Где находятся светочувствительные рецепторы. Дифференциальная чувствительность зрения

Зрение - это один из способов познавать окружающий мир и ориентироваться в пространстве. Несмотря на то что другие органы чувств тоже очень важны, с помощью глаз человек воспринимает около 90% всей информации, поступающей из окружающей среды. Благодаря способности видеть то, что находится вокруг нас, мы можем судить о происходящих событиях, отличать предметы друг от друга, а также заметить угрожающие факторы. Глаза человека устроены так, что помимо самих объектов, они различают ещё и цвета, в которые окрашен наш мир. За это отвечают специальные микроскопические клетки - палочки и колбочки, которые присутствуют в сетчатке каждого из нас. Благодаря им воспринятая нами информация о виде окружающего передаётся в головной мозг.

Строение глаза: схема

Несмотря на то что глаз занимает так мало места, он содержит множество анатомических структур, благодаря которым мы имеем способность видеть. Орган зрения практически напрямую связан с головным мозгом, и с помощью специального исследования офтальмологи видят пересечение зрительного нерва. имеет форму шара и располагается в специальной выемке - орбите, которую образуют кости черепа. Чтобы понять, для чего нужны многочисленные структуры органа зрения, необходимо знать строение глаза. Схема показывает, что глаз состоит таких образований, как хрусталик, передняя и задняя камеры, зрительный нерв и оболочки. Снаружи орган зрения покрывает склера - защитный каркас глаза.

Оболочки глаза

Склера выполняет функцию защиты глазного яблока от повреждений. Она является наружной оболочкой и занимает около 5/6 поверхности органа зрения. Часть склеры, которая находится снаружи и выходит непосредственно к окружающей среде, называется роговицей. Ей присущи свойства, благодаря которым мы имеем способность чётко видеть окружающий мир. Основные из них - это прозрачность, зеркальность, влажность, гладкость и способность пропускать и преломлять лучи. Остальная часть наружной оболочки глаза - склера - состоит из плотной соединительнотканной основы. Под ней находится следующий слой - сосудистый. Средняя оболочка представлена тремя образованиями, расположенными последовательно: радужка, и хореоидея. Помимо этого, сосудистый слой включает зрачок. Он представляет собой небольшое отверстие, не покрытое радужной оболочкой. Каждое из этих образований имеет собственную функцию, которая необходима для обеспечения зрения. Последний слой - это сетчатая оболочка глаза. Она контактирует непосредственно с головным мозгом. Строение сетчатки глаза очень сложно. Это связано с тем, что она считается самой важной оболочкой органа зрения.

Строение сетчатки глаза

Внутренняя оболочка органа зрения является составляющей частью мозгового вещества. Она представлена слоями нейронов, которые устилают глаз изнутри. Благодаря сетчатой оболочке мы получаем изображение всего, что находится вокруг нас. На ней фокусируются все преломлённые лучи и составляются в чёткий предмет. сетчатки переходят в зрительный нерв, по волокнам которого информация достигает головного мозга. На внутренней оболочке глаза имеется небольшое пятно, которое находится в центре и обладает наибольшей способностью к видению. Эта часть называется макулой. В этом месте располагаются зрительные клетки - палочки и колбочки глаза. Они обеспечивают нам как дневное, так и ночное видение окружающего мира.

Функции палочек и колбочек

Эти клетки расположены на глаза и необходимы для того, чтобы видеть. Палочки и колбочки являются преобразователями чёрно-белого и цветного зрения. Оба вида клеток выступают в качестве светочувствительных рецепторов глаза. Колбочки названы так из-за своей конической формы, они являются связующим звеном между сетчатой оболочкой и центральной нервной системой. Основная их функция - это преобразование световых ощущений, получаемых из внешней среды, в электрические сигналы (импульсы), обрабатываемые головным мозгом. Специфичность к распознаванию дневного света принадлежит колбочкам благодаря содержащемуся в них пигменту - йодопсину. Это вещество имеет несколько видов клеток, которые воспринимают различные части спектра. Палочки являются более чувствительными к свету, поэтому их основная функция сложнее - обеспечение видимости в сумерках. Они тоже содержат пигментную основу - вещество родопсин, которое обесцвечивается при попадании солнечных лучей.

Строение палочек и колбочек

Своё название эти клетки получили благодаря своей форме - цилиндрической и конической. Палочки, в отличие от колбочек, располагаются больше по периферии сетчатки и практически отсутствуют в макуле. Это связано с их функцией - обеспечением ночного видения, а также периферических полей зрения. Оба типа клеток имеют схожее строение и состоят из 4 частей:


Количество светочувствительных рецепторов на сетчатке сильно различается. Палочковые клетки составляют около 130 миллионов. Колбочки сетчатки значительно уступают им в количестве, в среднем их насчитывается примерно 7 млн.

Особенности передачи световых импульсов

Палочки и колбочки способны воспринимать световой поток и передавать его в ЦНС. Оба типа клеток способны работать в дневное время. Отличием является то, что светочувствительность колбочек гораздо выше, чем палочек. Передача полученных сигналов осуществляется благодаря интернейронам, к каждому из которых присоединяется несколько рецепторов. Объединения сразу нескольких палочковых клеток делают чувствительность органа зрения значительно большей. Такое явление получило название «конвергенция». Она обеспечивает нам обзор сразу нескольких а также способность улавливать различные движения, происходящие вокруг нас.

Способность к восприятию цветов

Оба вида рецепторов сетчатки необходимы не только, чтобы различать дневное и сумеречное зрение, но и определять цветные картинки. Строение глаза человека позволяет многое: воспринимать большую площадь окружающей среды, видеть в любое время суток. Кроме того, мы имеем одну из интересных способностей - бинокулярное зрение, позволяющее значительно расширить обзор. Палочки и колбочки участвуют в восприятии практически всего цветового спектра, благодаря чему люди, в отличие от животных, различают все краски этого мира. Цветное зрение в большей степени обеспечивают колбочки, которые бывают 3-х видов (коротко-, средне и длинноволновые). Тем не менее палочки тоже имеют способность к восприятию небольшой части спектра.

Палочки имеют форму цилиндра с неравномерным, но приблизительно равным диаметром окружности по длине. К тому же длина (равная 0,000006 м или 0,06 мм) в 30 раз превышает их диаметр (0,000002 м или 0,002 мм), из-за чего вытянутый в длину цилиндр действительно очень похож на палочку. В глазу здорового человека насчитывается порядка 115-120 миллионов палочек.

Палочка глаза человека состоит из 4 сегментов:

1 - Наружный сегмент (содержит мембранные диски),

2 - Связующий сегмент (ресничка),

4 - Базальный сегмент (нервное соединение)

Палочки крайне светочувствительны. Достаточно энергии одного фотона (мельчайшая, элементарная частица света) для реакции палочек. Этот факт помогает при так называемом ночном зрении, позволяя видеть в сумерках.

Палочки не способны различать цвета, в первую очередь, это связано с наличием в палочках всего одного пигмента родопсина. Родопсин, или иначе его называют зрительный пурпур, благодаря включенным в себя двум группам белков (хромофор и опсин) имеет два максимума светопоглощения, хотя, учитывая, что один из этих максимумов находится за гранью видимого человеческим глазом света (278 нм – это область ультрафиолета, не видимого глазом), стоит называть их максимумами волнопоглощения. Однако второй максимум поглощения всё же виден глазу - он находится на отметке 498 нм, что как бы на границе между зелёным цветовым спектром и синим.

Достоверно известно, что содержащийся в палочках родопсин реагирует на свет медленнее, чем йодопсин в колбочках. Потому палочки слабее реагируют на динамику светового потока и плохо различают объекты в движении. По этой же причине острота зрения тоже не специализация палочек.

Колбочки сетчатки глаза

Колбочки получили такое название благодаря своей форме, похожей на лабораторные колбы. Длина колбочки равна 0,00005 метра, или 0,05 мм. Ее диаметр в самом узком месте составляет около 0,000001 метра, или 0,001 мм, и 0,004 мм в самом широком. На здорового взрослого человека около 7 миллионов колбочек.

Колбочки менее чувствительны к свету, другими словами, для их возбуждения потребуется световой поток в десятки раз интенсивнее, чем для возбуждения палочек. Однако колбочки способны обрабатывать свет интенсивнее палочек, из-за чего они лучше воспринимают изменение светового потока (например, лучше палочек различают свет в динамике при движении объектов относительно глаза), а также определяют более четкое изображение.

Колбочка человеческого глаза состоит из 4 сегментов:

1 - Наружный сегмент (содержит мембранные диски с йодопсином),

2 - Связующий сегмент (перетяжка),

3 - Внутренний сегмент (содержит митохондрии),

4 - Область синаптического соединения (базальный сегмент).

Причиной вышеописанных свойств колбочек является содержание в них биологического пигмента йодопсина. На момент написания этой статьи были найдены (выделены и доказаны) два вида йодопсина: эритролаб (пигмент, чувствительный к красной части спектра, к длинным L-волнам), хлоролаб (пигмент, чувствительный к зеленой части спектра, к средним M-волнам). На сегодняшний день пигмент, который чувствителен к синей части спектра, к коротким S-волнам, не найден, хотя за ним уже закреплено название – цианолаб.

Разделение колбочек на 3 вида (по доминированию в них цветовых пигментов: эритролаба, хлоролаба, цианолаба) носит название трехкомпонентной гипотезы зрения. Однако существует и нелинейная двухкомпонентная теория зрения, приверженцы которой считают, что каждая колбочка одновременно содержит в себе и эритролаб, и хлоролаб, а значит, способна воспринимать цвета красного и зеленого спектра. При этом роль цианолаба принимает на себя выцветший родопсин из палочек. В поддержку этой теории говорит и то, что люди, страдающие , а именно в синей части спектра (тританопией), так же испытывают трудности с сумеречным зрением (куриная слепота), что является признаком ненормальной работы палочек сетчатки глаза.

Зрительный орган представляет собой сложный механизм оптического зрения. Он имеет в своем составе глазное яблоко, зрительный нерв с нервными тканями вспомогательную частьслезная система, веки, мышцы глазного яблока, а также хрусталик, сетчатку. Зрительный процесс начинается с сетчатки.

У сетчатки различают две различные по функциям части, это часть зрительная или оптическая; часть слепая или ресничная. Сетчатка имеет внутреннюю покровную оболочку глаза, которая является отдельной частью, находящейся на периферии зрительной системы.

Она состоит из рецепторов фотографического значения – колбочек и палочек, которые выполняют начальную обработку поступающих световых сигналов, в виде электромагнитных излучений. Тонким слоем данный орган лежит, внутренней стороной рядом со стекловидным телом, а наружной стороной прилегает к сосудистой системе поверхности глазного яблока.

Отдел сетчатки разделяется на две части: большая по размеру часть, отвечающая за зрение и меньшая часть – слепая. Диаметр сетчатки – 22 мм и она занимает около 72% поверхности глазного яблока.

Палочки и колбочки несут огромную роль в свето- и цветовосприятии

В глазном органе – сетчатке, имеющиеся фоторецепторы играют важную роль в цветовом восприятии изображений. Это рецепторы – колбочки и палочки, располагающиеся неравномерно. Плотность их нахождения колеблется от 20 до 200 тыс. на квадратный миллиметр.

По центру сетчатки находится большое количество колбочек, по периферии располагаются больше палочки. Там же размещается так называемое желтое пятно, где палочки вовсе отсутствуют.

Они позволяют видеть все оттенки и яркость окружающих предметов. Высокая чувствительность этого вида рецепторов позволяет улавливать сигналы света и превращать их в импульсы, которые потом посылаются по зрительным нервным каналам в мозг.

Во время светового дня работают рецепторы – колбочки глаза, при наступлении сумерек и ночью зрение человека обеспечивают рецепторы – палочки. Если днем человек видит цветную картинку, то ночью только в черно-белом цвете. Каждый из рецепторов фотографической системы подчиняется строго отведенной для них функции.

Строение палочек


Палочки и колбочки сходны в своем строении

Колбочки и палочки сходны по своему строению, но имеют отличия за счет разных выполняемых функциональных работ и восприятия светового потока. Палочки, это один из рецепторов, названные так по своей форме в виде цилиндра. Их численное количество в данной части насчитывается около 120 миллионов.

Они довольно короткие, длиной 0.06 мм и шириной 0,002 мм. Рецепторы насчитывают четыре составляющих фрагмента:

  • наружный отдел – диски в виде мембраны;
  • промежуточный сектор – ресничка;
  • внутренняя часть – митохондрии;
  • ткань с нервными окончаниями.

Фотоэлемент способен реагировать на слабые вспышки света в один фотон, благодаря высокой чувствительности. В своем составе имеет один компонент, называемый родопсин или зрительный пурпур.

Родопсин при ярком освещении разлагается, и он становится чувствительным к синей области зрения. В темноте или сумерках через полчаса родопсин восстанавливается, и глаз способен видеть предметы.

Родопсин получил свое название благодаря ярко-красному цвету. На свету он приобретают желтый цвет, затем обесцвечивается. В темноте снова становится ярко-красными.

Этот рецептор не способен распознать цветность и оттенки, но позволяет видеть в вечернее время очертания предметов. На свет реагирует значительно медленнее, чем рецепторы колбочки.

Строение колбочек


Колбочки менее чувствительны, чем палочки

Колбочки имеют коническую форму. Количество колбочек в данном отделе 6–7 млн, длина до 50 мкм, а толщина до 4 мм. В своем составе имеет компонент – йодопсин. Компонент дополнительно состоит из пигментов:

  • хлоролаб – пигмент, способный реагировать на желтый – зеленый цвет;
  • эритролаб – элемент, способный чувствовать желто – красный цвет.

Есть еще третий, отдельно представленный пигмент: цианолаб – компонент, воспринимающий фиолетово – синюю часть спектра.

Колбочки обладают меньшей чувствительностью в 100 раз, чем палочки, но на движения реакция восприятия значительно быстрее. Рецептор – колбочки состоит из 4 составляющих фрагментов:

  1. наружная часть – диски мембранные;
  2. промежуточное звено – перетяжка;
  3. внутренний сегмент – митохондрии;
  4. синаптическая область.

Обращенная к световому потоку часть дисков в наружном отделе постоянно обновляется, идет восстановление, замена зрительного пигмента. В течение суток заменяется более 80 дисков, полная замена дисков осуществляется за 10 дней.Сами колбочки имеют различие по длине волн, насчитывается три вида:

  • S – тип реагирует на фиолетово – синюю часть;
  • M – тип воспринимает зелено – желтую часть;
  • L – тип различает желто – красную часть.

Палочки – это фоторецептор, воспринимающий свет, а колбочки – это фоторецептор, реагирующий на цвет. Эти виды колбочек и палочки вместе создают возможность цветового восприятия окружающего мира.

Палочки и колбочки сетчатки глаза: болезни

Рецепторные группы, обеспечивающие полноценное цветное восприятие предметов очень чувствительны, и могут подвергаться различным заболеваниям.

Болезни и симптомы


Известное заболевание — дальтонизм — нарушение работы именно палочек и колбочек

Заболевания, затрагивающие фоторецепторы сетчатки:

  • Дальтонизм – неспособность распознать цвета;
  • Пигментная дегенерация сетчатки;
  • Хориоретинит – воспаление сетчатки и сосудов оболочки;
  • Отхождение слоев оболочки сетчатки;
  • Куриная слепота или гемералопия, это нарушение зрения в сумерках, происходит при патологии палочек;

Макулодистрофия – нарушения питания центральной части сетчатки. При этом заболевании наблюдаются следующие симптомы:

  1. туман перед глазами;
  2. трудно читать, распознать лица;
  3. прямые линии искажаются.

При других заболеваниях имеются выраженные симптомы:

  • Снижается показатель зрения;
  • Нарушение восприятия цветов;
  • Вспышки света в глазах;
  • Сужение радиуса обозрения;
  • Наличие пелены перед глазами;
  • Ухудшение зрения в сумерках.

Палочки и колбочки — это настоящий парадокс!

Куриная слепота или гемералопия наступает при нехватке витамина А, тогда же нарушается работа палочек, когда человек совершенно не видит вечером и в темноте, и прекрасно видит днем.

Функциональное расстройство колбочек ведет к светобоязни, когда зрение нормальное при слабом освещении и наступающая слепота при ярком свете. Может развиться слепота цветовая – ахромазия.

Повседневная забота о своем зрении, защита от вредных воздействий, профилактика сохранения остроты зрения, гармоничного и цветового восприятия – это первоочередная задача для тех, кто хочет сохранить орган зрения – глаза, иметь зоркость во взгляде и многогранность полноценной жизни без болезней.

Познавательное видео расскажет о парадоксах зрения:

Абсолютная чувствительность зрения. Чтобы возникло зрительное ощущение, свет должен обладать некоторой минимальной (пороговой) энергией. Минимальное количество квантов света, необходимое для возникновения ощущения света в темноте, колеблется от 8 до 47. Одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно. Однако количество фоторецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Количество колбочек в рецептивном поле в центре сетчатки примерно в 100 раз меньше количества палочек в рецептивном поле на периферии сетчатки. Соответственно и чувствительность палочковой системы в 100 раз выше, чем у колбочковой.

Зрительная адаптация

При переходе от темноты к свету наступает временное ослепление, а затем чувствительность глаза постепенно снижается. Это приспособление зрительной системы к условиям яркой освещенности называется световой адаптацией. Обратное явление (темновая адаптация) наблюдается, когда из светлого помещения человек переходит в почти не освещенное помещение. В первое время он почти ничего не видит из-за пониженной возбудимости фоторецепторов и зрительных нейронов. Постепенно начинают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увеличивается в десятки раз, а затем, в течение часа – в десятки тысяч раз. Важную роль в этом процессе играет восстановление зрительных пигментов. Так как в темноте чувствительны только палочки, слабо освещенный предмет виден лишь периферическим зрением. Существенную роль в адаптации, помимо зрительных пигментов, играет переключение связей между элементами сетчатки. В темноте площадь возбудительного центра рецептивного поля ганглиозной клетки увеличивается из-за ослабления кольцевого торможения, что приводит к увеличению световой чувствительности. Световая чувствительность глаза зависит и от влияний, идущих со стороны мозга. Освещение одного глаза понижает световую чувствительность неосвещенного глаза. Кроме того, на чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.



Дифференциальная чувствительность зрения

Если на освещенную поверхность с яркостью I падает добавочное освещение dI, то, согласно закону Вебера, человек заметит разницу в освещенности только если dI/I = К, где К – константа, равная 0,01–0,015. Величину dI/I называют дифференциальным порогом световой чувствительности. Отношение dI/I при разных освещенностях постоянно и означает, что для восприятия разницы в освещенности двух поверхностей одна из них должна быть ярче другой на 1-1,5%.

Яркостной контраст

Взаимное латеральное торможение зрительных нейронов (см. гл. 3) лежит в основе общего, или глобального яркостного контраста. Так, серая полоска бумаги, лежащая на светлом фоне, кажется темнее такой же полоски, лежащей на темном фоне. Это объясняется тем, что светлый фон возбуждает множество нейронов сетчатки, а их возбуждение притормаживает клетки, активированные полоской. Наиболее сильно латеральное торможение действует между близко расположенными нейронами, создавая эффект локального контраста. Происходит кажущееся усиление перепада яркости на границе поверхностей разной освещенности. Этот эффект называют также подчеркиванием контуров, или эффектом Маха: на границе яркого светового поля и более темной поверхности можно видеть две дополнительные линии (еще более яркую линию на границе светлого поля и очень темную линию на границе темной поверхности).

Слепящая яркость света

Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза: чем дольше была темновая адаптация, тем меньшая яркость света вызывает ослепление. Если в поле зрения попадают очень яркие (слепящие) объекты, то они ухудшают различение сигналов на значительной части сетчатки (так, на ночной дороге водителей ослепляют фары встречных машин). При тонких работах, связанных с напряжением зрения (длительное чтение, работа на компьютере, сборка мелких деталей), следует пользоваться только рассеянным светом, не ослепляющим глаз.

Инерция зрения, слитие мельканий, последовательные образы

Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время «инерции зрения», не обходимое для возникновения зрительного ощущения, в среднем равно 0,03–0,1 с. Следует отметить, что это ощущение также исчезает не сразу после того, как прекратилось раздражение – оно держится еще некоторое время. Если в темноте водить по воздуху горящей спичкой, то мы увидим светящуюся линию, так как быстро следующие одно за другим световые раздражения сливаются в непрерывное ощущение. Минимальная частота следования световых стимулов (например, вспышек света), при которой происходит объединение отдельных ощущений, называется критической частотой слития мельканий. При средних освещенностях эта частота равна 10–15 вспышкам в 1 с. На этом свойстве зрения основаны кино и телевидение: мы не видим промежутков между отдельными кадрами (24 кадра в 1 с в кино), так как зрительное ощущение от одного кадра еще длится до появления следующего. Это и обеспечивает иллюзию непрерывности изображения и его движения.

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включенную лампу и закрыть глаза, то она видна еще в течение некоторого времени. Если же после фиксации взгляда на освещенном предмете перевести взгляд на светлый фон, то некоторое время можно видеть негативное изображение этого предмета, т.е. светлые его части – темными, а темные – светлыми (отрицательный последовательный образ). Это объясняется тем, что возбуждение от освещенного объекта локально тормозит (адаптирует) определенные участки сетчатки; если после этого перевести взор на равномерно освещенный экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.

Цветовое зрение

Весь видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны 700 нм), называемым красным цветом. Остальные цвета видимого спектра (синий, зеленый, желтый и оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов дает белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение трех основных цветов, – красного, зеленого и синего, – то могут быть получены любые цвета.

Максимальным признанием пользуется трехкомпонентная теория Г. Гельмгольца, согласно которой цветовое восприятие обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Одни из них чувствительны к красному цвету, другие – к зеленому, а третьи – к синему. Всякий цвет оказывает воздействие на все три цветоощущающих элемента, но в разной степени. Эта теория прямо подтверждена в опытах, в которых измеряли поглощение излучений с разной длиной волны в одиночных колбочках сетчатки человека.

Частичная цветовая слепота была описана в конце XVIII в. Д. Дальтоном, который сам страдал ею. Поэтому аномалию цветовосприятия обозначили термином «дальтонизм». Дальтонизм встречается у 8% мужчин; его связывают с отсутствием определенных генов в определяющей пол непарной у мужчин - хромосоме. Для диагностики дальтонизма, важной при профессиональном отборе, используют полихроматические таблицы. Люди, страдающие им, не могут быть полноценными водителями транспорта, так как они могут не различать цвет огней светофоров и дорожных знаков. Существуют три разновидности частичной цветовой слепоты: протанопия, дейтеранопия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трех основных цветов. Люди, страдающие протанопией («краснослепые»), не воспринимают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией («зеленослепые»), не отличают зеленые цвета от темно-красных и голубых. При тританопии (редко встречающейся аномалии цветового зрения) не воспринимаются лучи синего и фиолетового цвета. Все перечисленные виды частичной цветовой слепоты хорошо объясняются трехкомпонентной теорией. Каждый из них является результатом отсутствия одного из трех колбочковых цветовоспринимающих веществ.

Восприятие пространства

Остротой зрения называется максимальная способность различать отдельные детали объектов. Ее определяют по наименьшему расстоянию между двумя точками, которые различает глаз, т.е. видит отдельно, а не слитно. Нормальный глаз различает две точки, расстояние между которыми составляет 1 угловую минуту. Максимальную остроту зрения имеет центр сетчатки – желтое пятно. К периферии от него острота зрения на много меньше. Острота зрения измеряется при помощи специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Острота зрения, определенная по таблице, выражается в относительных величинах, причем нормальная острота принимается за единицу. Встречаются люди, обладающие сверхостротой зрения (visus больше 2).

Поле зрения. Если фиксировать взглядом небольшой предмет, то его изображение проецируется на желтое пятно сетчатки. В этом случае мы видим предмет центральным зрением. Его угловой размер у человека составляет всего 1,5–2 угловых градуса. Предметы, изображения которых падают на остальные участки сетчатки, воспринимаются периферическим зрением. Пространство, видимое глазом при фиксации взгляда в одной точке, называется полем зрения. Измерение границы поля зрения производят по периметру. Границы поля зрения для бесцветных предметов составляют книзу 70°, кверху – 60°, внутрь – 60° и кнаружи – 90°. Поля зрения обоих глаз у человека частично совпадают, что имеет большое значение для восприятия глубины пространства. Поля зрения для различных цветов неодинаковы и меньше, чем для черно-белых объектов.

Бинокулярное зрение – это зрение двумя глазами. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображение каждой точки этого предмета попадает на так называемые корреспондирующие, или соответственные участки двух сетчаток, и в восприятии человека два изображения сливаются в одно. Если надавить слегка на один глаз сбоку, то начнет двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, то изображение какой-либо более отдаленной точки попадает на неидентичные (диспаратные) точки двух сетчаток. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины пространства. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд. Бинокулярное слитие или объединение сигналов от двух сетчаток в единый нервный образ происходит в первичной зрительной коре мозга.

Оценка величины объекта. Величина знакомого предмета оценивается как функция величины его изображения на сетчатке и расстояния предмета от глаз. В случае, когда расстояние до незнакомого предмета оценить трудно, возможны грубые ошибки в определении его величины.

Оценка расстояния. Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). Во втором случае оценка расстояния гораздо точнее. Некоторое значение в оценке близких расстояний при монокулярном зрении имеет явление аккомодации. Для оценки расстояния имеет значение также то, что образ знакомого предмета на сетчатке тем больше, чем он ближе.

Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикрепленных к глазному яблоку. Движение двух глаз совершается одновременно и содружественно. Рассматривая близкие предметы, необходимо сводить (конвергенция), а, рассматривая далекие предметы – разводить зрительные оси двух глаз (дивергенция). Кроме того, важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. При длящемся действии света на одни и те же фоторецепторы импульсация в волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает через 1–2 с. Если на глаз поставить присоску с крохотным источником света, то человек видит его только в момент включения или выключения, так как этот раздражитель движется вместе с глазом и, следовательно, неподвижен по отношению к сетчатке. Чтобы преодолеть такое приспособление (адаптацию) к неподвижному изображению, глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные скачки (саккады). Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на другие, вновь вызывая импульсацию ганглиозных клеток. Продолжительность каждого скачка равна сотым долям секунды, а амплитуда его не превышает 20 угловых градусов. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы «прослеживают» контуры изображения (рис. 4.6), задерживаясь на наиболее информативных его участках (например, в лице это – глаза). Кроме скачков, глаза непрерывно мелко дрожат и дрейфуют (медленно смещаются с точки фиксации взора). Эти движения также очень важны для зрительного восприятия.

Рис. 4.6. Траектория движения глаз (Б) при осматривании изображения Нефертити (А)

СЛУХОВАЯ СИСТЕМА

В связи с возникновением речи как средства межличностного общения, слух у человека играет особую роль. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры мозга через ряд последовательных отделов, которых особенно много в слуховой системе.

    Болевые рецепторы .

    Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность.

    Тельца Мейснера - рецепторы давления, расположенные в дерме . Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность.

    Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.

    Рецепторы волосяных луковиц - реагируют на отклонение волоса.

    Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями.

Рецепторы мышц и сухожилий

    Мышечные веретена - рецепторы растяжения мышц, бывают двух типов:

    • с ядерной сумкой

      с ядерной цепочкой

    Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа - инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини.

Рецепторы сетчатки глаза

Сетчатка содержит палочковые (палочки ) и колбочковые (колбочки ) фоточувствительные клетки, которые содержат светочувствительные пигменты . Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки , сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения .

Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны ). Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A . Эта молекула и представляет собой химически трансформируемую светом часть. Белковая часть выцветшей молекулы зрительного пигмента активирует молекулы трансдуцина , каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата , участвующих в открытии пор мембраны для ионов натрия , в результате чего поток ионов прекращается - мембрана гиперполяризуется.

Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые каналы уже закрыты.

Палочки и колбочки отличаются как структурно, так и функционально. Зрительный пигмент (пурпур - родопсин) - содержится только в палочках. В колбочках находятся другие зрительные пигменты - иодопсин, хлоролаб, эритлаб, необходимые для цветового зрения. Палочка в 500 раз более чувствительна к свету, чем колбочка, но не реагирует на свет с разной длиной волны, т.е. она не цветочувствительна. Зрительные пигменты расположены в наружном сегменты палочек и колбочек. Во внутреннем сегменте находится ядро и митохондрии, принимающие участие в энергетических процессах при действии света.

В глазу человека около 6 млн. колбочек и 120 млн. палочек - всего около 130 млн. фоторецепторов. Плотность колбочек наиболее высока в центре сетчатки и падает к периферии. В центре сетчатки, в небольшом ее участке, находятся только колбочки. Этот участок называется центральной ямкой . Здесь плотность колбочек равна 150 тысячам на 1 квадратный миллиметр, поэтому в области центральной ямки острота зрения максимальна. Палочек в центре сетчатки очень мало, их больше на периферии сетчатки, но острота "периферического" зрения при хорошей освещенности невелика. В условиях сумеречного освещения преобладает периферическое зрение, а острота зрения в области центральной ямки падает. Таким образом, колбочки функционируют при ярком свете и выполняют функцию восприятия цвета, палочкой воспринимают свет и обеспечивают зрительное восприятие при слабой освещенности. Палочки и колбочки соединены с биполярными нейронами сетчатки, которые, в свою очередь, образуют с ганглиозными клетками синапсы, выделяющие ацетилхолин. Аксоны ганглиозных клеток сетчатки в составе зрительного нерва идут к различным мозговым структурам. Около 130 млн. фоторецепторов связаны с 1,3 млн., волокон зрительного нерва, что свидетельствует о конвергенции зрительных структур и сигналов. Только в центральной ямке каждая колбочка связана с одной биполярной клеткой, а она, в свою очередь, - с одной ганглиозной. К периферии от центральной ямки на одной биполярной клетке конвергируют множество палочек и несколько колбочек, а на ганглиозной - множество биполярных. Поэтому функционально такая система обеспечивает переработку первичного сигнала, повышающую вероятность его обнаружения за счет широкой конвергенции связей от периферических рецепторов к ганглиозной клетке, посылающей сигналы в мозг.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека