Строение и функции крови. Группа крови


Тема: Группы крови, переливание крови. Свёртывание крови
Цель: познакомить учащихся с сущностью биологического процесса свертывания крови, ролью витамина К и кальция в свертывании
Планируемые результаты освоения материала: Характеризовать сущность биологического процесса свертывания крови; роль кальция и витамина К. строение и функции крови. Знать свою группу крови, резус-фактор. Анализ крови, малокровие, кроветворение.
Тип урока: изучение нового материала.
Характеристика деятельности уч-ся: Сам. работа с учебником, составление схемы
Виды контроля, измерители: индивидуальный, фронтальный опрос.
Оборудование: таблицы: «Кровь», «Группы крови»
Ход урока
Организационный момент
Активизация знаний учащихся:
Почему клеткам для процессов жизнедеятельности необходима внутренняя жидкая среда?
Из каких компонентов состоит внутренняя среда организма? Как они связаны между собой?
Какие функции выполняет кровь, тканевая жидкость и лимфа?
Что такое лимфатические узлы, их роль? Покажите на себе, где они расположены?
В чем проявляется взаимосвязь строения эритроцита с его функцией?
Функции лейкоцитов?
Актуализация
?Почему, когда мы порежемся, кровь останавливается, свертывается, образуется «болячка»? – ответы учеников
В крови есть специальные клетки, которые отвечают за свертывание крови.
Изучение нового материала
Тема нашего урока «Группы крови, переливание крови. Свёртывание крови»
Запись в тетрадь:
Тромбоциты (кровяные пластинки) - принимают участие в свертывании крови.
Травма – кровь выходит из сосуда – тромбоциты разрушаются – выделяют ферменты – кровь сворачивается
Запись на доске и в тетрадь СХЕМЫ свертывания крови:
СХЕМА свертывания крови: ферменты тромбоцита + О2 + соли кальция + витамин К + растворимый белок фибриноген = нити фибрина (нерастворимый белок) – образуется сетка, которая задерживает клетки крови – образуется сгусток
Если нет каких-то элементов – кровь сворачиваться не будет.
?Как вы думаете, а при переливании крови, почему она не сворачивается? - ответы учеников
?Какой элемент крови легче всего удалить, что бы она не свернулась? – ответы учеников
Легче всего из крови удалить соли кальция.
При анализе крови определяют не только кол-во гемоглобина, но и концентрацию сахара, солей, скорость оседания эритроцитов.
СОЭ(скорость оседания эритроцитов) в норме – мужчины – 2-10 мм/ч, женщины – 2 -15 мм/ ч. При наличии воспалительных процессов СОЭ увеличивается.
Снижение нормы гемоглобина может стать сигналом о том, что у человека – болезнь – малокровие – анемия.
?Чем грозит анемия – уменьшение кол-ва эритроцитов? - ответы учеников -недостаток кислорода.
Белок гемоглобин содержится в эритроцитах.
?Где образуются эритроциты? – ответы учеников - в красном костном мозге.
Если костный мозг не работает – не образуются эритроциты – болезнь – операция по пересадке костного мозга.
В красном костном мозге образуются и лейкоциты и тромбоциты. Дозревают в лимфатических узлах и тимусе (вилочковой железе).
Продолжительность жизни эритроцитов – 4 мес.
Лейкоцитов – от нескольких часов до 3 -5 суток
Тромбоцитов – 5 -7 суток
Количество крови в организме человека 5-6 литров. Потеря ~ 70% (3,5 л) грозит смертью человеку
?Какое есть средство от смерти от потери крови? – ответы учеников - переливание крови.
Идея о вливании крови в кровеносные сосуды родилась в 17 веке после открытия Гарвеем закона кровообращения.
Сначала пытались использовать кровь животных. Обескровленному умирающему юноше влили кровь ягненка. Вливание чужеродной крови вызвало тяжелую реакцию, однако, юноша выздоровел.
Стали проделывать подобные опыты с кровью животных, больные погибали.
В конце 18 века было доказано, что для переливания крови человеку надо использовать только кровь человека.
Первое в мире переливание крови человеку от человека – в 1919 г. В Англии.
Однако, выяснили, что и это не всегда безопасно. Некоторые пациенты гибли.
?Почему? ответы учеников.
На эти вопросы ответили в начале 20 века ученые К. Ландштейнер и я. Янский.
Они установили, что по биологическим свойствам крови люди делятся на 4 группы.
Запись в тетрадь:
Люди, дающие кровь – доноры, получающие кровь – реципиенты.
Когда кровь донора и реципиента не совпадает по группе, то эритроциты склеиваются, собираясь в кучки, или разрушаются при попадании в плазму или сыворотку крови другой группы. Это приводит к гибели больного.
В крови каждого человека есть антигены, которые принимают эритроциты крови другой группы, как инородные тела, которые необходимо уничтожить.
Самостоятельная работа с учебником.
Прочитайте раздел «Переливание крови» на стр. 97, выпишите группы крови в два столбика и, покажите стрелочками, какую группу в какую можно переливать.
Проверяем, записывая правильную схему на доске:
ДОНОРРЕЦИПИЕНТ
II
IIII
IIIIII
IVIV
В течение всей жизни группа крови не меняется.
?Кто знает свою группу крови? - ответы учеников
?Какие группы можно вам переливать? - ответы учеников
?Кому вы можете стать донором? - ответы учеников
У многих людей в эритроцитах есть белок, который получил название – резус-фактор. Обозначается буквами Rh+
Впервые был обнаружен у макак-резус, отсюда и название.
Rh+ - кровь, имеющая этот белок в эритроцитах
Rh- - кровь, не имеющая в эритроцитах этого белка
Если человеку с резус-отрицательной кровью влить резус-положительную, то в организме начнется выработка антител против этого белка.
Если повторно перелить такую кровь – начнется резус-конфликт – смерть.
Резус-конфликт может произойти и в случае, когда мать резус-отрицательна, отец – резус-положителен.
Если плод получится резус-положительным, то в организме матери начнут вырабатываться антитела, разрушающие положительный резус-белок. Если беременность первая и антител не много – родится нормальный ребенок
При повторной беременности – произойдет резус-конфликт, разрушение эритроцитов ребенка – гибель плода или болезнь плода.
Поэтому, сразу после рождения делают анализ на наличие антител к резус-фактору и, если он есть, новорожденному делают обменное переливание.
Закрепление:
Почему нельзя беспрепятственно переливать кровь от одного человека другому?
Какие группы крови имеются у человека и как их можно переливать?
Почему возникает резус-конфликт?
Рефлексия:
Домашнее задание: стр. 97 - 99, вопросы после параграфа устно

Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве­ществ всех клеток тела. Красный цвет крови придает гемоглобин, содер­жащийся в эритроцитах.

У многоклеточных организмов большинство клеток не имеет непо­средственного контакта с внешней средой, их жизнедеятельность обеспе­чивается наличием внутренней среды (кровь, лимфа, тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма. Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом. Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров, базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг, лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогумо-ральный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

1) дыхательная - перенос кислорода от легких к тканям и углекисло­го газа от тканей к легким;

2) трофическая (питательная) - доставка питательных веществ, вита­минов, минеральных солей и воды от органов пищеварения к тканям;

3) экскреторная (выделительная) - удаление из тканей конечных про­дуктов метаболизма, лишней воды и минеральных солей;

4) терморегуляторная - регуляция температуры тела путем охлаж­дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант го-меостаза: рН, осмотического давления, изоионии и т.д.;

6) регуляция водно-солевого обмена между кровью и тканями;

7) защитная - участие в клеточном (лейкоциты), гуморальном (анти­тела) иммунитете, в свертывании для прекращения кровотечения;

8) гуморальная регуляция - перенос гормонов, медиаторов и др.;

9) креаторная (лат. creatio - созидание) - перенос макромолекул, осу­ществляющих межклеточную передачу информации с целью восстановле­ния и поддержания структуры тканей.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. В покое в сосуди­стой системе находится 60-70% крови. Это так называемая циркулирую­щая кровь. Другая часть крови (30-40%) содержится в специальных кровя­ных депо. Это так называемая депонированная, или резервная, кровь.



Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток -форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы - 55-60%. В депонированной крови наоборот: форменных элементов - 55-60%, плазмы - 40-45%. Объемное соотношение форменных элементов и плазмы (или часть объема крови, приходящаяся на долю эритроцитов) называется гематокритом (греч. haema, haematos - кровь, kritos - отдельный, определенный). Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритроцитов- 1,090, плазмы- 1,025-1,034. Вязкость цельной крови по отношению к воде составляет около 5, а вязкость плазмы - 1,7-2,2. Вязкость крови обусловлена наличием белков и особенно эритроцитов.

Плазма содержит 90-92% воды и 8-10% сухого остатка, главным об­разом белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:

1) альбумины (около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты;

2) глобулины (2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы - в составе гликопротеинов, меди, железа - в составе трансферрина, выработку антител, а также α-- и β – агглютининов крови;

3) фибриноген (0,2-0,4%) участвует в свертывании крови.

Небелковые азотсодержащие соединения плазмы включают: ами­нокислоты, полипептиды, мочевину, креатинин, продукты распада нук­леиновых кислот и т.д. Половина общего количества небелкового азота в плазме (так называемого остаточного азота) приходится на долю мочеви­ны. В норме остаточного азота в плазме содержится 10,6-14,1 ммоль/л, а мочевины - 2,5-3,3 ммоль/л. В плазме находятся также безазотистые органические вещества: глюкоза 4,44-6,67 ммоль/л, нейтральные жиры, липоиды. Минеральные вещества плаз­мы составляют около 1% (катионы Nа + , К + , Са 2+ , анионы С1 - , НСО 3 - , НРО 4 -)- В плазме содержится также более 50 различных гормонов и фер­ментов.



Осмотическое давление - это давление, которое оказывают раст­воренные в плазме вещества. Оно зависит в основном от содержащихся в ней минеральных солей и составляет в среднем около 7,6 атм., что соот­ветствует температуре замерзания крови, равной -0,56 - -0,58°С. Около 60% всего осмотического давления обусловлено солями натрия. Растворы, осмотическое давление которых такое же, как у плазмы, называются изо­тоническими, или изоосмотическими. Растворы с большим осмотическим давлением называются гипертоническими, а с меньшим - гипотонически­ми. 0,85-0,9% раствор NaCl называется физиологическим. Однако он не является полностью физиологическим, так как в нем нет других компонен­тов плазмы.

Онкотическое (коллоидно-осмотическое) давление - это часть осмо­тического давления, создаваемая белками плазмы (т.е. их способность притягивать и удерживать воду). Оно равно 0,03-0,04 атм. (25-30 мм рт.ст.), т.е. 1/200 осмотического давления плазмы (равного 7,6 атм.), и оп­ределяется более чем на 80% альбуминами. Постоянство осмотического и онкотического давления крови является жестким параметром гомеостаза, без которого невозможна нормальная жизнедеятельность организма.

Реакция крови (рН) обусловлена соотношением в ней водородных (Н +) и гидроксильных (ОН -) ионов. Она также является одной из важней­ших констант гомеостаза, так как только при рН 7,36-7,42 возможно опти­мальное течение обмена веществ. Крайними пределами изменения рН, совместимыми с жизнью, являются величины от 7 до 7,8. Сдвиг реакции крови в кислую сторону называется ацидозом, в щелочную - алкалозом. Поддержание постоянства реакции крови в пределах рН 7,36-7,42 (слабо­щелочная реакция) достигается за счет следующих буферных систем кро­ви:

1) буферной системы гемоглобина - самой мощной; на ее долю при­ходится 75% буферной емкости крови;

2) карбонатной буферной системы (Н 2 СО 3 + NaНСО 3) - занимает по мощности второе место после буферной системы гемоглобина;

3) фосфатной буферной системы, образованной дигидрофосфатом (NаН 2 РО 4) и гидрофосфатом (Na 2 НРО 4) натрия;

4) белков плазмы.

В поддержании рН крови участвуют также легкие, почки, потовые железы. Буферные системы имеются и в тканях. Главными буферами тка­ней являются клеточные белки и фосфаты.

2. Эритроцит (греч. erithros - красный, cytus - клетка) - безъя­дерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска диаметром 7-8 мкм, толщиной 1-2,5 мкм. Они очень гибки и эластичны, легко деформируются и проходят через крове­носные капилляры с диаметром меньшим, чем диаметр эритроцита. Обра­зуются в красном костном мозге, разрушаются в печени и селезенке. Про­должительность жизни эритроцитов составляет 100-120 дней. В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро замещается дыхательным пигментом - ге­моглобином, составляющим 90% сухого вещества эритроцитов.

В норме в 1 мкл (мм 3) крови у мужчин содержится 4-5х10¹²/л эритро­цитов, у женщин - 3,7-4,7 х10¹²/л, у новорожденных достигает 6 х10¹²/л. Увели­чение количества эритроцитов в единице объема крови называется эритроцитозом (полиглобулией, полицитемией), уменьшение - эритропенией. Общая площадь поверхности всех эритроцитов взрослого человека состав­ляет 3000-3800 м 2 , что в 1500-1900 раз превышает поверхность тела. Функции эритроцитов:

1) дыхательная - за счет гемоглобина, присоединяющего к себе О 2 и СО 2 ;

2) питательная - адсорбирование на своей поверхности аминокислот и доставка их к клеткам организма;

3) защитная - связывание токсинов находящимися на их поверх­ности антитоксинами и участие в свертывании крови;

4) ферментативная - перенос различных ферментов: угольной ангидразы (карбоангидразы), истинной холинэстеразы и др.;

5) буферная - поддержание с помощью гемоглобина рН крови в пре­делах 7,36-7,42;

6) креаторная - переносят вещества, осуществляющие межклеточные взаимодействия, обеспечивающие сохранность структуры органов и тка­ней. Например, при повреждении печени у животных эритроциты начина­ют транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты, восстанавливающие структуру этого органа.

Гемоглобин является основной составной частью эритроцитов и обеспечивает:

1) дыхательную функцию крови за счет переноса О 2 от легких к тка­ням и СО 2 от клеток к легким;

2) регуляцию активной реакции (рН) крови, обладая свойствами сла­бых кислот (75% буферной емкости крови).

По химической структуре гемоглобин является сложным белком -хромопротеидом, состоящим из белка глобина и простетической группы тема (четырех молекул). Гем имеет в своем составе атом железа, способ­ный присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т.е. оно остается двухвалентным.

В крови человека должно содержаться в идеале 166,7 г/л гемоглобина. Фактически у мужчин в норме содержится гемоглобина в среднем 145 г/л с колебаниями от 130 до 160 г/л, у женщин - 130 г/л с колебаниями от 120 до 140 г/л. Об­щее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г. 1 г гемоглобина связывает 1,34 мл кислорода. Разница в содер­жании эритроцитов и гемоглобина у мужчин и женщин объясняется сти­мулирующим действием на кроветворение мужских половых гормонов и тормозящим влиянием женских половых гормонов. Гемоглобин синтези­руется эритробластами и нормобластами костного мозга. При разрушении эритроцитов гемоглобин после отщепления гема превращается в желчный пигмент - билирубин. Последний с желчью поступает в кишечник, где превращается в стеркобилин и уробилин, выводимые с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемо­глобина, т.е. около 1% гемоглобина, находящегося в крови.

В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа - гем идентична этой же группе молекулы гемоглобина крови, а белковая часть - глобин обладает меньшей молекулярной массой, чем белок гемоглобина. Миоглобин связывает до 14% общего количества кислорода в организме. Его на­значение - снабжение кислородом работающей мышцы в момент сокра­щения, когда кровоток в ней уменьшается или прекращается.

В норме гемоглобин содержится в крови в виде трех физиологи­ческих соединений:

1) оксигемоглобин (НbО 2) - гемоглобин, присоединивший О 2 ; на­ходится в артериальной крови, придавая ей ярко-алый цвет;

2) восстановленный, или редуцированный, гемоглобин, дезоксиге-моглобин (Нb) - оксигемоглобин, отдавший О 2 ; находится в венозной кро­ви, которая имеет более темный цвет, чем артериальная;

3) карбгемоглобин (НbСО 2) - соединение гемоглобина с углекислым газом; содержится в венозной крови.

Гемоглобин способен образовывать и патологические соединения.

1) Карбоксигемоглобин (НbСО) - соединение гемоглобина с угар­ным газом (окисью углерода); сродство железа гемоглобина к угарному газу превышает его сродство к О 2 , поэтому даже 0,1% угарного газа в воз­духе ведет к превращению 80% гемоглобина в карбоксигемоглобин, кото­рый неспособен присоединять О 2 , что является опасным для жизни. Сла­бое отравление угарным газом - обратимый процесс. Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз.

2) Метгемоглобин (МеtHb) - соединение, в котором под влиянием сильных окислителей (анилин, бертолетова соль, фенацетин и др.) железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови большого количества метгемоглобина транспорт кислорода тканям нарушается, и может наступить смерть.

3. Лейкоцит или белое кро­вяное тельце, - это бесцветная ядерная клетка, не содержащая гемоглоби­на. Размер лейкоцитов - 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезенке, лимфатических фолликулах. В 1 мкл (мм 3) крови человека в норме содержится 4-9 х109 лейкоцитов. Увеличе­ние количества лейкоцитов в крови называется лейкоцитозом, уменьшение - лейкопенией. Продолжительность жизни лейкоцитов составляет в сред­нем 15-20 дней, лимфоцитов - 20 и более лет. Некоторые лимфоциты жи­вут на протяжении всей жизни человека.

Лейкоциты делят на две группы: гранулоциты (зернистые) и аграну-лоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эози-нофилы и базофилы, а в группу агранулоцитов - лимфоциты и моноциты. При оценке изменений числа лейкоцитов в клинике решающее значение придается не столько изменениям их количества, сколько изменениям взаимоотношений между различными видами клеток. Процентное соот­ношение отдельных форм лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой. В настоящее время она имеет следующий вид (табл.6).

У здоровых людей лейкограмма довольно постоянна, и ее изменения служат признаком различных заболеваний. Так, например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болез­ни - эозинофилия, при вялотекущих хронических инфекциях (туберкулез, ревматизм и др.) - лимфоцитоз.

По нейтрофилам можно определить пол человека. При наличии жен­ского генотипа 7 из 500 нейтрофилов содержат особые, специфические для женского пола образования, называемые "барабанными палочками" (круг­лые выросты диаметром 1,5-2 мкм, соединенные с одним из сегментов ядра посредством тонких хроматиновых мостиков).

Лейкоцитарная формула у детей (%)

Возраст лейкоциты х10* 9/л нейтрофилы лимфоциты моноциты эозинофилы базофилы
палочк. сегмент.
5 суток 12 (9-15) 1-5 35-55 30-50 6-11 1-4 0-1
10 сут. 11 (8,5-14) 1-4 27-47 40-60 6-14 1-5 0-1
1 месяц 10 (8-12) 1-5 17-30 45-60 5-12 1-5 0-1
1 год 9 (7-11) 1-5 20-35 45-65 5-12 1-4 0-1
4-5 лет 8 (6-10) 1-4 35-55 35-55 4-6 1-4 0-1
10 лет 7,5 (6-10) 1-4 40-60 30-45 4-6 1-4 0-1
15 лет 1-4 40-60 30-45 3-7 1-4 0-1

Все виды лейкоцитов обладают тремя важнейшими физиологичес­кими свойствами:

1) амебовидной подвижностью - способностью активно передви­гаться за счет образования ложноножек (псевдоподий);

2) диапедезом - способностью выходить (мигрировать) через непо­врежденную стенку сосуда;

3) фагоцитозом - способностью окружать инородные тела и микро­организмы, захватывать их в цитоплазму, поглощать и переваривать. Это явление было подробно изучено и описано И.И.Мечниковым (1882).

Лейкоциты выполняют множество функций:

1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невос­приимчивость к заразным болезням;

4) участвуют в развитии всех этапов воспаления, стимулируют вос­становительные (регенеративные) процессы в организме и ускоряют за­живление ран;

5) ферментативная - они содержат различные ферменты, необхо­димые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

9) образуют активные (эндогенные) пирогены и формируют лихора­дочную реакцию;

10) несут макромолекулы с информацией, необходимой для управле­ния генетическим аппаратом других клеток организма; путем таких меж­клеточных взаимодействий (креаторных связей) восстанавливается и под­держивается целостность организма.

4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле­мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа­метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги­гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо­цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между со­бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных ве­ществ типа серотонина, адреналина, норадреналина и др.;

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

2) участвуют в остановке кровотечения (гемостазе) за счет при­сутствующих в них биологически активных соединений;

3) выполняют защитную функцию за счет склеивания (агглютина­ции) микробов и фагоцитоза;

4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо­цитов и для процесса остановки кровотечения;

5) оказывают влияние на состояние гистогематических барьеров ме­жду кровью и тканевой жидкостью путем изменения проницаемости сте­нок капилляров;

6) осуществляют транспорт креаторных веществ, важных для сохра­нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П.Панченкова.

В норме СОЭ равна:

у мужчин - 1-10 мм/час;

у женщин - 2-15 мм/час;

новорожденные - от 2 до 4 мм/ч;

дети первого года жизни - от 3 до 10 мм/ч;

дети возрастом 1-5 лет - от 5 до 11 мм/ч;

дети 6-14 лет - от 4 до 12 мм/ч;

старше 14 лет - для девочек - от 2 до 15 мм/ч, а для мальчиков - от 1 до 10 мм/ч.

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку­лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по­этому СОЭ достигает 40-50 мм/час.

Лейкоциты имеют свой, независимый от эритроцитов режим оседа­ния. Однако скорость оседания лейкоцитов в клинике во внимание не при­нимается.

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут оста­новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения - свертывание крови (ге-мокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа. Осуществляется в три фа­зы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при­нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане­вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак­тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

Большинство этих факторов образуется в печени при участии вита­мина К и является проферментами, относящимися к глобулиновой фрак­ции белков плазмы. В активную форму - ферменты они переходят в про­цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци­ты, лейкоциты и тромбоциты. Прочность обра­зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве­ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свер­тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей­коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги­рудин действует угнетающе на третью стадию процесса свертывания кро­ви, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще­ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре­вращение плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К.Ландштейнер и в 1903 г. чех Я.Янский обна­ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы­ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты. Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю­тинин α, а также В и β называются одноименными. Склеивание эритроци­тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове­ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю­тинин.

Согласно классификации Я.Янского и К.Ландштейнера у людей име­ется 4 комбинации агглютиногенов и агглютининов, которые обозначают­ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино­ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со­держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По­этому людей с I группой крови называют универсальными донорами. Лю­дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе­реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают толь­ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те­рапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглю­тининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя­желые осложнения. Поэтому людей с I группой крови, содержащих агглю­тинины анти-А и анти-В, сейчас называют опасными универсальными до­норами;

в-третьих, в системе АВО выявлено много вариантов каждого агглю­тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз­личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива­нии ее больным с I и III группами. Агглютиноген В тоже существует в не­скольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К.Ландштейнер, выступая на церемонии вручения ему Но­белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит­роцитах человека обнаружено более 500 различных агглютиногенов. Толь­ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови. Если же учитывать и все остальные агг­лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че­ловек имеет свою группу крови. Данные системы агглютиногенов отлича­ются от системы АВО тем, что не содержат в плазме естественных агглю­тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг­лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг­лютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови опреде­ляется неверно, и больным вводят несовместимую кровь. Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностимулирующее действие - с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью ос­тановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в лег­коусвояемом виде.

кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на­зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О. Особенностью резус-фактора является то, что у лю­дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра­батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро­ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен­трации антирезус-агглютининов может наступить смерть плода и выки­дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица­тельным женщинам назначают антирезус-гамма-глобулин, который ней­трализует резус-положительные антигены плода.

Открытие в начале ХХ века четырех групп крови существенно расширило возможности медицины. Переливание с учетом их совместимости стало принципиально возможным, а с ним стало возможным лечение множества тяжелых болезней. Однако все ли особенности групп крови исследованы? Мы расскажем, насколько ее тип может влиять на функционирование организма и, в частности, на сердечно-сосудистую систему.

Первые исследования постоянного состава крови были начаты иммунологом Карлом Ландштейнером. Тогда группа медиков под его руководством заметила, что в некоторых случаях смешивание крови двух пациентов изменяет ее структуру - происходит слипание красных кровяных телец (эритроцитов). Дальнейшие исследования позволили выявить на этих клетках наличие антигенов (А и В) и антител к ним (α и β). Одновременно присутствие антигенов и антител к ним в крови человека невозможно - именно такое совмещение при переливании и вызывало слипание клеток. В результате было выделено 4 варианта крови, которые и известны сегодня как система АВ0:

  • 0 (1 группа) - только антитела α и β.
  • А (2 группа) - А и β.
  • В (3 группа) - α и В.
  • АВ (4 группа) - только антигены А и В.

В дальнейшем изучение системы антител и антигенов продолжалось, и сегодня современной медицине известно более десятка различных систем: Келла, Кидда, Даффи и других. Однако по сей день наиболее популярной для выявления совместимости является система АВ0 с уточнением резус-фактора - наличия на эритроцитах специфического белка. Если он присутствует резус положительный, если нет - отрицательный.

Выявление различного состава антител и антигенов натолкнуло ученых на мысль, что они могут определять на устойчивость организма к различным типам болезней. Уже в середине ХХ века было выдвинуто предположение, что состав крови может влиять на ее свертываемость. В 1964 году Оксфордский региональный центр переливания крови провел статистическое исследование 400 образцов, по результатам которого была выявлена связь наличия антигенов с повышением свертываемости. Оказалось, что в 1-й группе, в которой присутствуют только антитела, концентрация VIII фактора свертывания ниже, чем в остальных образцах.

Повышенная свертываемость крови - это риск тромбообразования. А именно тромбы являются наиболее частой причиной инфарктов миокарда и инсультов. Поэтому на основе исследований ученые предположили, что 1-я группа крови наиболее безопасна в отношении развития сердечно-сосудистых заболеваний (ССЗ).

На сегодняшний день собрана большая база различных статистических данных, подтверждающих эту теорию. Однако сам принцип, по которому вероятность развития болезней сердца и сосудов в группах 2, 3, 4 выше, на уровне лабораторных исследований все еще не подтвержден.

В 1990 году врачи Королевского лазарета Эдинбурга высказали предположение, что существующая статистика связана с тем, что антигены А и В являются сахаридами, которые и повышают свертываемость крови. Поскольку в 1-й группе их нет, она может считаться менее подверженной образованию тромбов.

Ишемическая болезнь сердца (ИБС), по данным Всемирной организации здоровья, является главной причиной смерти в мире. Это заболевание, которое приводит к инфаркту миокарда или внезапной остановке сердца. При этом на начальных стадиях ИБС не имеет выраженных симптомов - человек может не подозревать о наличии болезни. Поэтому одним из существенных направлений профилактики инфарктов является ранняя диагностика ИБС. А значит, выявление дополнительных факторов риска - перспективное направление в медицинских исследованиях. Группы крови в данном аспекте изучаются очень внимательно.

Одно из наиболее масштабных исследований было проведено Гарвардской школой в Бостоне. На протяжении 20 лет учитывались истории болезней более 90 тысяч пациентов, среди которых 4 тысячи страдали ишемической болезнью сердца. Для того, чтобы статистика была как можно достовернее, учитывались дополнительные факторы: наличие сопутствующих диагнозов, возраст, пол, даже рацион питания. Как и в других исследованиях в этой области, было подтверждено, что пациенты с 1-й группой крови меньше страдают от ИБС. Кроме этого, были выявлены и другие данные:

  • Наличие антигенов повышает риск развития ИБС, однако А и В в этом плане неравноценны. У 2-й группы (А) вероятность заболевания по сравнению с 1-й группой выше на 6%, а вот у 3-й группы (В) - уже на 15%.
  • Наиболее подвержены ИБС люди с 4-й группой крови. По сравнению с 1-й группой, заболевание среди таких пациентов встречается на 23% чаще.

Еще одно важное исследование в этом направлении провели ученые Норвегии в 1980 году. Во внимание брались лишь данные пациентов с уже имеющейся ишемической болезнью сердца. Среди них людей с 1-й группой крови оказалось больше, чем со 2-й группой. Однако сами результаты оперативного лечения (аортокоронарного шунтирования) показали, что у больных с отсутствием антигенов А и В намного выше выживаемость и меньше риск осложнений.

В исследованиях связи группы крови и сердечно-сосудистых заболеваний (ССЗ) также собирались данные по атеросклерозу, артериальной гипертензии и инсультам.

  • Атеросклероз сосудов чаще встречается у мужчин с 4-й группой крови (польское исследование), а у женщин - с 3-й группой (литовское исследование).
  • Мужчины со 2-й группой крови более подвержены артериальной гипертензии, а у женщин она чаще встречается среди обладательниц 3-й группы. Более того, ранние исследования 70-80-х годов прошлого века выделяли именно 2-ю группу, как главный фактор риска по развитию всех сердечно-сосудистых заболеваний. И лишь статистика последних 20 лет показала, что наиболее опасна 4-я группа.
  • Люди с 4-й группой более подвержены инсультам. В 2012 году ученые из Университета Вермонта провели исследование с участием 30 тысяч человек пожилого возраста. По результатам оказалось, что наибольший процент людей с деменцией наблюдается среди пациентов с 4-й группой крови. В данном случае слабоумие связано именно с поражением сосудов головного мозга.

Кардиологи обращают внимание, что группа крови - лишь один из возможных факторов риска. Причем на сегодняшний день доказан он косвенно. Но существуют вполне реальные, полностью подтвержденные, факторы. Среди них наряду с пожилым возрастом, наследственностью и другим присутствуют привычки и образ жизни.

  • Курение.

Никотин повышает свертываемость крови, а окись углерода способствует отложению холестерина в стенках сосудов. Это приводит к образованию атеросклеротических бляшек, а нарушение свертывающей системы крови – к формированию на их поверхности тромбов, что в результате повышает риск развития инсульта и ИБС и, в частности, инфаркта. Также во время курения легкие поставляют меньше кислорода, и сердце компенсирует нехватку учащенным ритмом. Это приводит к аритмиям и тахикардии.

  • Алкоголь.

Употребление спиртных напитков приводит к резкому расширению сосудов, а потом к столь же резкому их сужению. Это отражается на артериальном давлении, нарушает кровообращение и может приводить к перерождению сердечной мышцы (кардиомиопатиии). Частое последствие пивного алкоголизма - чрезмерно увеличенный миокард, так называемое бычье сердце.

  • Ожирение.

Люди с избыточной массой тела чаще страдают от артериальной гипертензии. Избыточная жировая ткань увеличивает общее количество сосудов, для обеспечения которых сердце должно постоянно работать в напряженном режиме. Жировые накопления могут влиять на гормональный фон, нарушать восприимчивость организма к инсулину. Это, в свою очередь, приводит к сахарному диабету 2-го типа - существенному фактору риска развития инфаркта миокарда.

  • Чрезмерное потребление соли.

Употребление более 5 г соли в день приводит к нарушению водно-солевого баланса - жидкость задерживается в организме. А это способствует повышению артериального давления. При этом полное отсутствие соли в рационе может, напротив, приводить к обезвоживанию, что сказывается на работе организма в целом.

  • Гиподинамия.

Отсутствие спорта и сидячий образ жизни относятся к одним из основных факторов риска ССЗ. Нетренированное сердце более резко реагирует на стрессы, физические нагрузки. Заниматься рекомендуется регулярно, в умеренном ритме и не менее 30 минут в день.


1. Механизм свертывания крови

Гемокоагуляция – свертывание крови

Через 3-4 минуты после травмы кровь начинает свертываться. К 5-6 минуте в норме на месте повреждения сосуда должен образоваться студневистый сгусток – тромб.

Свертывание крови происходит как при внешнем травмировании стенки сосуда, так и при повреждении ее внутренней стенки (интимы) например при атеросклерозе.

В основе свертывания крови лежит изменение физико-химического состояния содержащегося в плазме крови белка – фибриногена, переходящего из растворимой формы в нерастворимую – фибрин.

Фибрин образует сети из длинных тонких нитей. В петлях этой сети задерживаются форменные элементы крови и образуют сгусток.

Кровь, из которой удален фибриноген, называется дефибринированной .

Основоположником современной ферментативной теории свертывания крови является профессор Шмидт (1872).

Свертывание крови протекает пофазно:

Предфаза свертывания крови. В это время происходит адгезия и агрегация тромбоцитов на поврежденной стенке сосуда. При этом тромбоциты разрушаются, выделяя I фактор свертывания крови – тромбоцитарный фактор.

Под действием тромбоцитарного фактора образуется тканевой тромбопластин . Для этого необходимо наличие ионов кальция.

Под действием тканевого тромбопластина из имеющегося всегда в плазме крови протромбина образуется тромбин .

Под действием тромбина, фибриноген , всегда имеющийся в плазме, переходит в нерастворимую форму – фибрин (в виде нитей).

Послефаза свертывания крови. После образования фибрина формируется сгусток. В самом начале он блестящий, влажный и подвижный. Затем наступает ретракция кровяного сгустка (сжатие его и выдавливание из него сыворотки, уменьшение его и высыхание). Сгусток становится ломким. Затем происходит фибринолиз (рассасывание тромба) и восстановление просвета сосуда.

Нейрогуморальная регуляция свертывания крови.

Сильная боль, страх, гнев сопровождаются выбросом адреналина. При этом ускоряется процесс свертывания крови. При возбуждении вагуса (блуждающего нерва) свертываемость крови повышается.

2. Группы крови. Переливание крови.

Деление крови на группы основано на наличие на эритроцитах специальных белков агглютиногенов и наличие в плазме крови белков – агглютининов .

Агглютиногены бывают двух видов: А и В;

Агглютинины также бывают двух видов: a и b.

Одноименные агглютиногены и агглютинины при встрече вызывают склеивание (агглютинацию), поэтому они не должны встречаться в крови.

На этом основан принцип деления крови на группы (АВ0 – система – имеется у человека и макаки):

Таблица 6. Группы крови системы АВ0 у человека

Определяют группу крови при помощи стандартных сывороток крови разных групп.

Переливание крови.

Классически считается, что I-ю группу крови можно переливать в кровь любой группы, т.к. ее эритроциты не содержат агглютиногенов. Люди с I-ой группой крови – универсальные доноры .

II-ю группу крови можно переливать только во II-ю или в IV-ю.

III-ю группу – только в III-ю и в IV-ю.

IV-ю группу только в IV-ю. Зато в нее можно переливать кровь любой группы, т.к. она не содержит агглютининов в плазме. Люди с IV-ой группой крови являются универсальными реципиентами.

У людей, кроме АВ0-системы, существуют также резус-система (Rh-система) и Mn-система.

Резус-система была впервые открыта у макаки-резус. По ней все люди делятся на резус-положительные (Rh+) – их 85%, и резус-отрицательные (Rh-) – их 15%.

На эритроцитах резус-положительной крови имеется белок, называемый резус-фактором. На эритроцитах резус-отрицательной крови имеется белок антирезус-фактор. При встрече эритроцитов с резус-фактором с эритроцитами с антирезус-фактором, возникает их склеивание.

У животных нет ни АВ0-системы, ни резус-системы.

У крупного рогатого скота различают 12 систем крови;

У овец – 7 систем;

У лошадей – 10 систем;

У свиней – 14 систем;

У кур – 12 систем.

3. Кроветворение

Кроветворение , или гемопоэз – процесс, состоящий из серии клеточных дифференцировок, которые приводят к образованию зрелых форменных элементов крови. У плодов млекопитающих гемопоэз происходит в печени. К концу эмбрионального периода центральным органом, осуществляющим гемопоэз становится красный костный мозг.

Процесс кроветворения условно подразделяется на:

Эритропоэз - процесс образования эритроцитов;

Лейкоцитопоэз – процесс образования лейкоцитов и

Тромбоцитопоэз – процесс формирования тромбоцитов.

Эритропоэз.

Предшественниками эритроцитов являются клетки красного костного мозга. Поскольку главным составляющим эритроцитов является гемоглобин, для нормального эритропоэза необходимо Fe. Суточная его потребность составляет 20-25 мг. Также для образования эритроцитов необходима фолиевая кислота и витамин B 12 , которые способствуют синтезу глобина. Витамин С и витамин В 6 активируют синтез железосодержащей части молекулы гемоглобина (гема), а витамин В 2 участвует в образовании липидной стромы эритроцита.

В своем развитии эритроциты проходят несколько стадий:

В красном костном мозге:

Бластные (стволовые) клетки - недифференцированные клетки красного костного мозга;

Проэритробласт ;

Макробласт ;

Полихроматофильный эритробласт ;

Нормобласт ;

Ретикулоцит ;

В периферической крови ретикулоциты течение нескольких часов созревают до нормоцитов или зрелых безядерных эритроцитов .

Общая продолжительность эритропоэза составляет 5-6 дней.

В норме в периферической крови содержится 1-10% ретикулоцитов, что служит показателем эритропоэза. Скорость его может возрастать в несколько раз при обильных и быстрых кровопотерях, при гипоксии. Образование эритроцитов протекает при участии эритропоэтина - гормона гликопротеиновой природы который ускоряе синтез гемоглобина. Эритропоэтин синтезируются почками и, в небольшом количестве, печенью и слюнными железами.

Эритроциты живут относительно недолго, в среднем около 120 дней. У отдельных видов животных продолжительность жизни эритроцитов может быть больше или меньше этого значения. Например, у лошади эритроциты замещаются новыми через 100 дней, у КРС – 120-160 дней, у овцы – 130, у кролика 45-60 дней. Разрушенные эритроциты выводятся из организма, а распавшийся на гем и глобин гемоглобин используется для синтеза новых молекул.

Лейкоцитопоэз.

Установлено, что лейкопоэз прямо зависит от количества лейкоцитов в крови: чем их больше распадается, тем больше образуется. Стимулирующее влияние на лейкопоэз оказывают нуклеиновые кислоты, гормоны гипофиза. Лейкоцитопоэтины ускоряют дифференциацию лейкоцитов. Местом разрушения лейкоцитов является слизистая оболочка пищеварительного тракта и ретикулярная ткань.

Процесс образования в крови гранулоцитов (нейтрофилов, эозинофилов, базофилов) называется гранулоцитопоэзом .

Гранулоциты являются полностью дифференцированными клетками. Их продолжительность жизни составляет: в костном мозге – 10 дней, в крови – 10 часов, в тканях – 5-9 часов.

Гранулоцитопоэз начинается в красном костном мозге. Из стволовых недифференцированных клеток костного мозга (миелобластов) формируются промиелоциты, которые дают начало миелоцитам (формируют своеобразное депо в костном мозге). Из миелоцитов, которые в норме не должны выходить из костного мозга в кровяное русло, развиваются юные нейтрофилы (также не выходят в кровь в норме) и функционально зрелые палочкоядерные и сегментоядерные нейтрофилы. Зрелые нейтрофилы накапливаются в костном мозге, фиксируются на стенках кровеносных сосудов (краевые клетки) и циркулируют в периферической крови. При возникшей повышенной потребности в гранулоцитах (стресс, воспаление) вначале мобилизируются краевые клетки, а затем резервы из депо крови в костном мозге.

Агранулоцитопоэз.

Моноциты образуются также из стволовых клеток красного костного мозга (миелобластов), которые дают начало монобластам, а затем промоноцитам, сохраняющим способность к делению. Из промоноцитов формируются моноциты, которые покидают костный мозг в виде моноцитов, проходят через кровь в ткани, где созревают и становятся свободными или связанными макрофагами (гистиоцитами).

Лимфоциты имеют различное происхождение и развитие. Их клеткой-предшественником также является миелобласт костного мозга. Часть миелобластов попадает в тимус, где из них в течение нескольких дней образуются Т-лимфоциты. Т-лимфоциты разносятся кровью по лимфоидным органам, где они преобразуются в Т-хелперы, Т-супрессоры, Т-киллеры и в мелкие клетки Т-памяти.

Другая часть миелобластов заносится в сумку фабрициуса у птиц или в ее гомологи (пейеровы бляшки, солитарные фолликулы, миндалины) у млекопитающих. Из них при взаимодействии организма с антигеном и при помощи Т-хелперов, путем активного деления формируются В-лимфоциты. Последние следуют в лимфоидные органы и превращаются в неподвижные плазматические клетки, которые синтезируют иммуноглобулины (антитела).

Тромбоцитопоэз – процесс производства организмом тромбоцитов.

Физиологическим регулятором тромбоцитопоэза являются тромбоцитопоэтины. В зависимости от места образования и механизма действия различают тромбоцитопоэтины короткого и дальнего действия. Первые образуются в селезенке и стимулируют выход тромбоцитов в кровь. Вторые содержаться в плазме крови и стимулируют образование тромбоцитов в костном мозгу. Особенно сильно тромбоциты вырабатываются после кровопотерь. Спустя несколько часов число их может удвоиться.



Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организма. В этих условиях важная роль принадлежит системе свертывания крови (системе гемокоагуляции), сохраняющей циркулирующую кровь в жидком состоянии и предотвращающей ее потерю через поврежденные сосуды посредством образования кровяных тромбов.

Сущность свертывания крови заключается в переходе растворенного в плазме белка фибриногена в нерастворенный белок - фибрин, который образует нити, склеенные с краями раны. Сгусток крови (тромб) приостанавливает дальнейшее кровотечение, предохраняя организм от кровопотерь. Эта функция осуществляется благодаря способности крови к свертыванию - гемокоагуляции . Превращение фиброногена в фибрин осуществляется при воздействии фермента тромбина, который образуется из белка протромбина под влиянием тромбопластина, появляющегося в крови при разрушении тромбоцитов. Образование тромбопластина и превращение протромбина в тромбин протекают при участии ионов кальция.

При кровопотерях в результате травмы и при некоторых операциях практикуется переливание человеку (называемому реципиентом) крови другого человека (донорской крови). При этом важно, чтобы донорская кровь была совместима с кровью реципиента. Дело в том, что при смешивании крови от разных лиц эритроциты, оказавшиеся в плазме крови другого человека, могут склеиваться (агглютинироваться), а затем разрушаться (гемолизироваться). Гемолиз эритроцитов (крови) может произойти при смешивании несовместимых групп крови или при введении в кровь гипотонического раствора, при действии химических ядовитых веществ - аммиака, бензина, хлороформа и других, а также в результате действия яданекоторых змей.

В плазме, эритроцитах и лейкоцитах крови каждого человека имеются особые белки, которые способны взаимодействовать с такими же белками крови другого человека. В эритроцитах такие белки получили название агглютиногенов, обозначенных заглавными буквами А и В. Специфические белки плазмы крови получили название агглютининов, обозначенных буквами альфа и бета. С учетом наличия таких белков кровь людей подразделяют на четыре группы .

Кровь всех четырех групп одинаково полноценная и отличается только содержанием различных по виду белков. Группа крови у человека постоянна, не изменяется в течение жизни и передается по наследству. При переливании крови нужно обязательно учитывать совместимость групп крови. При этом важно, чтобы в результате переливания крови эритроциты донора не склеивались в крови реципиента.

Кровь некоторых людей может содержать белок, получивший название резус-фактора. Он впервые был обнаружен в крови обезьян макак-резус. Резус-фактор обнаруживается в крови примерно у 85 % людей. Кровь таких людей называют резус-положительной (Rh +). Кровь, в которой резус-фактор отсутствует, называют резус-отрицательной (Rh –).

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека