Сложные фасеточные глаза насекомых состоят из. Почему у насекомых глаза круглые? Как видят насекомые? С точки зрения насекомого

У многих насекомых сложные фасеточные глаза, состоящие из многочисленных отдельных глазков - омматидий. Насекомые видят мир так, будто он собран из мозаики. Большинство насекомых являются «близорукими». Отдельные из них, как, например, муха диопсиду, видят на расстоянии 135 метров. Бабочка - а она имеет самое острое зрение среди наших насекомых - не видит дальше двух метров, а пчела ничего не видит уже на расстоянии одного метра. Насекомые, глаза которых состоят из большого количества омматидий, способны замечать малейшее движение вокруг себя. Если объект изменяет свое положение в пространстве, то его отражение в составных глазах также меняет место расположения, перемещаясь на некоторое количество омматидий, и насекомое это замечает. Сложные глаза играют огромную роль в жизни хищных насекомых. Благодаря такому строению органов зрения насекомое может сфокусировать глаза на нужном объекте или наблюдать за ним только частью сложного глаза. Интересно, что ночные бабочки ориентируются с помощью зрения и всегда летят к источнику света. Азимут их глаз по отношению к лунному свету всегда меньше 90°.

Цветовое зрение

Для того, чтобы видеть определенный цвет, глаз насекомого должен воспринимать электромагнитные волны определенной длины. Насекомые хорошо воспринимают как ультракороткие, так и ультрадолгие световые волны и цвета спектра, видимого человеческим глазом. Известно, что человек видит цвета от красного до фиолетового, однако его глаз не способен воспринимать ультрафиолетовое излучение - волны, которые длиннее красных и короче фиолетовых. Насекомые видят ультрафиолетовый свет, но не различают цвета красного спектра (только бабочки видят красный цвет). Например, цветок мака воспринимается насекомыми как бесцветный, зато на других цветах глаза насекомые видят такие ультрафиолетовые узоры, которые человеку даже трудно представить. Насекомые ориентируются по этими узорам в поисках нектара. На крыльях бабочек также есть ультрафиолетовые рисунки, которые невидимы для человека. Пчелы различают такие цвета: голубовато-зеленый, фиолетовый, желтый, синий, пчелиный пурпурный и ультрафиолетовый. Насекомые также способны ориентироваться при помощи поляризованного света. При прохождении сквозь атмосферу Земли луч света преломляется, и в результате того, что возникает поляризация света, на разных участках неба длина волн разная. Благодаря этому, даже когда солнца не видно из-за туч, насекомое точно определяет направление.

Интересные факты

У личинок некоторых жуков развиты простые глазки, благодаря которым они хорошо видят и спасаются от хищников. У взрослых жуков развиваются сложные глаза, однако зрение у них не лучше, чем у личинок. Сложные фасеточные глаза есть не только у насекомых, но и в некоторых ракообразных, таких как крабы и омары. Вместо хрусталиков в омматидиях в них расположены миниатюрные зеркальца. Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Число мелких глазков у насекомых (в зависимости от вида) варьирует от 25 до 25 000. Глаза насекомых, например, жуков, которые плавают на поверхности воды, разделенные на две части: верхняя часть служит для того, чтобы видеть в воздухе, а нижняя - под водой. Фасеточные глаза насекомых видят не так хорошо, как глаза птиц и млекопитающих, поскольку они не способны передавать мелкие детали (у насекомых может быть от 25 до 25 000 фасеток). Зато они хорошо воспринимают объекты, которые двигаются, и регистрируют даже те цвета, которые недоступны для человеческого глаза.

Как видят насекомые ?

Муха резко уворачивается от летящего на нее предмета, бабочка выбирает определенный цветок, а гусеница ползет к самому высокому дереву. У насекомых, как у людей тоже есть органы зрения, но видят и воспринимают они мир по-особому. Своим исключительным зрением, недоступным для человека. Некоторые насекомые могут определять только светлое и темное, а кто-то хорошо разбирается в оттенках. Итак, как же насекомые видят мир?

Способы видеть мир у насекомых

Их возможность видеть делится на три способа.

Всей поверхностью тела

Интересная особенность, при которой не обязательно иметь глаза. Но ее большой минус в том, что насекомое может отличать только свет от темноты. Никаких предметов или цветов оно не видит. Как же это работает? Свет проходит через кутикулу, внешний слой кожи, и проникает к голове насекомого. Там происходит реакция в клетках мозга, и насекомое понимает, что на него падает свет. Такое устройство доступно не для всех, но очень помогает тем насекомым, которые живут под землей, например, дождевым червям или слепым пещерным жукам. Эта разновидность зрения есть у тараканов, тли и гусениц.

Материалы по теме:

Для чего нужна пыльца?

Простыми глазами


Насекомым, у которых простые глазки повезло больше. Они могут не только определять темноту от света, но и различать отдельные объекты и даже их форму. Такие глазки чаще всего встречаются у личинок насекомых. Например, личинки комаров вместо глаз имеют пигментные пятна, которые улавливают свет. Зато у гусениц по пять – шесть глазков с каждой стороны головы. Благодаря этому она хорошо разбирается в формах. Но вертикальные объекты она видит намного лучше, чем горизонтальные. Например, если ей предстоит выбрать дерево, то она скорее поползет к тому, что выше, а не к тому, что шире.

Сложными, или фасеточными, глазами


Такие глаза чаще всего встречаются у взрослых насекомых. Определить их можно сразу – обычно они находятся по бокам головы. Фасеточные глаза намного сложнее и разнообразнее всех остальных. Они могут распознавать формы объектов и определять цвета. Одни насекомые хорошо видят днем, а другие – ночью. Интересная особенность этих глаз и в том, что они не видят всю картину в целом, а только кусочки. И уже в мозгу насекомое собирает пазл из полученных изображений, чтобы увидеть полную картину. Как муха успевает в полете соединить все кусочки фрагмента? Удивительно, но именно в полете она видит лучше, чем в покое. И для места посадки любое насекомое скорее выберет то, что двигается или колышется.

Органы зрения развиты у большинства насекомых. Наибольшего развития достигают сложные, или фасеточные, глаза . Число зрительных элементов - омматидиев, или фасеток, в глазу комнатной мухи достигает 4 тыс., а у стрекоз даже 28 тыс. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волокнами с зрительными долями мозга. Каждый омматидий окружают пигментные клетки.

В зависимости от восприятия света различной интенсивности различают аппозиционный и суперпозиционный типы глаз. Первая разновидность строения глаз характерна дневным насекомым, вторая – ночным.

В аппозиционном глазе каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики.

В суперпозиционном глазе омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.

Глазки́ (дорсальные простые глаза) – это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.

Стеммы, или латеральные простые глаза – имеются у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук. У личинок пилильщиков они сходны с дорсальными, а у гусениц бабочек напоминают омматидий сложного глаза. Гусеницы воспринимают форму предметов, различают мелкие детали на их поверхности.

ОРГАНЫ ЧУВСТВ У НАСЕКОМЫХ

Органы чувств у насекомых являются посредниками между внешней средой и организмом. В соответствии с внешними стимулами, или раздражителями, насекомые совершают определенные действия, из которых складывается их поведение.

Органы чувств у насекомых – это механическое чувство, слух, химическое чувство, гидротермическое чувство и зрение.

Основу органов чувств составляют нервные чувствительные единицы – сенсиллы. Они состоят из двух компонентов: воспринимающей структуры в коже и прилегающих к ней нервных клеток. Сенсиллы выступают над поверхностью кожи в виде волоска, щетинки, конусы (рис. 7).

Механическое чувство. Представлено механорецепторами. Это рецепторы, а также чувствительные структуры, воспринимающие сотрясение, положение тела, его равновесие и др. Осязательные, или тактильные, рецепторы разбросаны по всему телу в виде простых сенсилл с сенсорным, т.е. чувствительным волоском. Изменение положения волоска при соприкосновениях с предметами или воздухом передается чувствительной клетке, где возникает возбуждение, передаваемое по ее отросткам в нервный центр.

К механорецепторам также относятся колоколовидные сенсиллы. У них отсутствуют чувствительные волоски и они погружены в кожу. Их рецепторная поверхность в виде кутикулярного колпачка находится на поверхности кутикулы. К колпачку подходит снизу стержневой отросток чувствительной клетки – штифт. Колоколовидные сенсиллы находятся на крыльях, церках, ногах, щупальцах. Они воспринимают сотрясения тела, сгибания, натяжения.

К числу механорецепторов относят и хордотональные органы как органы слуха. Их нейроны заканчиваются стержневидным штифтом. Это серия особых сенсилл, натянутых между двумя участками кутикулы. Хордотональные сенсиллы называются сколопофорами и состоят из трех клеток: чувствительного нейрона, колпачковой и обкладочной клеток.

Слух развит не у всех насекомых. У прямокрылых (кузнечики, саранчовые, сверчки), певчих цикад, некоторых клопов и ряда чешуекрылых имеются слуховые рецепторы – тимпанальные органы. Эти насекомые стрекочут или поют. Тимпанальные органы – это скопление сколопофоров, которые связаны с участками кутикулы, которые представлены в виде барабанной перепонки (рис. 8).

У саранчовых тимпанальные органы находятся по бокам 1-го сегмента брюшка, у кузнечиков и сверчков – на голенях передних ног (рис. 9).

У комаров функцию органов слуха выполняет Джонстонов орган. На церках у тараканов и прямокрылых и на теле гусениц на волосках располагаются нейроны, улавливающие звуковые волны.

Значение органов слуха:

– воспринимаются сигналы, идущие от особей своего вида, что обеспечивает связь полов, т.е. это одна из форм локации полового сигнала;

– улавливают иные звуки (свистки, резкий звук, разыскивание жертвы).

Химическое чувство. Служит для восприятия химизма среды, именно вкуса и запаха. Представлено хеморецепторами. Обоняние воспринимает и анализирует газообразную среду с низкой концентрацией вещества, а вкус – жидкую среду с высокой его концентрацией. Сенсиллы хеморецепторов представлены в виде волосков, пластинок или погруженных в тело конусов. На усиках обонятельную функцию выполняют плакоидные и целоконические сенсиллы. Обоняние служит насекомым для разыскивания особей противоположного пола, распознавания особей своего вида, для отыскания пищи и мест откладки яиц. Многие насекомые выделяют привлекающие вещества – половые аттрактанты или эпагоны.

Вкус служит только для распознавания пищи. Насекомые различают 4 основных вкуса – сладкий, горький, кислый и соленый.

Большинство сахаров, таких, как глюкоза, фруктоза, мальтоза и прочие, привлекают пчел, мух даже при сравнительно низкой концентрации; другие сахара, как галактоза, манноза и прочие, распознаются лишь при высокой концентрации, причем пчелы отвергают их. Очень чувствительны к сахарам некоторые бабочки, отличающие от чистой воды раствор сахара с ничтожной концентрацией – 0,0027%.

Многие другие вещества – кислоты, соли, аминокислоты, масла и другие – могут отвергаться при высокой концентрации, но иногда слабые растворы некоторых кислот и солей оказывают привлекающее воздействие.

Вкусовые рецепторы располагаются преимущественно на ротовых частях, но возможна и другая их локализация. Так, у пчелы, некоторых мух и ряда дневных бабочек они находятся на лапках ног и обнаруживают высокую чувствительность; при прикосновении подошвенной стороны лапок к раствору сахара голодная бабочка реагирует развертыванием хоботка. Наконец, у пчелы и складчатокрылых ос (Vespidae) эти рецепторы обнаружены и на концевых члениках усиков.

Высокая степень развития химического чувства у насекомых является существенной стороной их физиологии и служит научной основой при изыскании и применении некоторых приемов химической борьбы с вредными видами. В практике борьбы с вредителями применяют приманочный метод, сущность которого заключается в том, что те или иные привлекающие пищевые вещества обрабатываются ядами и распределяются в местах концентрации вредителя; такие отравленные приманки широко и очень успешно применяются в борьбе с саранчовыми. В борьбе с вредителями изыскиваются и привлекающие вещества, или аттрактанты.

Гигротермическое чувство. Имеет существенное значение в жизни ряда насекомых и в зависимости от условий влажности и температуры среды регулирует поведение особи; оно также контролирует водный баланс и температурный режим тела. Соответствующие рецепторы изучены недостаточно, но установлено, что ощущение влажности локализовано у некоторых насекомых на голове и ее придатках – усиках и щупальцах, ощущение тепла – на усиках, лапках и других органах. Восприятие тепла сильно развито у насекомых, и отдельные виды имеют свою оптимальную температурную зону, к которой они стремятся. Однако границы температурного оптимума зависят от условий температуры и влажности среды, в которой развивалось насекомое, а также и от фазы его развития.

Зрение. Вместе с химическим чувством, вероятно, играет решающую роль в жизни насекомых. Органы зрения имеют сложное строение и представлены двоякого рода глазами: сложными и простыми (рис. 10).

Рис. 10. Схематический разрез (А) и фасетки на поверхности (Б) сложного глаза: 1 – роговица; 2 – хрустальный конус; 3 – клетки сетчатки.

Сложные, или фасеточные, глаза в числе двух расположены по бокам головы, нередко очень сильно развиты и тогда могут занимать значительную часть головы. Каждый фасеточный глаз состоит из многозрительных единиц – сенсилл, которые называются омматидиями, число их в сложном глазу может достигать многих сотен, а также тысяч.

Омматидий состоит из трех видов клеток, образующих соматическую, чувствительную и пигментную часть (рис. 11). Снаружи каждый омматидий образует на поверхности глаза округлую или шестигранную ячейку – фасетку, отчего сложные глаза и получили свое название. Оптическая, или преломляющая, часть омматидия состоит из прозрачного хрусталика и лежащего под ним также прозрачного хрустального конуса. Хрусталик, или роговица, является, в сущности, прозрачной кутикулой и обычно имеет вид двояковыпуклой линзы. Хрустальный конус образован четырьмя удлиненными прозрачными клетками и совместно с хрусталиком составляет единую оптическую систему – цилиндрическую линзу; длина ее оптической оси значительно превосходит ее диаметр. Чувствительная часть располагается под оптической, образует воспринимающую световые лучи сетчатку, или ретину, и состоит из серии ретинальных клеток. Эти клетки вытянуты вдоль омматидия, располагаются секториально и образуют обкладку его центрального стержня – зрительной палочки, или рабдома. У своего основания ретинальные клетки переходят в нервные волокна, идущие к зрительным долям головного мозга. Пигментная часть образована пигментными клетками, которые в совокупности составляют обкладку чувствительной части и хрустального конуса; благодаря этому каждый омматидий оптически изолирован от соседнего. Следовательно, пигментная часть выполняет функцию аппарата оптической изоляции.

Дневные насекомые имеют так называемое аппозиционное зрение. Благодаря оптической изоляции с помощью пигментных клеток каждый омматидий превращен в изолированную тонкую трубку; поэтому в него могут проникнуть только лучи, идущие через хрусталик и притом только строго совпадающие с продольной осью омматидия. Эти лучи и достигают зрительной палочки, или рабдома; последний как раз и является воспринимающим элементом сетчатки. Следовательно, поле зрения каждого омматидия очень мало и он видит только ничтожную часть рассматриваемого предмета. Но большое число омматидиев позволяет резко увеличить поле зрения путем взаимного приложения друг к другу или аппозиции; в результате из отдельных мельчайших частей изображения образуется как в мозаике единое общее изображение. Таким образом, насекомые обладают мозаичным зрением.

Ночные и сумеречные насекомые обладают суперпозиционным зрением, что связано с морфологическими и физиологическими отличиями их омматидиев. В суперпозиционном глазе чувствительная часть более отдалена от оптической, а пигментные клетки изолируют преимущественно оптическую часть. Благодаря этому к зрительной палочке проникают 2 вида лучей – прямые и косые; первые попадают в омматидий через хрусталик, а вторые – из соседних омматидиев, что усиливает световой эффект. Следовательно, изображение предмета получается в данном случае не только путем объединения отдельных восприятий, но и путем их наложения, или суперпозиции.

При сильном дневном освещении суперпозиционный глаз приобретает некоторое физиологическое сходство с аппозиционным глазом. Происходит это потому, что пигмент в пигментных клетках на свету начинает перемещаться и распределяется так, что образует темную трубку вокруг омматидия; благодаря этому омматидии оптически почти изолируются друг от друга и получают лучи преимущественно от своей линзы. Эта способность глаза реагировать на степень освещения может рассматриваться как аккомодация. В некоторой степени она свойственна и аппозиционному глазу, что позволяет дневным насекомым быстро приспособлять глаз к зрению на ярком свету и в тени, например, при перелете из открытого места в лес.

С помощью сложных глаз насекомые различают форму, движение, окраску и расстояние до предмета, а также поляризованный свет. Однако большое разнообразие насекомых, их образа жизни и повадок, несомненно, создает и разнообразие особенностей их зрения. Последние зависят от особенностей строения глаз и их омматидий; диаметр, длина, число последних и другие свойства определяют качество зрения. Считается, что многие виды близоруки и на расстоянии различают только движение. Это подтверждается многими опытами. Так, личинки стрекоз бросаются на движущуюся добычу и не замечают неподвижной. Помещенная перед гнездом ос сетка с превосходящими длину их тела ячейками все же преграждает вход в гнездо, но через некоторое время осы научатся пролезать через ячейки этой сетки.

Большинство насекомых слепы к красному цвету, но видят ультрафиолетовое излучение и привлекаются им; диапазон видимых световых волн лежит в пределах 2500–8000 А. У медоносной пчелы открыта способность различать поляризованный свет, испускаемый голубым небом, что позволяет ей ориентироваться в пространстве при полете. Для ряда насекомых характерно также изменение движения в зависимости от направления солнечных лучей, т.е. ориентация по солнечному компасу. Сущность этого явления заключается в том, что угол падения лучей на те или иные части сетчатки сохраняет свое постоянство в течение какого-то времени; прерванное движение возобновляется под тем же углом, но ввиду перемещения солнца направление движения изменяется на то же число градусов.

Близким является светокомпасное движение, которое объясняет прилет ночных насекомых на свет. Световые лучи расходятся радиально и при косом движении по отношению к ним угол их падения будет меняться; для сохранения фиксированного угла насекомое вынуждено все время изменять свой путь в сторону источника света. Движение идет по логарифмической спирали и, в конце концов, приводит насекомое к самому источнику света (рис. 12).

Простые глаза, или глазки, располагаются между сложными глазами на лбу и темени либо только на темени (рис. 13). Они малы, обычно в числе трех, и расположены треугольником. Вследствие своего положения в верхней части головы они нередко называются также дорсальными глазками. Морфологически глазки не соответствуют омматидиям сложных глаз. Так, они иннервируются не из зрительных долей головного мозга, а из срединной части протоцеребрума. Помимо того, на одну оптическую часть у них приходится серия чувствительных частей. Они также лишены хрустального конуса и их оптическая часть представлена только кутикулярной линзой, т.е. одним хрусталиком.

Глазки развиты далеко не у всех насекомых, в частности, отсутствуют у многих двукрылых и бабочек. У бескрылых или короткокрылых насекомых они также отсутствуют или рудиментарны. Их роль недостаточно ясна. Установлено, что у ряда форм фокус глазка лежит за чувствительной частью, поэтому восприятия изображения в данном случае не может быть; закрашивание сложных глаз делает этих насекомых слепыми. Вместе с тем существует анатомическая связь глазковых нервов с нервами сложных глаз, что указывает на существование функциональной связи между этими органами. Несомненно, глазки у разных насекомых могут играть неодинаковую роль. Во всяком случае, у многих они оказывают регулирующее воздействие на сложные глаза, обеспечивая устойчивость зрения в условиях колебания интенсивности освещения. При низкой ее интенсивности глазки усиливают реакцию сложных глаз, т.е. становятся сегментами последних, при высокой – они проявляют тормозящее воздействие на сложные глаза.

От дорсальных глазков следует отличать боковые, или латеральные, глазки, свойственные личинкам насекомых с полным превращением. Эти глазки, называемые также стеммами, располагаются на боковых частях головы на месте, где у взрослых особей находятся сложные глаза. Число их различно и даже изменчиво в пределах одного и того же вида. Одни виды имеют всего лишь по одному глазку с каждой стороны, у других число их достигает шести и более пар. При переходе насекомого во взрослое состояние боковые глазки атрофируются и заменяются сложными глазами.

Стеммы разнообразны по деталям строения, но для них характерно присутствие хрусталика. У гусениц бабочек есть также хрустальный конус и развит всего один рабдом, что делает такой глазок сходным с омматидием сложного глаза. Но у личинок пилильщиков, некоторых жуков и других насекомых в глазке присутствует несколько или даже множество рабдомов, а хрустальный конус может отсутствовать. Это делает такие стеммы сходными не с омматидиями, а с дорсальными глазками.

Боковые глазки иннервируются от зрительных долей головного мозга и их зрительная функция бесспорна.

Некоторые насекомые сохраняют способность реагировать на свет при удалении глаз и глазков или покрытии их черным лаком; тараканы при этом избегают света, как и в нормальном состоянии, а гусеницы сохраняют положительную реакцию и движутся к источнику света. Безглазые пещерные насекомые также могут реагировать на свет. Очевидно, поверхность их тела способна ощущать свет и поэтому можно говорить о кожной светочувствительности.

В процессе эволюции зрения у некоторых животных возникают довольно сложные оптические приборы. К таким, безусловно, можно отнести глаза фасеточные. Они сформировались у насекомых и ракообразных, некоторых членистоногих и беспозвоночных. Чем отличается фасеточный глаз от простого, каковы его основные функции? Об этом поговорим в нашем сегодняшнем материале.

Глаза фасеточные

Это оптическая система, растровая, где отсутствует единая сетчатка. А все рецепторы объединены в небольшие ретинулы (группы), образуя выпуклый слой, не содержащий более никаких нервных окончаний. Таким образом, глаз состоит из множества отдельных единиц - омматидий, объединяющихся в общую систему зрения.

Глаза фасеточные, присущие, к отличаются от бинокулярных (присущих в том числе и человеку) плохим определением мелких деталей. Зато они способны различать колебания света (до 300 Гц), тогда как для человека предельные возможности - 50 Гц. А еще мембрана такого типа глаз имеет трубчатую структуру. Ввиду этого глаза фасеточные не имеют таких особенностей рефракции, как дальнозоркость или близорукость, для них неприменимо понятие аккомодации.

Некоторые особенности строения и зрения

У многих насекомых занимают большую часть головы и фактически неподвижны. К примеру, глаза фасеточные у стрекозы состоят из 30 000 частиц, образуя сложную структуру. У бабочек - 17 000 омматидиев, у мухи - 4 тысячи, у пчелы - 5. Наименьшее количество частичек у муравья рабочего - 100 штук.

Бинокулярное или фасеточное?

Первый тип зрения позволяет воспринимать объем предметов, их мелкие детали, оценивать расстояния до объектов и их расположение по отношению друг к другу. Однако человека ограничивается углом в 45 градусов. Если обзор необходим более полный, глазное яблоко осуществляет движение на рефлекторном уровне (либо мы повернем голову вокруг оси). Фасеточные глаза в виде полусфер с омматидиями позволяют видеть окружающую действительность со всех сторон, не поворачивая органов зрения или головы. Причем изображение, которое передает при этом глаз, очень похоже на мозаику: одной структурной единицей глаза воспринимается отдельный элемент, а вместе они отвечают за воссоздание полной картины.

Разновидности

Омматидии имеют анатомические особенности, в результате чего и различаются их оптические свойства (к примеру, у разных насекомых). Ученые определяют три вида фасета:


Кстати, некоторые виды насекомых имеют смешанный тип фасеточных органов зрения, а у многих, кроме рассматриваемых нами, имеются еще и простые глаза. Так, у мухи, к примеру, по бокам головы расположены парные фасеточные органы довольно больших размеров. А на темени есть три простых глаза, выполняющих вспомогательные функции. Такая же организация органов зрения и у пчелы - то есть всего пять глаз!

У некоторых ракообразных фасеточные глаза как бы сидят на подвижных выростах-стебельках.

А у некоторых амфибий и рыб имеется еще и дополнительный (теменной) глаз, который различает свет, но обладает предметным зрением. Сетчатка его состоит только из клеток и рецепторов.

Современные научные разработки

В последнее время глаза фасеточные - предмет изучения и восторга ученых. Ведь такие органы зрения, ввиду своего оригинального строения, дают почву для научных изобретений и изысканий в мире современной оптики. Основные преимущества - широкий обзор пространства, разработка искусственных фасеток, используемых преимущественно в миниатюрных, компактных, секретных системах наблюдения.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека