Что содержится в крови. Общие свойства и функции крови

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками. Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость . Между , межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь. В понятии системы крови по Лангу входят кровь, регулирующий ней рогу моральный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатические узлы, вилочковая железа, селезенка и печень).

Функции крови

Кровь выполняет следующие функции.

Транспортная функция — заключается в транспорте кровью различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма.

Дыхательная функция — кровь переносит дыхательные газы — кислород (0 2) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь переносит также мигательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО 2 , другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

Гомеостатическая функция — кровь участвует в водно- солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды — гомеостаза.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма. Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Система крови и её функции

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

  • транспортная - циркулируя по сосудам, кровь осуществляет транспортную функцию, которая определяет ряд других;
  • дыхательная — связывание и перенос кислорода и углекислого газа;
  • трофическая (питательная) - кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, минеральными веществами, водой;
  • экскреторная (выделительная) - кровь уносит из тканей «шлаки» — конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделения;
  • терморегуляторная — кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло. В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении. Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью;
  • гомеостатическая - кровь поддерживает стабильность ряда констант гомеостаза — , осмотического давления и др.;
  • обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь;
  • защитная - кровь является важнейшим фактором иммунитета, т.е. защиты организма от живых тел и генетически чужеродных веществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммунитет);
  • гуморальная регуляция - благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие биологически активные вещества от клеток, где они образуются, к другим клеткам;
  • осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Функции крови.

Кровь – это жидкая ткань, состоящая из плазмы и взвешенных в ней кровяных телец. Циркуляция крови по замкнутой ССС является необходимым условием поддержания постоянства её состава. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели. Учение о крови и её болезнях называется гематологией.

Физиологические функции крови:

1. Дыхательная – перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким.

2. Трофическая (питательная) – доставляет питательные вещества, витамины, минеральные соли, воду от органов пищеварения к тканям.

3. Экскреторная (выделительная) – выделение из тканей конечных продуктов распада, лишней воды и минеральных солей.

4. Терморегуляторная – регуляция температуры тела путём охлаждения энергоёмких органов и согревание органов, теряющих тепло.

5. Гомеостатическая – поддержание стабильности ряда констант гомеостаза (ph, осмотического давления, изоионии).

6. Регуляция водно-солевого обмена между кровью и тканями.

7. Защитная – участие в клеточном (лейкоциты) и гуморальном (At) иммунитете, в процессе свёртывания для прекращения кровотечения.

8. Гуморальная – перенос гормонов.

9. Креаторная (созидательная) – перенос макромолекул, осуществляющих межклеточную передачу информации с целью восстановления и поддержания структуры тканей тела.

Количество и физико-химические свойства крови.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. Кровь состоит из жидкой части - плазмы и взвешенных в ней кровяных клеток - форменных элементов: красных (эритроцитов), белых (лейкоцитов) и кровяных пластинок (тромбоцитов). В циркулирующей крови форменные элементы составляют 40-45%, на долю плазмы приходится 55-60%. В депонированной крови наоборот: форменных элементов – 55-60%, плазмы – 40-45%.

Вязкость цельной крови составляет около 5, а вязкость плазмы – 1,7–2,2 (по отношению к вязкости воды, равной 1). Вязкость крови обусловлена наличием белков и особенно эритроцитов.

Осмотическое давление – это давление, которое оказывают растворённые в плазме вещества. Оно зависит в основном от содержащихся в ней минеральных солей и составляет в среднем 7,6 атм., что соответствует температуре замерзания крови, равной -0,56 - -0,58°С. Около 60% всего осмотического давления обусловлено солями Na.

Онкотическое давление крови – это давление, создаваемое белками плазмы (т.е. их способность притягивать и удерживать воду). Определяется более чем на 80% альбуминами.

Реакция крови определяется концентрацией водородных ионов, которую выражают водородным показателем – pН.

В нейтральной среде pН = 7,0

В кислой - менее 7,0.

В щелочной – более 7,0.

Кровь имеет pН – 7,36, т.е. её реакция слабощелочная. Жизнь возможна в узких пределах смещения pН от 7,0 до 7,8 (т.к. только в этих условиях могут работать ферменты - катализаторы всех биохимических реакций).

Плазма крови.

Плазма крови – это сложная смесь белков, аминокислот, углеводов, жиров, солей, гормонов, ферментов, антител, растворённых газов и продуктов распада белка (мочевина, мочевая кислота, креатинин, аммиак), подлежащих выведению из организма. Плазма содержит 90-92% воды и 8-10% сухого остатка, главным образом, белков и минеральных солей. Плазма имеет слабощелочную реакцию (pН = 7,36).

Белки плазмы (их более 30) включают 3 основные группы:

· Глобулины обеспечивают транспорт жиров, липоидов, глюкозы, меди, железа, выработку антител, а также α- и β-агглютининов крови.

· Альбумины обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты.

· Фибриноген участвует в свёртывании крови.

Форменные элементы крови.

Эритроциты (от греч. erytros – красный, cytus – клетка) – безъядерные форменные элементы крови, содержащие гемоглобин. Имеют форму двояковогнутых дисков диаметром 7-8 мкм, толщиной – 2 мкм. Они очень гибки и эластичны, легко деформируются и проходят через кровеносные капилляры с диаметром меньшим, чем диаметр эритроцита. Продолжительность жизни эритроцитов составляет 100-120 дней.

В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро замещается дыхательным пигментом – гемоглобином, составляющим 90% сухого вещества эритроцитов.

В норме в 1 мкл (1 куб. мм) крови у мужчин содержится 4-5 млн. эритроцитов, у женщин – 3,7-4,7 млн., у новорождённых число эритроцитов достигает 6 млн. Увеличение количества эритроцитов в единице объёма крови называется эритроцитозом, уменьшение – эритропенией. Гемоглобин является основной составной частью эритроцитов, обеспечивает дыхательную функцию крови за счёт транспорта кислорода и углекислого газа и регуляцию рН крови, обладая свойствами слабых кислот.

В норме у мужчин содержится 145 г/л гемоглобина (с колебаниями 130-160 г/л), у женщин – 130 г/л (120-140 г/л). Общее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г.

Лейкоциты (от греч. leukos – белый, cytus – клетка) – бесцветные ядерные клетки. Размер лейкоцитов – 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезёнке. В 1 мкл крови человека в норме содержится 4-9 тысяч лейкоцитов. Количество их колеблется в течение суток, утром снижено, повышается после еды (пищеварительный лейкоцитоз), повышается во время мышечной работы, сильных эмоций.

Увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение – лейкопенией.

Продолжительность жизни лейкоцитов составляет в среднем 15-20 дней, лимфоцитов – 20 и более лет. Некоторые лимфоциты живут на протяжении всей жизни человека.

По наличию в цитоплазме зернистости лейкоциты делят на 2 группы: зернистые (гранулоциты) и незернистые (агранулоциты).

В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы. Имеют в цитоплазме большое количество гранул, где содержатся ферменты, необходимые для переваривания чужеродных веществ. Ядра всех гранулоцитов разделены на 2–5 частей, соединенных между собой нитями, поэтому их ещё называют сегментоядерными лейкоцитами. Молодые формы нейтрофилов с ядрами в виде палочек называются палочкоядерными нейтрофилами, а в виде овала – юными.

Лимфоциты – самые маленькие из лейкоцитов, имеют большое округлое ядро, окружённое узким ободком цитоплазмы.

Моноциты являются крупными агранулоцитами, имеют ядро в виде овала или боба.

Процентное соотношение отдельных видов лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой:

· эозинофилы 1 – 4%

· базофилы 0,5%

· нейтрофилы 60 – 70%

· лимфоциты 25 – 30%

· моноциты 6 – 8%

У здоровых людей лейкограмма довольно постоянна, и её изменения служат признаком различных заболеваний. Например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болезни – увеличение количества эозинофилов (эозинофилия), при вялотекущих хронических инфекциях (туберкулёз, ревматизм и др.) – количество лимфоцитов (лимфоцитоз).

По нейтрофилам можно определить пол человека. При наличии женского генотипа 7 из 500 нейтрофилов содержат особые, специфические для женского пола образования, называемые «барабанными палочками» (круглые выросты диаметром 1,5-2 мкм, соединённые с одним из сегментов ядра посредством тонких хроматиновых мостиков).

Лейкоциты выполняют множество функций:

1. Защитная – борьба с чужеродными агентами (они фагоцитируют (поглощают) чужеродные тела и уничтожают их).

2. Антитоксическая – выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов.

3. Выработка антител, обеспечивающих иммунитет, т.е. невосприимчивость к инфекциям и генетически чужеродным веществам.

4. Участвуют в развитии всех этапов воспаления, стимулируют восстановительные (регенеративные) процессы в организме и ускоряют заживление ран.

5. Обеспечивают реакцию отторжения трансплантата и уничтожение собственных мутантных клеток.

6. Образуют активные (эндогенные) пирогены и формируют лихорадочную реакцию.

Тромбоциты, или кровяные пластинки (греч. thrombos - сгусток крови, cytus – клетка) представляют собой округлые или овальные безъядерные образования диаметром 2–5 мкм (в 3 раза меньше эритроцитов). Тромбоциты образуются в красном костном мозге из гигантских клеток - мегакариоцитов. В 1 мкл крови у человека в норме содержится 180-300 тысяч тромбоцитов. Значительная часть их депонируется в селезёнке, печени, лёгких, в случае необходимости поступает в кровь. Увеличение количества тромбоцитов в периферической крови называется тромбоцитозом, уменьшение – тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2-10 дней.

Функции тромбоцитов:

1. Участвуют в процессе свёртывания крови и растворения кровяного сгустка (фибринолиза).

2. Участвуют в остановке кровотечения (гемостазе) за счёт присутствующих в них биологически активных соединений.

3. Выполняют защитную функцию за счёт склеивания (агглютинации) микробов и фагоцитоза.

4. Вырабатывают некоторые ферменты, необходимые для нормальной жизнедеятельности тромбоцитов и для процесса остановки кровотечения.

5. Осуществляют транспорт креаторных веществ, важных для сохранения структуры сосудистой стенки (без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты).

Свёртывающая система крови. Группы крови. Резус-фактор. Гемостаз и его механизмы.

Гемостаз (греч. haime – кровь, stasis - неподвижное состояние) – это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

1. Сосудисто-тромбоцитарный гемостаз способен самостоятельно за несколько минут остановить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

Сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

Образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

2. Коагуляционный гемостаз (свёртывание крови) обеспечивает прекращение кровопотери при повреждении крупных сосудов. Свёртывание крови является защитной реакцией организма. При ранении и вытекании крови из сосудов она из жидкого состояния переходит в желеобразное. Образующийся сгусток закупоривает повреждённые сосуды и предотвращает потерю значительного количества крови.

Понятие о резус-факторе.

Кроме АВО системы (системы Ландштейнера) существует система резус, так как кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности, так называемый резус-агглютиноген (резус-фактор). Впервые он был обнаружен в 1940 году К. Ландштейнером и И. Винером в крови обезьяны макаки-резуса.

85% людей имеют в крови резус-фактор. Такая кровь называется резус-положительной. Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной. Особенностью резус-фактора является то, что у людей отсутствуют антирезус-агглютинины.

Группы крови.

Группы крови – совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (от лат. transfusio – переливание).

По наличию в крови тех или иных агглютиногенов и агглютининов кровь людей делят на 4 группы, согласно системе Ландштейнера АВО.

Иммунитет, его виды.

Иммунитет (от лат. immunitas – освобождение от чего-либо, избавление) – это невосприимчивость организма к возбудителям болезней или ядам, а также способность организма защищаться от генетически чужеродных тел и веществ.

По способу происхождения различают врождённый и приобретённый иммунитет .

Врождённый (видовой) иммунитет является наследственным признаком для данного вида животных (собаки и кролики не болеют полиомиелитом).

Приобретённый иммунитет приобретается в процессе жизни и делится на естественно приобретённый и искусственно приобретённый. Каждый из них по способу возникновения делится на активный и пассивный.

Естественно приобретённый активный иммунитет возникает после перенесения соответствующего инфекционного заболевания.

Естественно приобретённый пассивный иммунитет обусловлен переходом защитных антител из крови матери через плаценту в кровь плода. Таким путём получают иммунитет новорожденные дети по отношению к кори, скарлатине, дифтерии и другим инфекциям. Через 1-2 года, когда антитела, полученные от матери, разрушаются и частично выделяются из организма ребёнка, восприимчивость его к указанным инфекциям резко возрастает. Пассивным путём иммунитет в меньшей степени может передаваться с молоком матери.

Искусственно приобретённый иммунитет воспроизводится человеком в целях предупреждения заразных болезней.

Активный искусственный иммунитет достигается путём прививки здоровым людям культур убитых или ослабленных патогенных микробов, ослабленных токсинов или вирусов. Впервые искусственная активная иммунизация была выполнена Дженнером путём прививок коровьей оспы детям. Эта процедура Пастером была названа вакцинацией, а прививочный материал – вакциной (от лат. vaccа – корова).

Пассивный искусственный иммунитет воспроизводится путём введения человеку сыворотки, содержащей готовые антитела против микробов и их токсинов. Особенно эффективны антитоксические сыворотки против дифтерии, столбняка, газовой гангрены, ботулизма, змеиных ядов (кобра, гадюка и др.). эти сыворотки получают главным образом от лошадей, которых иммунизируют соответствующим токсином.

В зависимости от направленности действия различают также антитоксический, антимикробный и противовирусный иммунитет.

Антитоксический иммунитетнаправлен на нейтрализацию микробных ядов, ведущая роль при нём принадлежит антитоксинам.

Антимикробный (антибактериальный) иммунитетнаправлен на уничтожение микробных тел. Большая роль при нём принадлежит антителам и фагоцитам.

Противовирусный иммунитетпроявляется образованием в клетках лимфоидного ряда особого белка – интерферона, подавляющего размножение вирусов

Кровь - жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов.

Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету.

Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток. Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем около 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты.

Функции крови

Функции крови значительно сложнее, чем просто транспорт питательных веществ и отходов метаболизма. С кровью переносятся также гормоны, контролирующие множество жизненно важных процессов; кровь регулирует температуру тела и защищает организм от повреждений и инфекций в любой его части.

Транспортная функция крови . С кровью и кровоснабжением тесно связаны практически все процессы, имеющие отношение к пищеварению и дыханию - двум функциям организма, без которых жизнь невозможна. Связь с дыханием выражается в том, что кровь обеспечивает газообмен в легких и транспорт соответствующих газов: кислорода - от легких в ткани, диоксида углерода (углекислого газа) - от тканей к легким. Транспорт питательных веществ начинается от капилляров тонкого кишечника; здесь кровь захватывает их из пищеварительного тракта и переносит во все органы и ткани, начиная с печени, где происходит модификация питательных веществ (глюкозы, аминокислот, жирных кислот), причем клетки печени регулируют их уровень в крови в зависимости от потребностей организма (тканевого метаболизма). Переход транспортируемых веществ из крови в ткани осуществляется в тканевых капиллярах; одновременно в кровь из тканей поступают конечные продукты, которые далее выводятся через почки с мочой (например, мочевина и мочевая кислота). Кровь переносит также продукты секреции эндокринных желез - гормоны - и тем самым обеспечивает связь между различными органами и координацию их деятельности.

Регуляция температуры тела . Кровь играет ключевую роль в поддержании постоянной температуры тела у гомойотермных, или теплокровных, организмов. Температура человеческого тела в нормальном состоянии колеблется в очень узком интервале около 37° С. Выделение и поглощение тепла различными участками тела должны быть сбалансированы, что достигается переносом тепла с помощью крови. Центр температурной регуляции располагается в гипоталамусе - отделе промежуточного мозга. Этот центр, обладая высокой чувствительностью к небольшим изменениям температуры проходящей через него крови, регулирует те физиологические процессы, при которых выделяется или поглощается тепло. Один из механизмов состоит в регуляции тепловых потерь через кожу посредством изменения диаметра кожных кровеносных сосудов кожи и соответственно объема крови, протекающей вблизи поверхности тела, где тепло легче теряется. В случае инфекции определенные продукты жизнедеятельности микроорганизмов либо продукты вызванного ими распада тканей взаимодействуют с лейкоцитами, вызывая образование химических веществ, стимулирующих центр температурной регуляции в головном мозге. В результате наблюдается подъем температуры тела, ощущаемый как жар.

Защита организма от повреждений и инфекции . В осуществлении этой функции крови особую роль играют лейкоциты двух типов: полиморфноядерные нейтрофилы и моноциты. Они устремляются к месту повреждения и накапливаются вблизи него, причем большая часть этих клеток мигрирует из кровотока через стенки близлежащих кровеносных сосудов. К месту повреждения их привлекают химические вещества, высвобождаемые поврежденными тканями. Эти клетки способны поглощать бактерии и разрушать их своими ферментами.

Таким образом, они препятствуют распространению инфекции в организме.

Лейкоциты принимают также участие в удалении мертвых или поврежденных тканей. Процесс поглощения клеткой бактерии или фрагмента мертвой ткани называется фагоцитозом, а осуществляющие его нейтрофилы и моноциты - фагоцитами. Активно фагоцитирующий моноцит называют макрофагом, а нейтрофил - микрофагом. В борьбе с инфекцией важная роль принадлежит белкам плазмы, а именно иммуноглобулинам, к которым относится множество специфических антител. Антитела образуются другими типами лейкоцитов - лимфоцитами и плазматическими клетками, которые активируются при попадании в организм специфических антигенов бактериального или вирусного происхождения (либо присутствующих на клетках, чужеродных для данного организма). Выработка лимфоцитами антител против антигена, с которым организм встречается в первый раз, может занять несколько недель, но полученный иммунитет сохраняется надолго. Хотя уровень антител в крови через несколько месяцев начинает медленно падать, при повторном контакте с антигеном он вновь быстро растет. Это явление называется иммунологической памятью. П

ри взаимодействии с антителом микроорганизмы либо слипаются, либо становятся более уязвимыми для поглощения фагоцитами. Кроме того, антитела мешают вирусу проникнуть в клетки организма хозяина.

рН крови . pH - это показатель концентрации водородных (H) ионов, численно равный отрицательному логарифму (обозначаемому латинской буквой «p») этой величины. Кислотность и щелочность растворов выражают в единицах шкалы рН, имеющей диапазон от 1 (сильная кислота) до 14 (сильная щелочь). В норме рН артериальной крови составляет 7,4, т.е. близок к нейтральному. Венозная кровь из-за растворенного в ней диоксида углерода несколько закислена: диоксид углерода (СО2), образующийся в ходе метаболических процессов, при растворении в крови реагирует с водой (Н2О), образуя угольную кислоту (Н2СО3).

Поддержание рН крови на постоянном уровне, т.е., другими словами, кислотно-щелочного равновесия, исключительно важно. Так, если рН заметно падает, в тканях снижается активность ферментов, что опасно для организма. Изменение рН крови, выходящее за рамки интервала 6,8-7,7, несовместимо с жизнью. Поддержанию этого показателя на постоянном уровне способствуют, в частности, почки, поскольку они по мере надобности выводят из организма кислоты или мочевину (которая дает щелочную реакцию). С другой стороны, рН поддерживается благодаря присутствию в плазме определенных белков и электролитов, обладающих буферным действием (т.е. способностью нейтрализовать некоторый избыток кислоты или щелочи).

Физико-химические свойства крови . Плотность цельной крови зависит главным образом от содержания в ней эритроцитов, белков и липидов. Цвет крови меняется от алого до тёмно-красного в зависимости от соотношения оксигенированной (алой) и неоксигенированной форм гемоглобина, а также присутствия дериватов гемоглобина - метгемоглобина, карбоксигемоглобина и т. д. Окраска плазмы зависит от присутствия в ней красных и жёлтых пигментов - главным образом каротиноидов и билирубина, большое кол-во которого при патологии придаёт плазме жёлтый цвет. Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические о-ва плазма - растворёнными веществами, а белки и их комплексы - коллоидным компонентом. На поверхности клеток крови существует двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счёт двойного электрического слоя возникает электрокинетический потенциал, который играет важную роль стабилизации клеток, предотвращая их агрегацию. При увеличении ионной силы плазмы в связи с попаданием в неё многозарядных положительных ионов диффузный слой сжимается и барьер, препятствующий агрегации клеток, снижается. Одним из проявлений микрогетерогенности крови является феномен оседания эритроцитов. Он заключается в том, что в крови вне кровеносного русла (если предотвращено её свёртывание), клетки оседают (седементируют), оставляя сверху слой плазмы.

Скорость оседания эритроцитов (СОЭ) возрастает при различных заболеваниях, в основном воспалительного характера, в связи с изменением белкового состава плазмы. Оседанию эритроцитов предшествует их агрегация с образованием определённых структур типа монетных столбиков. От того, как проходит их формирование, и зависит СОЭ. Концентрация водородных ионов плазмы выражается в величинах водородного показателя, т.е. отрицательного логарифма активности водородных ионов. Средний pH крови равняется 7,4. Поддержание постоянства этой величины большое физиол. значение, поскольку она определяет скорости очень многих хим. и физ.-хим. процессов в организме.

В норме рН артериальной К. 7,35-7,47 венозной крови на 0,02 ниже, содержание эритроцитов обычно имеет на 0,1-0,2 более кислую реакцию, чем плазма. Одно из важнейших свойств крови - текучесть - составляет предмет изучения биореологии. В кровеносном русле кровь в норме ведёт себя как не Ньютоновская жидкость, меняющая свою вязкость в зависимости от условий течения. В связи с этим вязкость крови в крупных сосудах и капиллярах существенно различается, а приводимые в литературе данные по вязкости носят условный характер. Закономерности течения крови (реология крови) изучены недостаточно. Неньютоновское поведение крови объясняется большой объёмной концентрацией клеток крови, их асимметрией, присутствием в плазме белков и другими факторами. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра) вязкость крови в 4-5 раз выше вязкости воды.

При патологии и травмах текучесть крови существенно изменяется вследствие действия определённых факторов свёртывающей системы крови. В основном работа этой системы заключается в ферментативном синтезе линейного полимера - фабрина, образующего сетчатую структуру и придающего крови свойства студня. Этот «студень» имеет вязкость, в сотни и тысячи превышающую вязкость крови в жидком состоянии, проявляет прочностные свойства и высокую адгезивную способность, что позволяет сгустку удерживаться на ране и защищать её от механических повреждений. Образование сгустков на стенках кровеносных сосудов при нарушении равновесия в свёртывающей системе является одной из причин тромбозов. Образованию сгустка фибрина препятствует противосвёртывающая система крови; разрушение образовавшихся сгустков происходит под действием фибринолитической системы. Образовавшийся сгусток фибрина вначале имеет рыхлую структуру, затем становится более плотным, происходит ретракция сгустка.

Компоненты крови

Плазма . После отделения взвешенных в крови клеточных элементов остается водный раствор сложного состава, называемый плазмой. Как правило, плазма представляет собой прозрачную или слегка опалесцирующую жидкость, желтоватый цвет которой определяется присутствием в ней небольшого количества желчного пигмента и других окрашенных органических веществ. Однако после потребления жирной пищи в кровь попадает множество капелек жира (хиломикронов), в результате чего плазма становится мутной и маслянистой. Плазма участвует во многих процессах жизнедеятельности организма. Она переносит клетки крови, питательные вещества и продукты метаболизма и служит связующим звеном между всеми экстраваскулярными (т.е. находящимися вне кровеносных сосудов) жидкостями; последние включают, в частности, межклеточную жидкость, и через нее осуществляется связь с клетками и их содержимым.

Таким образом плазма контактирует с почками, печенью и другими органами и тем самым поддерживает постоянство внутренней среды организма, т.е. гомеостаз. Основные компоненты плазмы и их концентрации приведены в таблице. Среди растворенных в плазме веществ - низкомолекулярные органические соединения (мочевина, мочевая кислота, аминокислоты и т.д.); большие и очень сложные по структуре молекулы белков; частично ионизированные неорганические соли. К числу наиболее важных катионов (положительно заряженных ионов) относятся катионы натрия (Na+), калия (K+), кальция (Ca2+) и магния (Mg2+); к числу важнейших анионов (отрицательно заряженных ионов) - хлорид-анионы (Cl-), бикарбонат (HCO3-) и фосфат (HPO42- или H2PO4-). Основные белковые компоненты плазмы - альбумин, глобулины и фибриноген.

Белки плазмы . Из всех белков в наибольшей концентрации в плазме присутствует альбумин, синтезируемый в печени. Он необходим для поддержания осмотического равновесия, обеспечивающего нормальное распределение жидкости между кровеносными сосудами и экстраваскулярным пространством. При голодании или недостаточном поступлении белков с пищей содержание альбумина в плазме падает, что может привести к повышенному накоплению воды в тканях (отек). Это состояние, связанное с белковой недостаточностью, называется голодным отеком. В плазме присутствуют глобулины нескольких типов, или классов, важнейшие из которых обозначаются греческими буквами a (альфа), b (бета) и g (гамма), а соответствующие белки - a1, a2, b, g1 и g2. После разделения глобулинов (методом электрофореза) антитела обнаруживаются лишь во фракциях g1, g2 и b. Хотя антитела часто называют гамма-глобулинами, тот факт, что некоторые из них присутствуют и в b-фракции, обусловил введение термина «иммуноглобулин». В a- и b-фракциях содержится множество различных белков, обеспечивающих транспорт в крови железа, витамина В12, стероидов и других гормонов. В эту же группу белков входят и факторы коагуляции, которые наряду с фибриногеном участвуют в процессе свертывания крови. Основная функция фибриногена состоит в образовании кровяных сгустков (тромбов). В процессе свертывания крови, будь то in vivo (в живом организме) или in vitro (вне организма), фибриноген превращается в фибрин, который и составляет основу кровяного сгустка; не содержащая фибриногена плазма, обычно имеющая вид прозрачной жидкости бледно-желтого цвета, называется сывороткой крови.

Эритроциты . Красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2-7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5-6 млн. эритроцитов. Они составляют 44-48% общего объема крови. Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде около 34%. [В пересчете на сухой вес содержание гемоглобина в эритроцитах - 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12-16г (12-16 г%), причем у мужчин оно несколько выше, чем у женщин.] Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом.

Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела. В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз - образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника).

Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро - за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг.

Срок созревания эритроцитов в костном мозге - от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания - составляет 4-5 дней. Срок жизни зрелого эритроцита в периферической крови - в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться. Большая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин - красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).

Гемоглобин . Основная функция эритроцита - транспорт кислорода из легких к тканям организма. Ключевую роль в этом процессе играет гемоглобин - органический пигмент красного цвета, состоящий из гема (соединения порфирина с железом) и белка глобина. Гемоглобин отличается высоким сродством к кислороду, за счет чего кровь способна переносить гораздо больше кислорода, чем обычный водный раствор.

Степень связывания кислорода с гемоглобином зависит прежде всего от концентрации кислорода, растворенного в плазме. В легких, где кислорода много, он диффундирует из легочных альвеол через стенки кровеносных сосудов и водную среду плазмы и попадает в эритроциты; там он связывается с гемоглобином - образуется оксигемоглобин. В тканях, где концентрация кислорода невелика, молекулы кислорода отделяются от гемоглобина и проникают в ткани за счет диффузии. Недостаточность эритроцитов или гемоглобина приводит к снижению транспорта кислорода и тем самым к нарушению биологических процессов в тканях. У человека различают гемоглобин плода (тип F, от fetus - плод) и гемоглобин взрослых (тип A, от adult - взрослый). Известно много генетических вариантов гемоглобина, образование которых приводит к аномалиям эритроцитов или их функции. Среди них наиболее известен гемоглобин S, обусловливающий серповидноклеточную анемию.

Лейкоциты . Белые клетки периферической крови, или лейкоциты, делят на два класса в зависимости от наличия или отсутствия в их цитоплазме особых гранул. Клетки, не содержащие гранул (агранулоциты), - это лимфоциты и моноциты; их ядра имеют преимущественно правильную круглую форму. Клетки со специфическими гранулами (гранулоциты) характеризуются, как правило, наличием ядер неправильной формы со множеством долей и потому называются полиморфноядерными лейкоцитами. Их разделяют на три разновидности: нейтрофилы, базофилы и эозинофилы. Они отличаются друг от друга по картине окрашивания гранул различными красителями. У здорового человека в 1 мм3 крови содержится от 4000 до 10 000 лейкоцитов (в среднем около 6000), что составляет 0,5-1% объема крови. Соотношение отдельных видов клеток в составе лейкоцитов может значительно варьировать у разных людей и даже у одного и того же человека в разное время.

Полиморфноядерные лейкоциты (нейтрофилы, эозинофилы и базофилы) образуются в костном мозге из клеток-предшественников, начало которым дают стволовые клетки, вероятно, те же самые, что дают и предшественников эритроцитов. По мере созревания ядра в клетках появляются гранулы, типичные для каждого вида клеток. В кровотоке эти клетки перемещаются вдоль стенок капилляров в первую очередь за счет амебоидных движений. Нейтрофилы способны покидать внутреннее пространство сосуда и скапливаться в месте инфекции. Время жизни гранулоцитов, по-видимому, около 10 дней, после чего они разрушаются в селезенке. Диаметр нейтрофилов - 12-14 мкм. Большинство красителей окрашивает их ядро в фиолетовый цвет; ядро нейтрофилов периферической крови может иметь от одной до пяти долей. Цитоплазма окрашивается в розоватый цвет; под микроскопом в ней можно различить множество интенсивно-розовых гранул. У женщин примерно 1% нейтрофилов несет половой хроматин (образованный одной из двух X-хромосом) - тельце в форме барабанной палочки, прикрепленное к одной из ядерных долей. Эти т.н. тельца Барра позволяют определять пол при исследовании образцов крови. Эозинофилы по своим размерам сходны с нейтрофилами. Их ядро редко имеет больше трех долей, а цитоплазма содержит множество крупных гранул, которые четко окрашиваются в ярко-красный цвет красителем эозином. В отличие от эозинофилов у базофилов цитоплазматические гранулы окрашиваются основными красителями в синий цвет.

Моноциты . Диаметр этих незернистых лейкоцитов составляет 15-20 мкм. Ядро овальное или бобовидное, и лишь у небольшой части клеток оно поделено на крупные доли, которые перекрывают друг друга. Цитоплазма при окраске голубовато-серая, содержит незначительное число включений, окрашивающихся красителем азуром в сине-фиолетовый цвет. Моноциты образуются как в костном мозге, так и в селезенке и в лимфатических узлах. Их основная функция - фагоцитоз.

Лимфоциты . Это небольшие одноядерные клетки. Большинство лимфоцитов периферической крови имеет диаметр меньше 10 мкм, но иногда встречаются лимфоциты и большего диаметра (16 мкм). Ядра клеток плотные и круглые, цитоплазма голубоватого цвета, с очень редкими гранулами. Несмотря на то что лимфоциты выглядят морфологически однородно, они отчетливо различаются по своим функциям и свойствам клеточной мембраны. Их делят на три большие категории: B-клетки, Т-клетки и 0-клетки (нуль-клетки, или ни В, ни Т). B-лимфоциты созревают у человека в костном мозге, после чего мигрируют в лимфоидные органы. Они служат предшественниками клеток, образующих антитела, т.н. плазматических. Для того чтобы B-клетки трансформировались в плазматические, необходимо присутствие Т-клеток. Созревание Т-клеток начинается в костном мозге, где образуются протимоциты, которые затем мигрируют в тимус (вилочковую железу) - орган, расположенный в грудной клетке за грудиной. Там они дифференцируются в Т-лимфоциты - весьма неоднородную популяцию клеток иммунной системы, выполняющих различные функции. Так, они синтезируют факторы активации макрофагов, факторы роста B-клеток и интерфероны. Есть среди Т-клеток индукторные (хелперные) клетки, которые стимулируют образование B-клетками антител. Есть и клетки-супрессоры, которые подавляют функции B-клеток и синтезируют фактор роста Т-клеток - интерлейкин-2 (один из лимфокинов). 0-клетки отличаются от B- и Т-клеток тем, что у них нет поверхностных антигенов. Некоторые из них служат «естественными киллерами», т.е. убивают раковые клетки и клетки, зараженные вирусом. Однако в целом роль 0-клеток неясна.

Тромбоциты представляют собой бесцветные безъядерные тельца сферической, овальной или палочкообразной формы диаметром 2-4 мкм. В норме содержание тромбоцитов в периферической крови составляет 200 000-400 000 на 1 мм3. Продолжительность их жизни - 8-10 дней. Стандартными красителями (азур-эозин) они окрашиваются в однородный бледно-розовый цвет. С помощью электронной микроскопии показано, что по структуре цитоплазмы тромбоциты сходны с обычными клетками; однако по сути они являются не клетками, а фрагментами цитоплазмы очень крупных клеток (мегакариоцитов), присутствующих в костном мозге. Мегакариоциты происходят из потомков тех же стволовых клеток, которые дают начало эритроцитам и лейкоцитам. Как будет показано в следующем разделе, тромбоциты играют ключевую роль в свертывании крови. Повреждения костного мозга под действием лекарств, ионизирующего излучения или при раковых заболеваниях могут приводить к значительному снижению содержания тромбоцитов в крови, что служит причиной спонтанных гематом и кровотечений.

Свертывание крови Свертыванием крови, или коагуляцией, называется процесс превращения жидкой крови в эластичный сгусток (тромб). Свертывание крови в месте ранения - жизненно важная реакция, обеспечивающая остановку кровотечения. Однако этот же процесс лежит и в основе тромбоза сосудов - крайне неблагоприятного явления, при котором происходит полная или частичная закупорка их просвета, препятствующая кровотоку.

Гемостаз (остановка кровотечения) . Когда повреждается тонкий или даже средний кровеносный сосуд, например при надрезе или сдавливании тканей, возникает внутреннее или наружное кровотечение (геморрагия). Как правило, остановка кровотечения наступает за счет образования в месте повреждения сгустка крови. Через несколько секунд после повреждения просвет сосуда сокращается в ответ на действие высвобождаемых химических веществ и нервных импульсов. При повреждении эндотелиальной выстилки кровеносных сосудов обнажается расположенный под эндотелием коллаген, на который быстро налипают циркулирующие в крови тромбоциты. Они высвобождают химические вещества, вызывающие сужение сосуда (вазоконстрикторы). Тромбоциты секретируют и другие вещества, которые участвуют в сложной цепи реакций, ведущей к превращению фибриногена (растворимого белка крови) в нерастворимый фибрин. Фибрин образует кровяной сгусток, нити которого захватывают клетки крови. Одно из важнейших свойств фибрина - его способность полимеризоваться с образованием длинных волокон, которые сжимаются и выталкивают из сгустка сыворотку крови.

Тромбоз - аномальное свертывание крови в артериях или венах. В результате артериальных тромбозов ухудшается поступление крови в ткани, что вызывает их повреждение. Это происходит при инфаркте миокарда, вызванном тромбозом коронарной артерии, или при инсульте, обусловленном тромбозом сосудов головного мозга. Тромбоз вен препятствует нормальному оттоку крови от тканей. Когда происходит закупорка тромбом крупной вены, вблизи места закупорки возникает отек, который иногда распространяется, например, на всю конечность. Случается, что часть венозного тромба отрывается и попадает в кровоток в виде движущегося сгустка (эмбола), который со временем может оказаться в сердце или легких и привести к опасному для жизни нарушению кровообращения.

Выявлено несколько факторов, предрасполагающих к внутрисосудистому тромбообразованию; к ним относятся:

  1. замедление венозного кровотока вследствие малой физической активности;
  2. изменения сосудов, вызванные повышением кровяного давления;
  3. локальное уплотнение внутренней поверхности кровеносных сосудов вследствие воспалительных процессов или - в случае артерий - вследствие т.н. атероматоза (отложения липидов на стенках артерий);
  4. повышение вязкости крови вследствие полицитемии (повышенного содержания в крови эритроцитов);
  5. увеличение количества тромбоцитов в крови.

Как показали исследования, последний из перечисленных факторов играет особую роль в развитии тромбоза. Дело в том, что целый ряд содержащихся в тромбоцитах веществ стимулирует образование кровяного сгустка, а потому любые воздействия, вызывающие повреждение тромбоцитов, могут ускорять этот процесс. При повреждении поверхность тромбоцитов становится более липкой, что приводит к их соединению между собой (агрегации) и высвобождению их содержимого. Эндотелиальная выстилка кровеносных сосудов содержит т.н. простациклин, который подавляет высвобождение из тромбоцитов тромбогенного вещества - тромбоксана А2. Большую роль играют также другие компоненты плазмы, препятствующие тромбообразованию в сосудах за счет подавления ряда ферментов системы свертывания крови. Попытки предотвратить тромбозы до сих пор дают лишь частичные результаты. В число профилактических мер входят регулярные физические упражнения, снижение повышенного кровяного давления и лечение антикоагулянтами; после операций рекомендуется как можно раньше начинать ходить. Следует отметить, что ежедневный прием аспирина даже в небольшой дозе (300 мг) уменьшает слипание тромбоцитов и значительно понижает вероятность тромбозов.

Переливание крови С конца 1930-х годов переливание крови или ее отдельных фракций получило широкое распространение в медицине, особенно в военной. Основная цель переливания крови (гемотрансфузии) - замена эритроцитов больного и восстановление объема крови после массивной кровопотери. Последняя может произойти либо спонтанно (например, при язве двенадцатиперстной кишки), либо в результате травмы, в ходе хирургической операции или при родах. Переливание крови применяют также для восстановления уровня эритроцитов при некоторых анемиях, когда организм теряет способность вырабатывать новые кровяные клетки с той скоростью, какая требуется для нормальной жизнедеятельности. Общее мнение авторитетных медиков таково, что переливание крови следует производить только в случае строгой необходимости, поскольку оно связано с риском осложнений и передачи больному инфекционного заболевания - гепатита, малярии или СПИДа.

Типирование крови . Перед переливанием определяют совместимость крови донора и реципиента, для чего проводится типирование крови. В настоящее время типированием занимаются квалифицированные специалисты. Небольшое количество эритроцитов добавляют к антисыворотке, содержащей большое количество антител к определенным эритроцитарным антигенам. Антисыворотку получают из крови доноров, специально иммунизированных соответствующими антигенами крови. Агглютинацию эритроцитов наблюдают невооруженным глазом или под микроскопом. В таблице показано, как можно использовать антитела анти-А и анти-В для определения групп крови системы АВ0. В качестве дополнительной проверки in vitro можно смешать эритроциты донора с сывороткой реципиента и, наоборот, сыворотку донора с эритроцитами реципиента - и посмотреть, не будет ли при этом агглютинации. Данный тест называют перекрестным типированием. Если при смешивании эритроцитов донора и сыворотки реципиента агглютинирует хотя бы небольшое количество клеток, кровь считается несовместимой.

Переливание крови и ее хранение . Первоначальные методы прямого переливания крови от донора реципиенту отошли в прошлое. Сегодня донорскую кровь берут из вены в стерильных условиях в специально подготовленные емкости, куда предварительно внесены антикоагулянт и глюкоза (последняя - в качестве питательной среды для эритроцитов при хранении). Из антикоагулянтов чаще всего используют цитрат натрия, который связывает находящиеся в крови ионы кальция, необходимые для свертывания крови. Жидкую кровь хранят при 4°С до трех недель; за это время остается 70% первоначального количества жизнеспособных эритроцитов. Поскольку этот уровень живых эритроцитов считается минимально допустимым, кровь, хранившуюся больше трех недель, для переливания не используют. В связи с растущей потребностью в переливании крови появились методы, позволяющие сохранить жизнеспособность эритроцитов в течение более длительного времени. В присутствии глицерина и других веществ эритроциты могут храниться сколь угодно долго при температуре от -20 до -197° С. Для хранения при -197° С используют металлические контейнеры с жидким азотом, в которые погружают контейнеры с кровью. Кровь, бывшую в заморозке, успешно применяют для переливания. Заморозка позволяет не только создавать запасы обычной крови, но и собирать и хранить в специальных банках (хранилищах) крови редкие ее группы.

Раньше кровь хранили в стеклянных контейнерах, но сейчас для этой цели используются в основном пластиковые емкости. Одно из главных преимуществ пластикового мешка состоит в том, что к одной емкости с антикоагулянтом можно прикрепить несколько мешочков, а затем с помощью дифференциального центрифугирования в «закрытой» системе выделить из крови все три типа клеток и плазму. Это очень важное новшество в корне изменило подход к переливанию крови.

Сегодня уже говорят о компонентной терапии, когда под переливанием имеется в виду замена лишь тех элементов крови, в которых нуждается реципиент. Большинству людей, страдающих анемией, нужны только цельные эритроциты; больным лейкозом требуются в основном тромбоциты; больные гемофилией нуждаются лишь в определенных компонентах плазмы. Все эти фракции могут быть выделены из одной и той же донорской крови, после чего останутся только альбумин и гамма-глобулин (и тот, и другой имеют свои сферы применения). Цельная кровь применяется лишь для компенсации очень большой кровопотери, и сейчас ее используют для переливания менее чем в 25% случаев.

Банки крови . Во всех развитых странах создана сеть станций переливания крови, которые обеспечивают гражданскую медицину необходимым количеством крови для переливания. На станциях, как правило, только собирают донорскую кровь, а хранят ее в банках (хранилищах) крови. Последние предоставляют по требованию больниц и клиник кровь нужной группы. Кроме того, они обычно располагают специальной службой, которая занимается получением из просроченной цельной крови как плазмы, так и отдельных фракций (например, гамма-глобулина). При многих банках имеются также квалифицированные специалисты, проводящие полное типирование крови и изучающие возможные реакции несовместимости.

Состав и функции крови

Кровь — это жидкая соединительная ткань, состоящая из жидкой межклеточного вещества — плазмы (50-60%) и форменных элементов (40-45%) — эритроцитов, лейкоцитов и тромбоцитов.

Плазма содержит 90-92% воды, 7-8% белков, 0,12% глюкозы, до 0,8% жиров, 0,9% солей. Наибольшее значение имеют соли натрия, калия и кальция. Белки плазмы выполняют следующие функции: поддерживают осмотическое давление, водный обмен, придают крови вязкости, участвующих в свертывании крови (фибриноген) и реакциях иммунитета (антитела). Плазма, в которой отсутствует белок фибриноген, называется сывороткой.

Кроме указанных выше компонентов, в плазме содержатся аминокислоты, витамины, гормоны.

Эритроциты — это красные безъядерные кровяные тельца, имеющие вид двояковогнутого диска. Такая форма увеличивает поверхность эритроцитов, а это способствует быстрому и равномерному проникновению кислорода через их оболочку. В эритроцитах содержится специфический пигмент крови — гемоглобин. Эритроциты образуются в красном костном мозге. В 1 мм3 крови является около 5,5 млн эритроцитов. Функция эритроцитов — транспорт О2 и СО2, поддержание постоянства внутренней среды организма. Уменьшение количества эритроцитов и снижение содержания гемоглобина приводит к развитию малокровия.

При некоторых заболеваниях и потерях крови делают переливание крови. Кровь одного человека не всегда совместима с кровью другого. У людей различают четыре группы крови. Группы крови зависят от веществ белковой природы: аглютиногенив (в эритроцитах) и агглютининов (в плазме). Агглютинация — склеивание эритроцитов, происходит тогда, когда в крови одновременно находятся агглютинины и аглютиногены одной группы. При переливании крови учитывают резус-фактор.

Лейкоциты — это белые кровяные тельца, которые не имеют постоянной формы, содержащие ядро и способны к амебоидного движения. В крови содержится несколько видов лейкоцитов. В 1 мм3 крови насчитывается 5-8 тыс. лейкоцитов. Они образуются в красном костном мозге, селезенке, лимфатических узлах. Их содержание увеличивается после приема пищи, при воспалительных процессах. Благодаря способности к амебоидного движения, лейкоциты могут проникать через стенки капилляров к местам инфекций в тканях и фагоцитировать микроорганизмы. Раздражителями для движения лейкоцитов являются вещества, выделяемые микроорганизмами.

Лейкоциты составляют одну из важных звеньев защитных механизмов организма. Количество лейкоцитов постоянна, поэтому их отклонения их количества от физиологической нормы свидетельствует о наличии заболевания. Систему физиологических процессов, хранящие генетическую устойчивость клеток, защищают организм от инфекционных болезней, называют иммунитетом. Фагоцитоз и образование антител составляют основу иммунитета. Чужеродные для организма химические вещества и живые организмы, вызывающие появление антител, называют антигенами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тюменский государственный университет

Институт биологии

Состав и функции крови

Тюмень 2015

Введение

Кровь представляет собой жидкость красного цвета, слабо щелочной реакции, солоноватого вкуса с удельным весом 1,054-1,066. Общее количество крови у взрослого в среднем составляет около 5 л (равно по весу 1/13 веса тела). Совместно с тканевой жидкостью и лимфой она образует внутреннюю среду организма. Кровь выполняет многообразные функции. Главнейшие из них следующие:

Транспорт питательных веществ от пищеварительного тракта к тканям, местам резервных запасов от них (трофическая функция);

Транспорт конечных продуктов метаболизма из тканей к органам выделения (экскреторная функция);

Транспорт газов (кислорода и диоксида углерода из дыхательных органов к тканям и обратно; запасание кислорода (дыхательная функция);

Транспорт гормонов от желез внутренней секреции к органам (гуморальная регуляция);

Защитная функция - осуществляется за счет фагоцитарной активности лейкоцитов (клеточный иммунитет), выработки лимфоцитами антител, обезвреживающих генетически чужеродные вещества (гуморальный иммунитет);

Свертывание крови, препятствующее кровопотере;

Терморегуляторная функция - перераспределение тепла между органами, регуляция теплоотдачи через кожу;

Механическая функция - придание тургорного напряжения органам за счет прилива к ним крови; обеспечение ультрафильтрации в капиллярах капсул нефрона почек и др.;

Гомеостатическая функция - поддержание постоянства внутренней среды организма, пригодной для клеток в отношении ионного состава, концентрации водородных ионов и др.

Кровь, как жидкая ткань, обеспечивает постоянство внутренней среды организма. Биохимические показатели крови занимают особое место и очень важны как для оценки физиологического статуса организма, так и для своевременной диагностики патологических состояний. Кровь обеспечивает взаимосвязь обменных процессов, протекающих в различных органах и тканях, выполняет различные функции.

Относительное постоянство состава и свойств крови, является необходимым и обязательным условием жизнедеятельности всех тканей организма. У человека и теплокровных животных обмен веществ в клетках, между клетками и тканевой жидкостью, а также между тканями (тканевой жидкостью) и кровью происходит нормально при условии относительного постоянства внутренней среды организма (кровь, тканевая жидкость, лимфа).

При заболеваниях наблюдаются различные изменения обмена веществ в клетках и тканях и, связанные с этим изменения состава и свойств крови. По характеру этих изменений можно в известной мере судить о самой болезни.

Кровь состоит из плазмы (55-60%) и взвешенных в ней форменных элементов - эритроцитов (39-44%), лейкоцитов (1%) и тромбоцитов (0,1%). Благодаря наличию в крови белков и эритроцитов её вязкость в 4-6 раз выше вязкости воды. При стояние крови в пробирке или центрифугировании с малыми скоростями форменные элементы её осаждаются.

Самопроизвольное осаждение форменных элементов крови получило название реакции осаждения эритроцитов (РОЭ, теперь - СОЭ). Величина СОЭ (мм/час) для разных видов животных колеблется в широких пределах: если для собаки СОЭ практически совпадает с интервалом значений для человека (2-10 мм/час), то для свиньи и лошади не превышает 30 и 64 соответственно. Плазма крови, лишённая белка фибриногена, носит название сыворотки крови.

кровь плазма гемоглобин анемия

1. Химический состав крови

Что представляет собой состав крови человека? Кровь - одна из тканей организма, состоящая из плазмы (жидкой части) и клеточных элементов. Плазма это однородная прозрачная или слегка мутноватая жидкость, имеющая желтый оттенок, которая является межклеточным веществом тканей крови. Плазма состоит из воды, в которой растворены вещества (минеральные и органические), в том числе белки (альбумины, глобулины и фибриноген). Углеводы (глюкоза), жиры (липиды), гормоны, ферменты, витамины, отдельные составляющие солей (ионы) и некоторые продукты обмена веществ.

Вместе с плазмой организм выводит продукты обмена, различные яды и иммунные комплексы антиген-антитело (которые возникают при попадании чужеродных частиц в организм как защитная реакция для их удаления) и все ненужное, мешающее работать организму.

Состав крови: клетки крови

Клеточные элементы крови тоже неоднородны. Состоят они из:

эритроцитов (красные кровяные тельца);

лейкоцитов (белые кровяные тельца);

тромбоцитов (кровяные пластинки).

Эритроциты - красные кровяные тельца. Транспортируют кислород от легких ко всем человеческим органам. Именно эритроциты содержат железосодержащий белок - ярко-красный гемоглобин, который присоединяет в легких из вдыхаемого воздуха к себе кислород, после чего постепенно переносит его ко всем органам и тканям различных частей тела.

Лейкоциты - белые кровяные тельца. Отвечают за иммунитет, т.е. за способность человеческого организма противостоять различным вирусам и инфекциям. Существуют различные виды лейкоцитов. Одни из них направлены непосредственно на уничтожение проникших в организм бактерий или различных чужеродных клеток. Другие задействованы в выработке специальных молекул, так называемых антител, которые также необходимы для борьбы с различными инфекциями.

Тромбоциты - кровяные пластинки. Помогают организму остановить кровотечение, т. е. регулируют свертываемость крови. Например, если вы повредили кровеносный сосуд, то на месте повреждения со временем возникнет сгусток крови, после чего образуется корочка, соответственно, кровотечение прекратится. Без тромбоцитов (а вместе с ними целого ряда вещество, которые содержатся в плазме крови) сгустки не будут образовываться, поэтому любая ранка или носовое кровотечение, например, могут привести к большой потере крови.

Состав крови: норма

Как мы уже писали выше, существуют красные кровяные тельца и белые кровяные тельца. Так вот в норме эритроцитов (красных кровяных телец) у мужчин должно быть 4-5*1012/л, у женщин 3.9-4.7*1012/л. Лейкоцитов (белых кровяных телец) - 4-9*109/л крови. Кроме этого, в 1 мкл крови находится 180-320*109/л кровяных пластинок (тромбоцитов). В норме объем клеток составляет 35-45% от общего объема крови.

Химический состав крови человека

Кровь омывает каждую клеточку человеческого тела и каждый орган, поэтому реагирует на любые изменения в организме или образе жизни. Факторы, влияющие на состав крови довольно разнообразны. Поэтому врачу, чтобы правильно прочитать результаты анализов необходимо знать и о вредных привычках и о физической активности человека и даже о рационе питания. Даже окружающая среда и та влияет на состав крови. Так же на показатели крови влияет все, что касается обмена веществ. Для примера, можно рассмотреть, как обычный прием пищи изменяет показатели крови:

Прием пищи перед анализом крови повысить концентрацию жиров.

Голодание в течении 2 дней повысит в крови билирубин.

Голодание более 4 дней снизит количество мочевины и жирных кислот.

Жирная пища повысит уровень калия и триглицеридов.

Чрезмерный прием в пищу мяса повысит уровень уратов.

Кофе повысить уровень глюкозы, жирных кислот, лейкоцитов и эритроцитов.

Кровь курильщиков существенно отличается от крови людей ведущих здоровый образ жизни. Однако если вы ведете активный образ жизни, перед сдачей анализа крови нужно уменьшить интенсивность тренировок. Особенно это касается сдачи анализов на гормоны. Влияют на химический состав крови и различные медикаментозные препараты, поэтому, если вы что-то принимали, обязательно сообщите об этом вашему врачу.

2. Плазма крови

Плазма крови -- жидкая часть крови, в которой во взвешенном состоянии находятся форменные элементы (клетки крови). Плазма представляет собой вязкую белковую жидкость слегка желтоватого цвета. В состав плазмы входит 90-94% воды и 7-10% органических и неорганических веществ. Плазма крови взаимодействует с тканевой жидкостью организма: из плазмы в ткани переходят все вещества, необходимые для жизнедеятельности, а обратно - продукты обмена.

Плазма крови составляет 55-60 % от общего объема крови. Она содержит 90-94% воды и 7-10% сухого вещества, в котором 6-8% приходится на долю белковых веществ, а 1,5-4% -- на другие органические и минеральные соединения. Вода служит источником воды для клеток и тканей организма, поддерживает кровяное давление и объем крови. В норме концентрации одних растворенных веществ в плазме крови все время остаются постоянными, а содержание других может колебаться в определенных пределах в зависимости от скорости их поступления в кровь или удаления из нее.

Состав плазмы

В состав плазмы входят:

органические вещества -- белки крови: альбумины, глобулины и фибриноген

глюкоза, жир и жироподобные вещества, аминокислоты, различные продукты обмена (мочевина, мочевая кислота и др.), а также ферменты и гормоны

неорганические вещества (соли натрия, калия, кальция и др.) составляют около 0,9-1,0% плазмы крови. При этом концентрация различных солей в плазме примерно постоянна

минеральные вещества, особенно ионы натрия и хлора. Они играют основную роль в поддержании относительного постоянства осмотического давления крови.

Белки крови: альбумин

Одни из основных компонентов плазмы крови -- разного типа белки, образующиеся главным образом в печени. Белки плазмы вместе с остальными компонентами крови поддерживают постоянство концентрации водородных ионов на слабощелочном уровне (рН 7,39), что жизненно важно для протекания большинства биохимических процессов в организме.

По форме и величине молекул белки крови разделяют на альбумины и глобулины. Наиболее распространенный белок плазмы крови -- альбумин (более 50% всех белков, 40-50 г/л). Они выступают как транспортные белки для некоторых гормонов, свободных жирных кислот, билирубина, различных ионов и лекарственных препаратов, поддерживают постоянство коллоидно-осмотического постоянства крови, участвуют в ряде обменных процессов в организме. Синтез альбумина происходит в печени.

Содержание альбуминов в крови служит дополнительным диагностическим признаком при ряде заболеваний. При низкой концентрации альбумина в крови нарушается равновесие между плазмой крови и межклеточной жидкостью. Последняя перестает поступать в кровь, и возникает отек. Концентрация альбумина может снижаться как при уменьшении его синтеза (например, при нарушении всасывания аминокислот), так и при увеличении потерь альбумина (например, через изъязвленную слизистую оболочку желудочно-кишечного тракта). В старческом и пожилом возрасте содержание альбумина снижается. Измерение концентрации альбумина в плазме используется в качестве теста функции печени, поскольку для ее хронических заболеваний характерны низкие концентрации альбумина, обусловленные снижением его синтеза и увеличением объема распределения в результате задержки жидкости в организме.

Низкое содержание альбумина (гипоальбуминемия) у новорожденных увеличивает риск развития желтухи, поскольку альбумин связывает свободный билирубин крови. Альбумин также связывает многие лекарственные препараты, поступающие в кровяное русло, поэтому при снижении его концентрации возрастает риск отравления несвязанным веществом. Анальбуминемия -- редкое наследственное заболевание, при котором концентрация альбумина в плазме очень мала (250 мг/л или меньше). Лица с данными нарушениями подвержены эпизодическому появлению умеренных отеков без каких-либо иных клинических симптомов. Высокая концентрация альбумина в крови (гиперальбуминемия) может быть вызвана либо избыточным вливанием альбумина, либо дегидратацией (обезвоживанием) организма.

Иммуноглобулины

Большинство прочих белков плазмы крови относится к глобулинам. Среди них различают: a-глобулины, связывающие тироксин и билирубин; b-глобулины, связывающие железо, холестерол и витамины A, D и K; g-глобулины, связывающие гистамин и играющие важную роль в иммунологических реакциях организма, поэтому их иначе называют иммуноглобулинами или антителами. Известны 5 основных классов иммуноглобулинов, наиболее часто встречающиеся из них IgG, IgA, IgM. Уменьшение и увеличение концентрации иммуноглобулинов в плазме крови может иметь как физиологический, так и патологический характер. Известны различные наследственные и приобретенные нарушения синтеза иммуноглобулинов. Снижение их количества часто она возникает при злокачественных заболеваниях крови, таких как хронический лимфатический лейкоз, множественная миелома, болезнь Ходжкина; может быть следствием применения цитостатических препаратов или при значительных потерях белка (нефротический синдром). При полном отсутствие иммуноглобулинов, например, при Спиде, могут развиваться рецидивирующие бактериальные инфекции.

Повышенные концентрации иммуноглобулинов наблюдаются при острых и хронических инфекционных, а также аутоиммунных заболеваниях, например, при ревматизме, системной красной волчанке и т. д. Весомую помощь в постановке диагноза многих инфекционных заболеваний оказывает выявление иммуноглобулинов к специфическим антигенам (иммунодиагностика).

Другие белки плазмы крови

Помимо альбуминов и иммуноглобулинов, плазма крови содержит ряд других белков: компоненты комплемента, различные транспортные белки, например тироксинсвязывающий глобулин, глобулин, связывающий половые гормоны, трансферрин и др. Концентрации некоторых белков повышаются при острой воспалительной реакции. Среди них известны антитрипсины (ингибиторы протеаз), С-реактивный белок и гаптоглобин (гликопептид, связывающий свободный гемоглобин). Измерение концентрации С-реактивного белка помогает следить за течением заболеваний, характеризующихся эпизодами острого воспаления и ремиссии, например, ревматоидным артритом. Наследственная недостаточность a1-антитрипсина может вызвать гепатит у новорожденных. Снижение концентрации гаптоглобина в плазме свидетельствует об усилении внутрисосудистого гемолиза, а также отмечается при хронических заболеваниях печени, тяжелом сепсисе и метастатической болезни.

К глобулинам относятся белки плазмы, участвующие в свертывании крови, такие как протромбин и фибриноген, и определение их концентрации важно при обследовании больных с кровотечениями.

Колебания концентрации белков в плазме определяется скоростью их синтеза и удаления и объемом их распределения в организме, например, при изменении положения тела (в течение 30 мин после перехода из лежачего положения в вертикальное концентрация белков в плазме возрастает на 10-20%) или после наложения жгута для венопункции (концентрация белка может увеличиться в течение нескольких минут). В обоих случаях увеличение концентрации белков вызвано усилением диффузии жидкости из сосудов в межклеточное пространство, и уменьшением объема их распределения (эффект дегидратации). Быстрое снижение концентрации белков, напротив, чаще всего является следствием увеличения объема плазмы, например, при увеличении проницаемости капилляров у пациентов с генерализованным воспалением.

Другие вещества плазмы крови

В плазме крови содержатся цитокины -- низкомолекулярные пептиды (менее 80 кД), участвующие в процессах воспаления и иммунного ответа. Определение их концентрации в крови используется для ранней диагностики сепсиса и реакций отторжения пересаженных органов.

Кроме того, в плазме крови содержатся питательные вещества (углеводы, жиры), витамины, гормоны, ферменты, участвующие в метаболических процессах. В плазму крови поступают продукты жизнедеятельности организма, подлежащие удалению, например мочевина, мочевая кислота, креатинин, билирубин и др.. С током крови они переносятся в почки. Концентрация продуктов жизнедеятельности в крови имеет свои допустимые границы. Повышение концентрации мочевой кислоты может наблюдаться при подагре, применении мочегонных препаратов, в результате снижения функции почек и др., снижение -- при остром гепатите, лечении аллопуринолом и др. Повышение концентрации мочевины в плазме крови наблюдается при почечной недостаточности, остром и хроническом нефрите, при шоке и т. д, снижение -- при печеночной недостаточности, нефротическом синдроме и т. д.

В плазме крови содержатся и минеральные вещества -- соли натрия, калия, кальция, магния, хлора, фосфора, йода, цинка и др., концентрация которых близка к концентрации солей в морской воде, где миллионы лет назад впервые появились первые многоклеточные существа. Минеральные вещества плазмы совместно участвуют в регуляции осмотического давления, рН крови, в ряде других процессов. Например, ионы кальция влияют на коллоидное состояние клеточного содержимого, участвуют в процессе свертывания крови, в регуляции мышечного сокращения и чувствительности нервных клеток. Большинство солей в плазме крови связано с белками или другими органическими соединениями.

3. Форменные элементы крови

Кровяные клетки

Тромбоциты (от тромб и греч. kytos -- вместилище, здесь -- клетка), клетки крови позвоночных животных, содержащие ядро (кроме млекопитающих). Участвуют в свертывании крови. Тромбоциты млекопитающих и человека, называемые кровяными пластинками, представляют собой округлые или овальные уплощенные фрагменты клеток диаметром 3-4 мкм, окруженные мембраной и обычно лишенные ядра. Они содержат в большом количестве митохондрии, элементы комплекса Гольджи, рибосомы, а также гранулы различной формы и величины, содержащие гликоген, ферменты (фибронектин, фибриноген), тромбоцитарный фактор роста и др. Тромбоциты образуются из крупных клеток костного мозга, называемых мегакариоцитами. Две трети тромбоцитов циркулирует в крови, остальные депонируются в селезенке. В 1 мкл крови человека содержится 200-400 тыс. тромбоцитов.

При повреждении сосуда тромбоциты активируются, становятся шаровидными и приобретают способность к адгезии -- прилипанию к стенке сосуда, и к агрегации -- слипанию друг с другом. Образующийся тромб восстанавливает целостность стенок сосуда. Повышение числа тромбоцитов может сопровождать хронические воспалительные процессы (ревматоидный артрит, туберкулез, колит, энтерит и т. д.), а также острые инфекции, геморрагии, гемолиз, анемии. Снижение числа тромбоцитов отмечается при лейкозе, апластической анемии, при алкоголизме и т. д. Нарушение функции тромбоцитов может быть обусловлено генетическими либо внешними факторами. Генетические дефекты лежат в основе болезни Виллебранда и ряда других редких синдромов. Продолжительность жизни тромбоцитов человека -- 8 дней.

Эритроциты (красные кровяные клетки; от греч. erythros -- красный и kytos -- вместилище, здесь -- клетка) -- высокоспецифичные клетки крови животных и человека, содержащие гемоглобин.

Диаметр отдельного эритроцита равен 7,2-7,5 мкм, толщина -- 2,2 мкм, а объем -- около 90 мкм3. Общая поверхность всех эритроцитов достигает 3000 м2, что в 1500 раз превышает поверхность тела человека. Такая большая поверхность эритроцитов обусловлена их большим числом и своеобразной формой. Они имеют форму двояковогнутого диска и при поперечном разрезе напоминают гантели. При такой форме в эритроцитах нет ни одной точки, которая бы отстояла от поверхности более чем на 0,85 мкм. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов -- переносу кислорода от органов дыхания к клеткам организма.

Функции эритроцитов

Эритроциты переносят кислород от легких к тканям и двуокись углерода от тканей к органам дыхания. Сухое вещество эритроцита человека содержит около 95% гемоглобина и 5% других веществ -- белков и липидов. У человека и у млекопитающих животных эритроциты лишены ядра и имеют форму двояковогнутых дисков. Специфическая форма эритроцитов обусловливает более высокое отношение поверхности к объему, что увеличивает возможности газообмена. У акул, лягушек и птиц эритроциты овальной или округлой формы, содержат ядра. Средний диаметр эритроцитов человека 7-8 мкм, что приблизительно равно диаметру кровеносных капилляров. Эритроцит способен «складываться» при прохождении по капиллярам, просвет которых меньше диаметра эритроцита.

Эритроциты

В капиллярах легочных альвеол, где концентрация кислорода высока, гемоглобин соединяется с кислородом, а в метаболически активных тканях, где низкая концентрация кислорода, кислород освобождается и диффундирует из эритроцита в окружающие клетки. Процент насыщения крови кислородом зависит от парциального давления кислорода в атмосфере. Сродство двухвалентного железа, входящего в состав гемоглобина, к окиси углерода (СО) в несколько сотен раз больше его сродства к кислороду, поэтому в присутствии даже очень малого количества окиси углерода гемоглобин в первую очередь связывается именно с CO. После вдыхания окиси углерода у человека быстро наступает коллапс и он может погибнуть от удушья. С помощью гемоглобина осуществляется и перенос углекислоты. В ее транспорте участвует и содержащийся в эритроцитах фермент карбоангидраза.

Гемоглобин

Эритроциты человека, как и всех млекопитающих, имеют форму двояковогнутого диска и содержат гемоглобин.

Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным пигментом. Он находится внутри эритроцитов, а не в плазме крови, что обеспечивает уменьшение вязкости крови и предупреждает потерю организмом гемоглобина вследствие его фильтрации в почках и выделения с мочой.

По химической структуре гемоглобин состоит из 1 молекулы белка глобина и 4 молекул железосодержащего соединения гема. Атом железа гема способен присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т. е. оно остается двухвалентным.

В крови здоровых мужчин содержится в среднем 14,5 г% гемоглобина (145 г/л). Эта величина может колебаться в пределах от 13 до 16 (130-160 г/л). В крови здоровых женщин содержится в среднем 13 г гемоглобина (130 г/л). Эта величина может колебаться в пределах от 12 до 14.

Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.

В норме гемоглобин содержится в виде 2-х физиологических соединений.

Гемоглобин, присоединивший кислород, превращается в оксигемо-глобин -- НbО2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным -- Нb. Он находится в венозной крови, которая имеет более темный цвет, чем артериальная.

Гемоглобин появляется уже у некоторых кольчатых червей. С его помощью осуществляется газообмен у рыб, амфибий, рептилий, птиц, млекопитающих и человека. В крови некоторых моллюсков, ракообразных и др. кислород переносится белковой молекулой -- гемоцианином, содержащим не железо, а медь. У некоторых кольчатых червей перенос кислорода осуществляется с помощью гемэритрина или хлорокруорина.

Образование, разрушение и патология эритроцитов

Процесс образования эритроцитов (эритропоэз) происходит в красном костном мозге. Незрелые эритроциты (ретикулоциты), поступающие в кровоток из костного мозга, содержат клеточные органеллы -- рибосомы, митохондрии и аппарат Гольджи. Ретикулоциты составляют около 1% всех циркулирующих эритроцитов. Их окончательная дифференцировка происходит в течение 24-48 часов после выхода в кровоток. Скорость распада эритроцитов и замещение их новыми зависит от многих условий, в частности, от содержания кислорода в атмосфере. Низкое содержание кислорода в крови стимулирует костный мозг к образованию большего числа эритроцитов, чем разрушается в печени. При высоком содержании кислорода наблюдается противоположная картина.

В крови у мужчин содержится в среднем 5х1012/л эритроцитов (6 000 000 в 1 мкл), у женщин -- около 4,5х1012/л (4500000 в 1 мкл). Такое количество эритроцитов, уложенное цепочкой, 5 раз обовьют земной шар по экватору.

Более высокое содержание эритроцитов у мужчин связано с влиянием мужских половых гормонов -- андрогенов, стимулирующих образование эритроцитов. Количество эритроцитов варьирует в зависимости от возраста и состояния здоровья. Повышение числа эритроцитов чаще всего связано с кислородным голоданием тканей или с легочными заболеваниями, врожденными пороками сердца, может возникать при курении, нарушении эритропоэза из-за опухоли или кисты. Понижение количества эритроцитов является непосредственным указанием на анемию (малокровие). В запущенных случаях при ряде анемий отмечается неоднородность эритроцитов по величине и форме, в частности, при железодефицитной анемии у беременных.

Иногда в гем включается атом трехвалентного железа вместо двухвалентного, и образуется метгемоглобин, который так прочно связывает кислород, что не способен отдавать его тканям, в результате чего возникает кислородное голодание. Образование метгемоглобина в эритроцитах может быть наследственным или приобретенным -- в результате воздействия на эритроциты сильных окислителей, таких как нитраты, некоторые лекарственные препараты -- сульфаниламиды, местные анестетики (лидокаин).

Продолжительность жизни эритроцитов у взрослых людей составляет около 3 месяцев, после чего они разрушаются в печени или селезенке. Каждую секунду в организме человека разрушается от 2 до 10 млн. эритроцитов. Старение эритроцитов сопровождается изменением их формы. В периферической крови здоровых людей количество эритроцитов правильной формы (дискоцитов) составляет 85% от общего их числа.

Гемолизом называют разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной.

Гемолиз может происходить как вследствие внутренних дефектов клеток (например, при наследственном сфероцитозе), так и под влиянием неблагоприятных факторов микроокружения (например, токсинов неорганической или органической природы). При гемолизе содержимое эритроцита выходит в плазму крови. Обширный гемолиз приводит к снижению общего количества циркулирующих в крови эритроцитов (гемолитическая анемия).

В естественных условиях в ряде случаев может наблюдаться так называемый биологический гемолиз, развивающийся при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т. п.

При старении эритроцита его белковые компоненты расщепляются на составляющие их аминокислоты, а железо, входившее в состав гема, удерживается печенью и может в дальнейшем использоваться повторно при образовании новых эритроцитов. Остальная часть гема расщепляется с образованием желчных пигментов билирубина и биливердина. Оба пигмента в конце концов выводятся с желчью в кишечник.

Скорость оседания эритроцитов (СОЭ)

Если в пробирку с кровью добавить антисвертывающие вещества, то можно изучить важнейший ее показатель -- скорость оседания эритроцитов. Для исследования СОЭ кровь смешивают с раствором лимоннокислого натрия и набирают в стеклянную трубочку с миллиметровыми делениями. Через час отсчитывают высоту верхнего прозрачного слоя.

Оседание эритроцитов в норме у мужчин равна 1-10 мм в час, у женщин -- 2-5 мм в час. Увеличение скорости оседания больше указанных величин является признаком патологии.

Величина СОЭ зависит от свойств плазмы, в первую очередь, от содержания в ней крупномолекулярных белков -- глобулинов и особенно фибриногена. Концентрация последних возрастает при всех воспалительных процессах, поэтому у таких больных СОЭ обычно превышает норму.

В клинике по скорости оседания эритроцитов (СОЭ) судят о состоянии организма человека. В норме СОЭ у мужчин 1-10 мм/час, у женщин 2-15 мм/час. Повышение СОЭ -- высокочувствительный, но неспецифический тест на активно протекающий воспалительный процесс. При пониженном количестве эритроцитов в крови СОЭ возрастает. Снижение СОЭ наблюдается при различных эритроцитозах.

Лейкоциты (белые кровяные клетки -- бесцветные клетки крови человека и животных. Все типы лейкоцитов (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) шаровидной формы, имеют ядро и способны к активному амебоидному движению. Лейкоциты играют важную роль в защите организма от болезней -- вырабатывают антитела и поглощают бактерий. В 1 мкл крови в норме содержится 4-9 тыс. лейкоцитов. Количество лейкоцитов в крови здорового человека подвержено колебаниям: оно повышается к концу дня, при физической нагрузке, эмоциональном напряжении, приеме белковой пищи, резкой смене температуры окружающей среды.

Существуют две основные группы лейкоцитов -- гранулоциты (зернистые лейкоциты) и агранулоциты (незернистые лейкоциты). Гранулоциты подразделяются на нейтрофилы, эозинофилы и базофилы. Все гранулоциты имеют разделенное на лопасти ядро и зернистую цитоплазму. Агранулоциты разделяются на два основных типа: моноциты и лимфоциты.

Нейтрофилы

Нейтрофилы составляют 40-75% всех лейкоцитов. Диаметр нейтрофила 12 мкм, ядро содержит от двух до пяти долек, соединенных между собой тонкими нитями. В зависимости от степени дифференцировки различают палочкоядерные (незрелые формы с подковообразными ядрами) и сегментоядерные (зрелые) нейтрофилы. У женщин один из сегментов ядра содержит вырост в форме барабанной палочки -- так называемое тельце Барра. Цитоплазма заполнена множеством мелких гранул. Нейтрофилы содержат митохондрии и большое количество гликогена. Продолжительность жизни нейтрофилов -- около 8 суток. Основная функция нейтрофилов -- обнаружение, захват (фагоцитоз) и переваривание с помощью гидролитических ферментов болезнетворных бактерий, обломков тканей и другого подлежащего удалению материала, специфическое распознавание которого осуществляется при помощи рецепторов. После осуществления фагоцитоза нейтрофилы погибают, и их остатки составляют основной компонент гноя. Фагоцитарная активность, наиболее выраженная в возрасте 18-20 лет, с возрастом уменьшается. Активность нейтрофилов стимулируется многими биологически активными соединениями -- тромбоцитарными факторами, метаболитами арахидоновой кислоты и др. Многие из этих веществ являются хемоаттрактантами, по градиенту концентрации которых нейтрофилы мигрируют в очаг инфекции (см. Таксисы). Изменяя свою форму, они могут протискиваться между клетками эндотелия и покидать пределы кровеносного сосуда. Освобождение токсичного для тканей содержимого гранул нейтрофилов в местах их массивной гибели может приводить к образованию обширных локальных повреждений (см. Воспаление).

Эозинофилы

Базофилы

Базофилы составляют 0-1% популяции лейкоцитов. Размер 10-12 мкм. Чаще имеют трехдольное S-образное ядро, содержат все виды органелл, свободные рибосомы и гликоген. Цитоплазматические гранулы окрашиваются в синий цвет основными красителями (метиленовым синим и др.), с чем связано название данных лейкоцитов. В состав цитоплазматических гранул входят пероксидаза, гистамин, медиаторы воспаления и др. вещества, выброс которых в месте активации вызывает развитие аллергических реакций немедленного типа: аллергический ринит, некоторых формы астмы, анафилактический шок. Как и другие лейкоциты, базофилы могут покидать кровоток, но их способность к амебоидному движению ограничена. Продолжительность жизни неизвестна.

Моноциты

Моноциты составляют 2-9% от общего числа лейкоцитов. Это самые крупные лейкоциты (диаметр около 15 мкм). Моноциты имеют крупное бобовидное ядро, расположенное эксцентрично, в цитоплазме присутствуют типичные органеллы, фагоцитарные вакуоли, многочисленные лизосомы. Различные вещества, образующиеся в очагах воспаления и разрушения тканей, являются агентами хемотаксиса и активации моноцитов. Активированные моноциты выделяют ряд биологически активных веществ -- интерлейкин-1, эндогенные пирогены, простагландины и др. Покидая кровоток, моноциты превращаются в макрофагов, активно поглощают бактерий и др. крупные частицы.

Лимфоциты

Лимфоциты составляют 20-45% общего числа лейкоцитов. Они округлой формы, содержат крупное ядро и небольшое количество цитоплазмы. В цитоплазме немного лизосом, митохондрий, минимум эндоплазматической сети, достаточно много свободных рибосом. Выделяют 2 морфологически сходные, но функционально различающиеся группы лимфоцитов: Т-лимфоциты (80%), образующиеся в тимусе (вилочковой железе), и В-лимфоциты (10%), образующиеся в лимфоидной ткани. Клетки лимфоцитов образуют короткие отростки (микроворсинки), более многочисленные у В-лимфоцитов. Лимфоциты играют центральную роль во всех иммунных реакциях организма (образование антител, уничтожение опухолевых клеток и т. д.). Большинство лимфоцитов крови находится в функционально и метаболически неактивном состоянии. В ответ на специфические сигналы, лимфоциты выходят из сосудов в соединительную ткань. Главная функция лимфоцитов состоит в узнавании и уничтожении клеток-мишеней (чаще всего вирусов при вирусной инфекции). Продолжительность жизни лимфоцитов варьирует от нескольких дней до десяти и более лет.

Анемия -- это уменьшение эритроцитарной массы. Поскольку объем крови обычно поддерживается на постоянном уровне, степень анемии можно определить либо на основании объема эритроцитов, выраженного в процентах по отношению к общему объему крови (гематокрит [ГК]), либо на основании содержания гемоглобина в крови. В норме эти показатели различны у мужчин и женщин, поскольку андрогены повышают как секрецию эритропоэтина, так и количество костномозговых клеток-предшественников. При диагностике анемии необходимо также учитывать, что на большой высоте над уровнем моря, где напряжение кислорода ниже обычного, величины показателей красной крови возрастают.

У женщин об анемии свидетельствует содержание гемоглобина в крови (НЬ) меньшее, чем 120 г/л и гематокрит (Ht) ниже 36 %. У мужчин возникновение анемии констатируют при НЬ < 140 г/л и Ht < 42 %. НЬ не всегда отражает число циркулирующих эритроцитов. После острой кровопотери НЬ может оставаться в нормальных пределах при дефиците циркулирующих эритроцитов, обусловленном снижением объема циркулирующей крови (ОЦК). При беременности НЬ снижен вследствие увеличения объема плазмы крови при нормальном числе эритроцитов, циркулирующих с кровью.

Клинические признаки гемической гипоксии, связанной с падением кислородной емкости крови вследствие снижения числа циркулирующих эритроцитов, возникают при НЬ меньшем, чем 70 г/л. О тяжелой анемии говорят бледность кожных покровов и тахикардия как механизм поддержания через рост минутного объема кровообращения адекватного транспорта кислорода с кровью, несмотря на ее низкую кислородную емкость.

Содержание ретикулоцитов в крови отражает интенсивность образования эритроцитов, то есть является критерием реакции костного мозга на анемию. Содержание ретикулоцитов обычно измеряют в процентах от общего числа эритроцитов, которое содержит единица объема крови. Ретикулоцитарный индекс (РИ) - показатель соответствия реакции усиления образования новых эритроцитов костным мозгом тяжести анемии:

РИ = 0,5 х (содержание ретикулоцитов х Ht больного/нормальный Ht).

РИ, превышающий уровень в 2-3 %, свидетельствует об адекватной реакции интенсификации эритропоэза в ответ на анемию. Меньшая величина говорит об угнетении образования эритроцитов костным мозгом как о причине анемии. Определение величины среднего эритроцитарного объема используется для того, чтобы отнести анемию у больного к одной из трех совокупностей: а) микроцитарные; б) нормоцитарные; в) макроцитарные. Нормоцитарную анемию характеризует нормальный объем эритроцитов, при микроцитарной анемии он снижен, а при макроцитарной повышен.

Нормальный диапазон колебаний среднего эритроцитарного объема составляет 80-98 мкм3. Анемия при определенном и индивидуальном для каждого пациента уровне концентрации гемоглобина в крови через снижение ее кислородной емкости вызывает гемическую гипоксию. Гемическая гипоксия служит стимулом ряда защитных реакций, направленных на оптимизацию и рост системного транспорта кислорода (схема 1). Если компенсаторные реакции в ответ на анемию оказываются несостоятельными, то посредством нейрогуморальной адренергической стимуляции сосудов сопротивления и прекапиллярных сфинктеров происходит перераспределение минутного объема кровообращения (МОК), направленное на поддержание нормального уровня доставки кислорода в мозг, к сердцу и легким. При этом в частности падает объемная скорость кровотока в почках.

Сахарный диабет в первую очередь характеризуют гипергликемия, то есть патологически высокое содержание глюкозы в крови, и другие нарушения обмена веществ, связанные с патологически низкими секрецией инсулина, концентрацией нормального гормона в циркулирующей крови или представляющие собой следствие недостаточности или отсутствия нормальной реакции клеток-мишеней на действие гормона-инсулина. Как патологическое состояние всего организма сахарный диабет в основном составляют расстройства обмена веществ, в том числе и вторичные относительно гипергликемии, патологические изменения микрососудов (причины ретино- и нефропатии), ускоренный атеросклероз артерий, а также нейропатия на уровне периферических соматических нервов, симпатических и парасимпатических нервных проводников и ганглиев.

Выделяют два типа сахарного диабета. От сахарного диабета I типа страдают 10 % больных сахарным диабетом как первого, так и второго типа. Сахарный диабет первого типа называют инсулинзависимым не только потому, что больным для устранения гипергликемии необходимо парентеральное введение экзогенного инсулина. Такая необходимость может возникнуть и при лечении больных с неинсулинзависимым сахарным диабетом. Дело в том, что без периодического введения инсулина больным сахарным диабетом I типа у них развивается диабетический кетоацидоз.

Если инсулинзависимый сахарный диабет возникает в результате почти полного отсутствия секреции инсулина, то причина неинсулинзависимого сахарного диабета - это частично сниженная секреция инсулина и (или) резистентность по отношению к инсулину, то есть отсутствие нормальной системной реакции на высвобождение гормона инсулинпродуцирующими клетками островков Лангерганса поджелудочной железы.

Длительное и экстремальное по силе действие неотвратимых раздражителей в качестве стимулов стресса (послеоперационный период в условиях неэффективной анальгезии, состояние вследствие тяжелых ранений и травм, персистирующий отрицательный психоэмоциональный стресс, вызванный безработицей и нищетой, и др.) обуславливает длительную и патогенную активацию симпатического отдела автономной нервной системы и нейроэндокринной катаболической системы. Эти сдвиги регуляции через нейрогенное снижение секреции инсулина и устойчивое преобладание на системном уровне эффектов катаболических гормонов антагонистов инсулина может трансформировать сахарный диабет II типа в инсулинзависимый, что служит показанием к парентеральному введению инсулина.

Гипотиреоз - патологическое состояние вследствие низкого уровня секреции гормонов щитовидной железы и связанной с ним недостаточности нормального действия гормонов на клетки, ткани, органы и организм в целом.

Так как проявления гипотиреоза аналогичны многим признакам других болезней, то при обследовании больных гипотиреоз нередко остается незамеченным.

Первичный гипотиреоз возникает в результате заболеваний самой щитовидной железы. Первичный гипотиреоз может быть осложнением лечения больных с тиреотоксикозом радиоактивным йодом, операций на щитовидной железе, влияния на щитовидную железу ионизирующих излучений (лучевая терапия при лимфогранулематозе в области шеи), а также у части больных представляет собой побочный эффект йод-содержащих препаратов.

В ряде развитых стран наиболее частой причиной гипотиреоза является хронический аутоиммунный лимфоцитарный тиреоидит (болезнь Хашимото), который у женщин возникает чаще, чем у мужчин. При болезни Хашимото равномерное увеличение щитовидной железы едва заметно, а с кровью больных циркулируют аутоантитела к аутоантигенам тиреоглобулина и микросомной фракции железы.

Болезнь Хашимото как причина первичного гипотиреоза нередко развивается одновременно с аутоиммунным поражением коры надпочечников, обуславливающим недостаточность секреции и эффектов ее гормонов (аутоиммунный полигландулярный синдром).

Вторичный гипотиреоз - это следствие нарушения секреции тиреотропного гормона (ТТГ) аденогипофизом. Чаще всего у больных недостаточность секреции ТТГ, вызывающая гипотиреоз, развивается вследствие хирургических вмешательств на гипофизе или является результатом возникновения его опухолей. Вторичный гипотиреоз часто сочетается с недостаточной секрецией других гормонов аденогипофиза, адренокортикотропного и прочих.

Определить вид гипотиреоза (первичный или вторичный) позволяет исследование содержания в сыворотке крови ТТГ и тироксина (Т4). Низкая концентрация Т4 при росте содержания в сыворотке ТТГ свидетельствует о том, что в соответствии принципом регуляции по обратной отрицательной связи снижение образования и высвобождения Т4 служит стимулом для роста секреции ТТГ аденогипофизом. В этом случае гипотиреоз определяют как первичный. Когда при гипотиреозе снижена концентрация в сыворотке ТТГ, или в том случае, если, несмотря на гипотиреоз, концентрация ТТГ находится в диапазоне среднестатистической нормы, снижение функции щитовидной железы является вторичным гипотиреозом.

При неявном субклиническом гипотиреозе, то есть при минимальных клинических проявлениях или отсутствии симптомов недостаточности функции щитовидной железы, концентрация Т4 может находиться в пределах нормальных колебаний. При этом уровень содержания ТТГ в сыворотке повышен, что предположительно можно связать с реакцией роста секреции ТТГ аденогипофизом в ответ на неадекватное потребностям организма действие гормонов щитовидной железы. У таких больных в патогенетическом отношении может быть оправданным назначение препаратов щитовидной железы для воссстановления на системном уровне нормальной интенсивности действия тиреоидных гормонов (заместительная терапия).

Более редкие причины гипотиреоза - это генетически детерминированная гипоплазия щитовидной железы (врожденный атиреоз), наследственные нарушения синтеза ее гормонов, связанные с отсутствием нормальной экспрессии генов определенных ферментов или ее недостаточностью, врожденная или приобретенная пониженная чувствительность клеток и тканей к действию гормонов, а также низкое поступление йода как субстрата синтеза гормонов щитовидной железы из внешней среды во внутреннюю.

Гипотиреоз можно считать патологическим состоянием, обусловленным дефицитом в циркулирующей крови и всем организме свободных гормонов щитовидной железы. Известно, что гормоны щитовидной железы трийодтиронин (Тз) и тироксин связываются с ядерными рецепторами клеток-мишеней. Сродство тиреоидных гормонов к ядерным рецепторам высоко. При этом сродство к Тз в десять раз превышает сродство к Т4.

Основное воздействие гормонов щитовидной железы на обмен веществ - это увеличение потребления кислорода и улавливания клетками свободной энергии в результате усиления биологического окисления. Поэтому потребление кислорода в условиях относительного покоя у больных с гипотиреозом находится на патологически низком уровне. Данный эффект гипотиреоза наблюдается во всех клетках, тканях и органах, кроме головного мозга, клеток системы мононуклеарных фагоцитов и гонад.

Таким образом, эволюция отчасти сохранила не зависящими от возможного гипотиреоза энергетический обмен на супрасегментарном уровне системной регуляции, в ключевом звене системы иммунитета, а также обеспечение свободной энергией репродуктивной функции. Тем не менее, дефицит массы в эффекторах системы эндокринной регуляции обмена веществ (дефицит гормонов щитовидной железы) приводит к дефициту свободной энергии (гипоэргозу) на системном уровне. Мы считаем это одним из проявлений действия общей закономерности развития болезни и патологического процесса вследствие дизрегуляции, - через дефицит массы и энергии в системах регуляции к дефициту массы и энергии на уровне всего организма.

Системный гипоэргоз и падение возбудимости нервных центров вследствие гипотиреоза проявляет себя такими характерными симптомами недостаточной функции щитовидной железы как повышенная утомляемость, сонливость, а также замедление речи и падение когнитивных функций. Нарушения внутрицентральных отношений вследствие гипотиреоза - это результат замедленного умственного развития больных с гипотиреозом, а также падения интенсивности неспецифической афферентации, обусловленного системным гипоэргозом.

Большая часть свободной энергии, утилизируемой клеткой, используется для работы Na+/ К+-АТФазного насоса. Гормоны щитовидной железы повышают эффективность работы этого насоса, увеличивая количество составляющих его элементов. Так как практически все клетки обладают таким насосом и реагируют на тиреоидные гормоны, то к системным эффектам тиреоидных гормонов относится повышение эффективности работы данного механизма активного трансмембранного переноса ионов. Это происходит посредством роста улавливания клетками свободной энергии и через увеличение числа единиц Nа+/К+-АТФазного насоса.

Гормоны щитовидной железы усиливают чувствительность адренорецепторов сердца, сосудов и других эффекторов функций. При этом в сравнении с другими регуляторными влияниями адренергическая стимуляция возрастает в наибольшей степени, так как одновременно гормоны подавляют активность фермента моноаминооксидазы, разрушающей симпатический медиатор норадреналин. Гипотиреоз, снижая интенсивность адренергической стимуляции эффекторов системы кровообращения, приводит к снижению минутного объема кровообращения (МОК) и брадикардии в условиях относительного покоя. Другая причина низких величин минутного объема кровообращения - это сниженный уровень потребления кислорода как детерминанты МОК. Снижение адренергической стимуляции потовых желез проявляет себя характерной сухостью колеи.

Гипотиреоидная (миксематозная) кома - редкое осложнение гипотиреоза, которое в основном складывается из следующих дисфункций и нарушений гомеостазиса:

¦ Гиповентиляция как результат падения образования углекислого газа, которую усугубляет центральное гипопноэ из-за гипоэргоза нейронов дыхательного центра. Поэтому гиповентиляция при миксематозной коме может быть причиной артериальной гипоксемии.

¦ Артериальная гипотензия как следствие снижения МОК и гипоэргоза нейронов сосудодвигательного центра, а также падения чувствительности адренорецепторов сердца и сосудистой стенки.

¦ Гипотермия в результате падения интенсивности биологического окисления на системном уровне.

Запор как характерный симптом гипотиреоза вероятно обусловлен системным гипоэргозом и может быть результатом расстройств внутрицентральных отношений вследствие падения функции щитовидной железы.

Гормоны щитовидной железы, как и кортикостероиды, индуцируют белковый синтез, активируя механизм транскрипции генов. Это основной механизм, посредством действия которого влияние Тз на клетки усиливает общий синтез белка и обеспечивает положительный азотистый баланс. Поэтому гипотиреоз нередко вызывает отрицательный азотистый баланс.

Тиреоидные гормоны и глюкокортикоиды, повышают уровень транскрипции гена гормона роста человека (соматотропина). Поэтому развитие гипотиреоза в детском возрасте может быть причиной задержки роста тела. Тиреоидные гормоны стимулируют синтез белка на системном уровне не только через усиление экспрессии гена соматотропина. Они усиливают синтез белка, модулируя функционирование других элементов генетического материала клеток и повышая проницаемость плазматической мембраны для аминокислот. В этой связи гипотиреоз можно считать патологическим состоянием, которое характеризует угнетение белкового синтеза как причина задержки умственного развития и роста тела детей с гипотиреозом. Связанная с гипотиреозом невозможность быстрой интенсификации белкового синтеза в иммунокомпетентных клетках может служить причиной дизрегуляции специфического иммунного ответа и приобретенного иммунодефицита вследствие дисфункций как Т-, так и В-клеток.

Одним из эффектов тиреоидных гормонов на метаболизм является усиление липолиза и окисления жирных кислот с падением уровня их содержания в циркулирующей крови. Низкая интенсивность липолиза у больных с гипотиреозом приводит к аккумуляции жира в организме, что обуславливает патологическое возрастание массы тела. Рост массы тела чаще выражен умеренно, что связано с анорексией (результат падения возбудимости нервной системы и трат свободной энергии организмом) и низким уровнем белкового синтеза у больных с гипотиреозом.

Гормоны щитовидной железы - важные эффекторы систем регуляции развития по ходу онтогенеза. Поэтому гипотиреоз у плодов или новорожденных приводит к кретинизму (фр. cretin, тупица), то есть сочетанию множественных дефектов развития и необратимой задержки нормального становления ментальных и когнитивных функций. Для большинства больных с кретинизмом вследствие гипотиреоза характерна микседема.

Патологическое состояние организма вследствие патогенно избыточной секреции гормонов щитовидной железы называют гипертиреозом. Под тиреотоксикозом понимают гипертиреоз крайней степени тяжести.

...

Подобные документы

    Объём крови живого организма. Плазма и взвешенные в ней форменные элементы. Основные белки плазмы. Эритроциты, тромбоциты и лейкоциты. Основной фильтр крови. Дыхательная, питательная, экскреторная, терморегулирующая, гомеостатическая функции крови.

    презентация , добавлен 25.06.2015

    Место крови в системе внутренней среды организма. Количество и функции крови. Гемокоагуляция: определение, факторы свёртывания, стадии. Группы крови и резус–фактор. Форменные элементы крови: эритроциты, лейкоциты, тромбоциты, их количество в норме.

    презентация , добавлен 13.09.2015

    Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.

    презентация , добавлен 08.01.2014

    Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.

    презентация , добавлен 19.04.2016

    Анализ внутренней структуры крови, а также ее главные элементы: плазма и клеточные элементы (эритроциты, лейкоциты, тромбоциты). Функциональные особенности каждого типа клеточных элементов крови, продолжительность их жизни и значение в организме.

    презентация , добавлен 20.11.2014

    Состав плазмы крови, сравнение с составом цитоплазмы. Физиологические регуляторы эритропоэза, виды гемолиза. Функции эритроцитов и эндокринные влияния на эритропоэз. Белки в плазме крови человека. Определение электролитного состава плазмы крови.

    реферат , добавлен 05.06.2010

    Функции крови: транспортная, защитная, регуляторная и модуляторная. Основные константы крови человека. Определение скорости оседания и осмотической резистентности эритроцитов. Роль составляющих плазмы. Функциональная система поддержания рН крови.

    презентация , добавлен 15.02.2014

    Кровь. Функции крови. Компоненты крови. Свертывание крови. Группы крови. Переливание крови. Болезни крови. Анемии. Полицитемия. Аномалии тромбоцитов. Лейкопения. Лейкоз. Аномалии плазмы.

    реферат , добавлен 20.04.2006

    Физико-химические свойства крови, ее форменные элементы: эритроциты, ретикулоциты, гемоглобин. Лейкоциты или белые кровяные тельца. Тромбоцитарные и плазменные факторы свертывания. Противосвертывающая система крови. Группы крови человека по системе АВ0.

    презентация , добавлен 05.03.2015

    Составные элементы крови: плазма и взвешенные в ней клетки (эритроциты, тромбоциты и лейкоциты). Виды и медикаментозное лечение малокровия. Нарушения свертываемости крови и внутренние кровотечения. Синдромы иммунодефицита - лейкопения и агранулоцитоз.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека