или заставка в телевизоре. Кроме фасеточных глаз у многих насекомых есть три маленьких глазка на лбу - с множеством чувствительных к свету клеток и одной общей линзой. Они нужны насекомым для определения степени освещенности окружающего пространства и корректировки положения своего тела при полете. У стрекозы хорошо видны отдельные глазки в составе фасеточных глаз. Относительно простой в плане строения дополнительный глаз в центре лба похож на каплю воды.

Скорость полета стрекозы

Крупные стрекозы обычно летают со скоростью около 30 км/ч. Один австралийский вид стрекоз при перелетах на короткие расстояния может достигать скорости до 58 км/ч. Однако чемпионами по скоростным полетам являются слепни. Американский вид слепней развивает скорость до 70 км/ч. Стрекозы благодаря непосредственной мускулатуре могут делать движения крыльями во все стороны и таким образом даже лететь назад.

Различают ли насекомые цвета?

Зрительные клетки человека распознают три основных цвета: синий, зеленый и красный. Все остальные цвета возникают при смешении этих трех основных. У медоносной пчелы каждый отдельный глаз также содержит три типа клеток, которые, однако, различают синий, зеленый и ультрафиолет. Пчелы не воспринимают красный цвет: он кажется им темно-серым или черным. Ультрафиолетовый свет поставляет пчелам, муравьям и мухам информацию о направлении вибраций поляризованного света, которые анализируются мозгом насекомого. Поэтому насекомые даже при высокой облачности могут оценить расположение солнца и сориентироваться на местности. Водяные клопы и гладыши тоже используют данные о поляризованном свете, с помощью которого они видят в полете отражающие свет водные поверхности.

Что такое разрешающая способность?

Человек может воспринимать 20 сменяющих друг друга картинок в секунду. Если это происходит быстрее, то картинка видится в движении. Этот эффект используется при съемке фильмов. Картинка на мониторе компьютера и экране телевизора обновляется 50 раз в секунду и поэтому кажется постоянной. Глаз навозной мухи может различать отдельные картинки в течение четырех тысячных долей секунды. Медоносные пчелы видят 300 картинок в секунду.

ОРГАНЫ ЧУВСТВ У НАСЕКОМЫХ

Органы чувств у насекомых являются посредниками между внешней средой и организмом. В соответствии с внешними стимулами, или раздражителями, насекомые совершают определенные действия, из которых складывается их поведение.

Органы чувств у насекомых – это механическое чувство, слух, химическое чувство, гидротермическое чувство и зрение.

Основу органов чувств составляют нервные чувствительные единицы – сенсиллы. Они состоят из двух компонентов: воспринимающей структуры в коже и прилегающих к ней нервных клеток. Сенсиллы выступают над поверхностью кожи в виде волоска, щетинки, конусы (рис. 7).

Механическое чувство. Представлено механорецепторами. Это рецепторы, а также чувствительные структуры, воспринимающие сотрясение, положение тела, его равновесие и др. Осязательные, или тактильные, рецепторы разбросаны по всему телу в виде простых сенсилл с сенсорным, т.е. чувствительным волоском. Изменение положения волоска при соприкосновениях с предметами или воздухом передается чувствительной клетке, где возникает возбуждение, передаваемое по ее отросткам в нервный центр.

К механорецепторам также относятся колоколовидные сенсиллы. У них отсутствуют чувствительные волоски и они погружены в кожу. Их рецепторная поверхность в виде кутикулярного колпачка находится на поверхности кутикулы. К колпачку подходит снизу стержневой отросток чувствительной клетки – штифт. Колоколовидные сенсиллы находятся на крыльях, церках, ногах, щупальцах. Они воспринимают сотрясения тела, сгибания, натяжения.

К числу механорецепторов относят и хордотональные органы как органы слуха. Их нейроны заканчиваются стержневидным штифтом. Это серия особых сенсилл, натянутых между двумя участками кутикулы. Хордотональные сенсиллы называются сколопофорами и состоят из трех клеток: чувствительного нейрона, колпачковой и обкладочной клеток.

Слух развит не у всех насекомых. У прямокрылых (кузнечики, саранчовые, сверчки), певчих цикад, некоторых клопов и ряда чешуекрылых имеются слуховые рецепторы – тимпанальные органы. Эти насекомые стрекочут или поют. Тимпанальные органы – это скопление сколопофоров, которые связаны с участками кутикулы, которые представлены в виде барабанной перепонки (рис. 8).

У саранчовых тимпанальные органы находятся по бокам 1-го сегмента брюшка, у кузнечиков и сверчков – на голенях передних ног (рис. 9).

У комаров функцию органов слуха выполняет Джонстонов орган. На церках у тараканов и прямокрылых и на теле гусениц на волосках располагаются нейроны, улавливающие звуковые волны.

Значение органов слуха:

– воспринимаются сигналы, идущие от особей своего вида, что обеспечивает связь полов, т.е. это одна из форм локации полового сигнала;

– улавливают иные звуки (свистки, резкий звук, разыскивание жертвы).

Химическое чувство. Служит для восприятия химизма среды, именно вкуса и запаха. Представлено хеморецепторами. Обоняние воспринимает и анализирует газообразную среду с низкой концентрацией вещества, а вкус – жидкую среду с высокой его концентрацией. Сенсиллы хеморецепторов представлены в виде волосков, пластинок или погруженных в тело конусов. На усиках обонятельную функцию выполняют плакоидные и целоконические сенсиллы. Обоняние служит насекомым для разыскивания особей противоположного пола, распознавания особей своего вида, для отыскания пищи и мест откладки яиц. Многие насекомые выделяют привлекающие вещества – половые аттрактанты или эпагоны.

Вкус служит только для распознавания пищи. Насекомые различают 4 основных вкуса – сладкий, горький, кислый и соленый.

Большинство сахаров, таких, как глюкоза, фруктоза, мальтоза и прочие, привлекают пчел, мух даже при сравнительно низкой концентрации; другие сахара, как галактоза, манноза и прочие, распознаются лишь при высокой концентрации, причем пчелы отвергают их. Очень чувствительны к сахарам некоторые бабочки, отличающие от чистой воды раствор сахара с ничтожной концентрацией – 0,0027%.

Многие другие вещества – кислоты, соли, аминокислоты, масла и другие – могут отвергаться при высокой концентрации, но иногда слабые растворы некоторых кислот и солей оказывают привлекающее воздействие.

Вкусовые рецепторы располагаются преимущественно на ротовых частях, но возможна и другая их локализация. Так, у пчелы, некоторых мух и ряда дневных бабочек они находятся на лапках ног и обнаруживают высокую чувствительность; при прикосновении подошвенной стороны лапок к раствору сахара голодная бабочка реагирует развертыванием хоботка. Наконец, у пчелы и складчатокрылых ос (Vespidae) эти рецепторы обнаружены и на концевых члениках усиков.

Высокая степень развития химического чувства у насекомых является существенной стороной их физиологии и служит научной основой при изыскании и применении некоторых приемов химической борьбы с вредными видами. В практике борьбы с вредителями применяют приманочный метод, сущность которого заключается в том, что те или иные привлекающие пищевые вещества обрабатываются ядами и распределяются в местах концентрации вредителя; такие отравленные приманки широко и очень успешно применяются в борьбе с саранчовыми. В борьбе с вредителями изыскиваются и привлекающие вещества, или аттрактанты.

Гигротермическое чувство. Имеет существенное значение в жизни ряда насекомых и в зависимости от условий влажности и температуры среды регулирует поведение особи; оно также контролирует водный баланс и температурный режим тела. Соответствующие рецепторы изучены недостаточно, но установлено, что ощущение влажности локализовано у некоторых насекомых на голове и ее придатках – усиках и щупальцах, ощущение тепла – на усиках, лапках и других органах. Восприятие тепла сильно развито у насекомых, и отдельные виды имеют свою оптимальную температурную зону, к которой они стремятся. Однако границы температурного оптимума зависят от условий температуры и влажности среды, в которой развивалось насекомое, а также и от фазы его развития.

Зрение. Вместе с химическим чувством, вероятно, играет решающую роль в жизни насекомых. Органы зрения имеют сложное строение и представлены двоякого рода глазами: сложными и простыми (рис. 10).

Рис. 10. Схематический разрез (А) и фасетки на поверхности (Б) сложного глаза: 1 – роговица; 2 – хрустальный конус; 3 – клетки сетчатки.

Сложные, или фасеточные, глаза в числе двух расположены по бокам головы, нередко очень сильно развиты и тогда могут занимать значительную часть головы. Каждый фасеточный глаз состоит из многозрительных единиц – сенсилл, которые называются омматидиями, число их в сложном глазу может достигать многих сотен, а также тысяч.

Омматидий состоит из трех видов клеток, образующих соматическую, чувствительную и пигментную часть (рис. 11). Снаружи каждый омматидий образует на поверхности глаза округлую или шестигранную ячейку – фасетку, отчего сложные глаза и получили свое название. Оптическая, или преломляющая, часть омматидия состоит из прозрачного хрусталика и лежащего под ним также прозрачного хрустального конуса. Хрусталик, или роговица, является, в сущности, прозрачной кутикулой и обычно имеет вид двояковыпуклой линзы. Хрустальный конус образован четырьмя удлиненными прозрачными клетками и совместно с хрусталиком составляет единую оптическую систему – цилиндрическую линзу; длина ее оптической оси значительно превосходит ее диаметр. Чувствительная часть располагается под оптической, образует воспринимающую световые лучи сетчатку, или ретину, и состоит из серии ретинальных клеток. Эти клетки вытянуты вдоль омматидия, располагаются секториально и образуют обкладку его центрального стержня – зрительной палочки, или рабдома. У своего основания ретинальные клетки переходят в нервные волокна, идущие к зрительным долям головного мозга. Пигментная часть образована пигментными клетками, которые в совокупности составляют обкладку чувствительной части и хрустального конуса; благодаря этому каждый омматидий оптически изолирован от соседнего. Следовательно, пигментная часть выполняет функцию аппарата оптической изоляции.

Дневные насекомые имеют так называемое аппозиционное зрение. Благодаря оптической изоляции с помощью пигментных клеток каждый омматидий превращен в изолированную тонкую трубку; поэтому в него могут проникнуть только лучи, идущие через хрусталик и притом только строго совпадающие с продольной осью омматидия. Эти лучи и достигают зрительной палочки, или рабдома; последний как раз и является воспринимающим элементом сетчатки. Следовательно, поле зрения каждого омматидия очень мало и он видит только ничтожную часть рассматриваемого предмета. Но большое число омматидиев позволяет резко увеличить поле зрения путем взаимного приложения друг к другу или аппозиции; в результате из отдельных мельчайших частей изображения образуется как в мозаике единое общее изображение. Таким образом, насекомые обладают мозаичным зрением.

Ночные и сумеречные насекомые обладают суперпозиционным зрением, что связано с морфологическими и физиологическими отличиями их омматидиев. В суперпозиционном глазе чувствительная часть более отдалена от оптической, а пигментные клетки изолируют преимущественно оптическую часть. Благодаря этому к зрительной палочке проникают 2 вида лучей – прямые и косые; первые попадают в омматидий через хрусталик, а вторые – из соседних омматидиев, что усиливает световой эффект. Следовательно, изображение предмета получается в данном случае не только путем объединения отдельных восприятий, но и путем их наложения, или суперпозиции.

При сильном дневном освещении суперпозиционный глаз приобретает некоторое физиологическое сходство с аппозиционным глазом. Происходит это потому, что пигмент в пигментных клетках на свету начинает перемещаться и распределяется так, что образует темную трубку вокруг омматидия; благодаря этому омматидии оптически почти изолируются друг от друга и получают лучи преимущественно от своей линзы. Эта способность глаза реагировать на степень освещения может рассматриваться как аккомодация. В некоторой степени она свойственна и аппозиционному глазу, что позволяет дневным насекомым быстро приспособлять глаз к зрению на ярком свету и в тени, например, при перелете из открытого места в лес.

С помощью сложных глаз насекомые различают форму, движение, окраску и расстояние до предмета, а также поляризованный свет. Однако большое разнообразие насекомых, их образа жизни и повадок, несомненно, создает и разнообразие особенностей их зрения. Последние зависят от особенностей строения глаз и их омматидий; диаметр, длина, число последних и другие свойства определяют качество зрения. Считается, что многие виды близоруки и на расстоянии различают только движение. Это подтверждается многими опытами. Так, личинки стрекоз бросаются на движущуюся добычу и не замечают неподвижной. Помещенная перед гнездом ос сетка с превосходящими длину их тела ячейками все же преграждает вход в гнездо, но через некоторое время осы научатся пролезать через ячейки этой сетки.

Большинство насекомых слепы к красному цвету, но видят ультрафиолетовое излучение и привлекаются им; диапазон видимых световых волн лежит в пределах 2500–8000 А. У медоносной пчелы открыта способность различать поляризованный свет, испускаемый голубым небом, что позволяет ей ориентироваться в пространстве при полете. Для ряда насекомых характерно также изменение движения в зависимости от направления солнечных лучей, т.е. ориентация по солнечному компасу. Сущность этого явления заключается в том, что угол падения лучей на те или иные части сетчатки сохраняет свое постоянство в течение какого-то времени; прерванное движение возобновляется под тем же углом, но ввиду перемещения солнца направление движения изменяется на то же число градусов.

Близким является светокомпасное движение, которое объясняет прилет ночных насекомых на свет. Световые лучи расходятся радиально и при косом движении по отношению к ним угол их падения будет меняться; для сохранения фиксированного угла насекомое вынуждено все время изменять свой путь в сторону источника света. Движение идет по логарифмической спирали и, в конце концов, приводит насекомое к самому источнику света (рис. 12).

Простые глаза, или глазки, располагаются между сложными глазами на лбу и темени либо только на темени (рис. 13). Они малы, обычно в числе трех, и расположены треугольником. Вследствие своего положения в верхней части головы они нередко называются также дорсальными глазками. Морфологически глазки не соответствуют омматидиям сложных глаз. Так, они иннервируются не из зрительных долей головного мозга, а из срединной части протоцеребрума. Помимо того, на одну оптическую часть у них приходится серия чувствительных частей. Они также лишены хрустального конуса и их оптическая часть представлена только кутикулярной линзой, т.е. одним хрусталиком.

Глазки развиты далеко не у всех насекомых, в частности, отсутствуют у многих двукрылых и бабочек. У бескрылых или короткокрылых насекомых они также отсутствуют или рудиментарны. Их роль недостаточно ясна. Установлено, что у ряда форм фокус глазка лежит за чувствительной частью, поэтому восприятия изображения в данном случае не может быть; закрашивание сложных глаз делает этих насекомых слепыми. Вместе с тем существует анатомическая связь глазковых нервов с нервами сложных глаз, что указывает на существование функциональной связи между этими органами. Несомненно, глазки у разных насекомых могут играть неодинаковую роль. Во всяком случае, у многих они оказывают регулирующее воздействие на сложные глаза, обеспечивая устойчивость зрения в условиях колебания интенсивности освещения. При низкой ее интенсивности глазки усиливают реакцию сложных глаз, т.е. становятся сегментами последних, при высокой – они проявляют тормозящее воздействие на сложные глаза.

От дорсальных глазков следует отличать боковые, или латеральные, глазки, свойственные личинкам насекомых с полным превращением. Эти глазки, называемые также стеммами, располагаются на боковых частях головы на месте, где у взрослых особей находятся сложные глаза. Число их различно и даже изменчиво в пределах одного и того же вида. Одни виды имеют всего лишь по одному глазку с каждой стороны, у других число их достигает шести и более пар. При переходе насекомого во взрослое состояние боковые глазки атрофируются и заменяются сложными глазами.

Стеммы разнообразны по деталям строения, но для них характерно присутствие хрусталика. У гусениц бабочек есть также хрустальный конус и развит всего один рабдом, что делает такой глазок сходным с омматидием сложного глаза. Но у личинок пилильщиков, некоторых жуков и других насекомых в глазке присутствует несколько или даже множество рабдомов, а хрустальный конус может отсутствовать. Это делает такие стеммы сходными не с омматидиями, а с дорсальными глазками.

Боковые глазки иннервируются от зрительных долей головного мозга и их зрительная функция бесспорна.

Некоторые насекомые сохраняют способность реагировать на свет при удалении глаз и глазков или покрытии их черным лаком; тараканы при этом избегают света, как и в нормальном состоянии, а гусеницы сохраняют положительную реакцию и движутся к источнику света. Безглазые пещерные насекомые также могут реагировать на свет. Очевидно, поверхность их тела способна ощущать свет и поэтому можно говорить о кожной светочувствительности.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека