Орган зрения человека. Анатомия и физиология органа зрения

Наш организм взаимодействует с окружающей средой при помощи органов чувств, или анализаторов. С их помощью человек не только способен «ощущать» внешний мир, на основе этих ощущений он обладает особыми формами отражения - самосознанием, творчеством, способностью предвидеть события и т. д.

Что представляет собой анализатор?

Согласно И. П. Павлову, каждый анализатор (и даже орган зрения) - не что иное, как комплексный «механизм». Он способен не только воспринимать сигналы окружающей среды и преобразовать их энергию в импульс, но и производить высший анализ и синтез.

Орган зрения, как и любой другой анализатор, состоит из 3-х неотъемлемых частей:

Периферическая часть, которая отвечает за восприятие энергии внешнего раздражения и переработку ее в нервный импульс;

Проводящие пути, благодаря которым нервный импульс проходит прямо к нервному центру;

Корковый конец анализатора (или же сенсорный центр), расположенный непосредственно в головном мозге.

Палочки состоят из внутреннего и наружного сегментов. Последний образуется при помощи сдвоенных мембранных дисков, которые собой представляют складки плазматической мембраны. Колбочки отличаются величиной (они больше) и характером дисков.

В различают три типа колбочек и всего один вид палочек. Количество палочек может достигать 70 млн, а то и больше, в то время как колбочек - всего 5-7 млн.

Как уже было сказано, существует три типа колбочек. Каждый из них воспринимает разный цвет: синий, красный или желтый.

Палочки же нужны для восприятия информации о форме предмета и освещенности помещения.

От каждой из фоторецепторных клеток отходит тоненький отросток, который образует синапс (место, где контактируют два нейрона) с другим отростком биполярных нейронов (нейрон II). Последние передают возбуждение уже более крупным ганглиозным клеткам (нейрон III). Аксоны (отростки) этих клеток образуют зрительный нерв.

Хрусталик

Это двояковыпуклая кристально прозрачная линза диаметром 7-10 мм. Не имеет ни нервов, ни сосудов. Под влиянием ресничной мышцы хрусталик способен менять свою форму. Именно эти изменения формы хрусталика и называются аккомодацией глаза. При установке на дальнее видение хрусталик уплощается, а при ближнем видении - увеличивается.

Вместе со хрусталик образует светопреломляющую среду глаза.

Стекловидное тело

Им заполнено все свободное пространство между сетчаткой и хрусталиком. Имеет желеобразную прозрачную структуру.

Строение органа зрения аналогично принципу устройства фотоаппарата. Зрачок исполняет роль диафрагмы, суживаясь или расширяясь в зависимости от освещения. В качестве объектива - стекловидное тело и хрусталик. Световые лучи попадают на сетчатку, но изображение при этом выходит перевернутым.

Благодаря светопреломляющим средам (тем самым хрусталику и стекловидному телу) пучок света попадает на желтое пятно на сетчатке, которое является лучшей зоной видения. Колбочек и палочек световые волны достигнут лишь после того, как пройдут всю толщу сетчатки.

Двигательный аппарат

Двигательный аппарат глаза составляют поперечнополосатые 4 прямые мышцы (нижняя, верхняя, латеральная и медиальная) и 2 косые (нижняя и верхняя). Прямые мышцы отвечают за поворот глазного яблока в соответствующую сторону, а косые - за повороты вокруг сагиттальной оси. Движения обоих глазных яблок синхронные только благодаря мышцам.

Веки

Кожные складки, цель которых - ограничивать глазную щель и закрывать ее при смыкании, обеспечивают защиту глазного яблока спереди. На каждом веке находится около 75 ресниц, цель которых - защитить глазное яблоко от попадания инородного предмета.

Примерно раз в 5-10 секунд человек моргает.

Слезный аппарат

Состоит из слезных желез и системы слезных путей. Слезы обезвреживают микроорганизмы и способны увлажнить конъюнктиву. Без слез конъюнктива глаза и роговица просто высохли бы, и человек бы ослеп.

Слезные железы ежедневно вырабатывают около ста миллилитров слезы. Интересный факт: женщины плачут чаще, чем мужчины, потому что выделению слезной жидкости способствует гормон пролактин (которого у девушек гораздо больше).

В основном слеза состоит из воды, содержащей примерно 0,5 % альбумина, 1,5% хлорида натрия, немного слизи и лизоцима, который обладает бактерицидным действием. Имеет слабощелочную реакцию.

Строение глаза человека: схема

Давайте подробнее рассмотрим анатомию органа зрения с помощью рисунков.

На рисунке сверху схематически изображены части органа зрения в горизонтальном разрезе. Здесь:

1 - сухожилие средней прямой мышцы;

2 - задняя камера;

3 - роговая оболочка глаза;

4 - зрачок;

5 - хрусталик;

6 - передняя камера;

7 - радужная оболочка глаза;

8 - конъюнктива;

9 - сухожилие прямой латеральной мышцы;

10 - стекловидное тело;

11 - склера;

12 - сосудистая оболочка;

13 - сетчатка;

14 - желтое пятно;

15 - зрительный нерв;

16 - кровяные сосуды сетчатки.

На данном рисунке изображено схематическое строение сетчатки глаза. Стрелкой показано направление пучка света. Цифрами отмечены:

1 - склера;

2 - сосудистая оболочка;

3 - пигментные клетки сетчатки;

4 - палочки;

5 - колбочки;

6 - горизонтальные клетки;

7 - биполярные клетки;

8 - амакринные клетки;

9 - ганглиозные клетки;

10 - волокна зрительного нерва.

На рисунке изображена схема оптической оси глаза:

1 - объект;

2 - роговая оболочка глаза;

3 - зрачок;

4 - радужная оболочка;

5 - хрусталик;

6 - центральная точка;

7 - изображение.

Какие функции выполняет орган?

Как уже упоминалось, зрение человека передает практически 90% информации об окружающем нас мире. Без него мир бы был однотипным и неинтересным.

Орган зрения является достаточно сложным и не до конца изученным анализатором. Даже в наше время у ученых иногда возникают вопросы по поводу строения и предназначения этого органа.

Основные функции органа зрения - восприятие света, форм окружающего мира, положения предметов в пространстве и т. д.

Свет способен вызвать сложные изменения в и, таким образом, является адекватным раздражителем для органов зрения. Считается, что первым воспринимает раздражение родопсин.

Наиболее качественное зрительное восприятие будет при условии, что изображение предмета будет падать на область пятна сетчатки, желательно на его центральную ямку. Чем дальше от центра проекция изображения предмета, тем оно менее отчетливо. Такова физиология органа зрения.

Заболевания органа зрения

Давайте рассмотрим некоторые самые распространенные заболевания органов зрения.

  1. Дальнозоркость. Второе название данного заболевания - гиперметропия. Человек с этим недугом плохо видит объекты, которые находится близко. Обычно затруднено чтение, работа с маленькими предметами. Обычно развивается у людей в возрасте, но может появиться и у молодых. Полностью излечить дальнозоркость можно только при помощи опреционного вмешательства.
  2. Близорукость (ее еще называют миопия). Заболевание характеризуется невозможностью хорошо видеть предметы, находящиеся достаточно далеко.
  3. Глаукома - повышение внутриглазного давления. Происходит из-за нарушения циркуляции жидкости в глазу. Лечится медикаментозно, но в некоторых случаях может потребоваться операция.
  4. Катаракта - не что иное, как нарушение прозрачности хрусталика глаза. Помочь избавиться от этого заболевания может только офтальмолог. Требуется хирургическое вмешательство, при котором зрение человека можно восстановить.
  5. Воспалительные заболевания. К таким относятся конъюнктивит, кератит, блефарит и прочие. Каждое из них по-своему опасно и имеет различные методы лечения: некоторые можно излечить медикаментами, а некоторые только при помощи операций.

Профилактика заболеваний

В первую очередь нужно помнить, что вашим глазам тоже нужно отдыхать, и чрезмерные нагрузки ни к чему хорошему не приведут.

Используйте только качественное освещение с лампой мощностью от 60 до 100 Вт.

Чаще проводите гимнастику для глаз и хотя бы раз в год проходите обследование у офтальмолога.

Помните, что заболевания органов глаз - достаточно серьезная угроза качеству вашей жизни.

Люди во все времена задумывались над сложным строением человеческого организма. Так мудрый грек Герофил еще в древние времена описывал сетчатку глаза: «Взятая рыбацкая сетка, заброшенная на дно глазного бокала, которая ловит солнечные лучи». Это поэтическое сравнение оказалось удивительно точным. Сегодня уверенно можно утверждать, что сетчатка глаза – именно «сетка», способная «ловить» даже отдельные кванты света.

Сетчатку можно определить как многоэлементный фотоприемник изображений, который по упрощенной структуре представляется как разветвление зрительного нерва с дополнительными функциями обработки изображений.

Сетчатка глаза занимает зону диаметром около 22 мм, и за счет этого почти полностью (около 72% внутренней поверхности глазного яблока) устилает фоторецепторами глазное дно от реснитчатого тела до слепого пятна – зоны выхода из глазного дна зрительного нерва. При офтальмоскопии это выглядит как светлый диск по причине большего (чем в других зонах сетчатки) коэффициента отражения света.

Слепое пятно и центральная зона сетчатки

В зоне выхода зрительного нерва сетчатка не имеет фоточувствительных рецепторов. Поэтому изображение объектов, которые попадают в это место, человек не видит (отсюда и название «слепое пятно»). Оно имеет размер примерно 1,8 – 2 мм в диаметре, расположено в горизонтальной плоскости на расстоянии 4 мм от заднего полюса глазного яблока по направлению к носу ниже полюса глазного яблока.

Центральная зона сетчатки, которую называют желтым пятном, макулой или макулярной зоной, выглядит как наиболее темная зона глазного дна. У разных людей ее цвет может варьироваться от темно-желтого до темно-коричневого. Центральная зона имеет несколько вытянутую овальную форму в горизонтальной плоскости. Размер желтого пятна точно не определен, но принято считать, что в горизонтальной плоскости он составляет от 1,5 до 3 мм.

Желтое пятно, как и слепое пятно, не расположено в зоне полюса глазного яблока. Его центр смещен в горизонтальной плоскости в противоположном от слепого пятна направлении: на расстоянии около 1 мм от оси симметрии оптической системы глаза.

Сетчатка глаза имеет разную толщину. В зоне слепого пятна она является наиболее толстой (0,4 – 0,5 мм). Наименьшую толщину она имеет в центральной зоне желтого пятна (0,07 – 0,1 мм), где образуется так называемая центральная ямка. На краях сетчатки (зубчатая линия) ее толщина равна примерно 0,14 мм.

Хотя сетчатка и выглядит как тонкая пленка, все же она имеет сложную микроструктуру. В направлении лучей, которые поступают к сетчатке через прозрачные среды глаза и мембрану, отделяющую стекловидное тело от сетчатки, первым слоем сетчатки являются прозрачные нервные волокна. Они являются «проводниками», по которым в мозг передаются фотоэлектрические сигналы, несущие в себе информацию о зрительной картине объектов наблюдения: изображения, которые фокусируются оптической системой глаза на глазном дне.

Свет, плотность распределения которого на поверхности сетчатки пропорциональна яркости поля объектов, проникает через все слои сетчатки и попадает на светочувствительный слой, составленный из колбочек и палочек. Этот слой выполняет активное поглощение света.

Колбочки имеют длину 0,035 мм и диаметр от 2 мкм в центральной зоне желтого пятна до 6 мкм в периферийной зоне сетчатки. Порог чувствительности колбочек составляет примерно 30 квантов света, а пороговая энергия – 1,2 10 -17 Дж. Колбочки являются фоторецепторами дня «цветного» зрения.

Наибольшей приемлемостью пользуется трехкомпонентная теория Г. Гельмгольца, согласно которой восприятие цвета глазом обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Каждая колбочка имеет в разной концентрации три типа пигмента – светочувствительного вещества:

— первый тип пигмента (сине-голубой) поглощает свет в диапазоне длин волн 435-450 нм;
— второй тип (зеленый) – в диапазоне 525-540 нм;
— третий тип (красный) – в диапазоне 565-570 нм.


Палочки являются рецепторами ночного, «черно-белого» зрения. Их длина составляет 0,06 мм, а диаметр около 2 мкм. Они имеют пороговую чувствительность в 12 квантов света при длине волны 419 нм или пороговую энергию 4,8 0 -18 Дж. Следовательно, они намного более чувствительными к световому потоку.

Однако, вследствие слабой спектральной чувствительности палочек, объекты наблюдения ночью воспринимаются человеком как серые или черно-белые.

Плотность расположения колбочек и палочек по сетчатке не является одинаковой. Наибольшая плотность наблюдается в зоне желтого пятна. При приближении к периферии сетчатки плотность уменьшается.

В центре фовеа (фовеолы) находятся только колбочки. Их диаметр в этом месте является наименьшим, они плотно гексагонально заключены. В зоне фовеа плотность колбочек составляет 147000-238000 на 1 мм. Эта зона сетчатки имеет наибольшее пространственное разрешение, в связи с чем предназначена для наблюдения наиболее важных фрагментов пространства, на которых человек фиксирует свой взгляд.

Дальше от центра плотность уменьшается до 95 000 на 1 мм, а в парафовеа – до 10 000 на 1 мм. Плотность палочек самая высокая в парафовеоли – 150000-160000 на 1 мм. Дальше от центра их плотность также уменьшается, и на периферии сетчатки составляет всего 60000 на 1 мм. Средняя плотность палочек на сетчатке составляет 80000-100000 на 1 мм.

Функции сетчатки

Существует несоответствие между количеством отдельных фоторецепторов (7000000 колбочек и 120000000 палочек) и 1,2 миллиона волокон зрительного нерва. Оно проявляется в том, что количество «фотоприемников» более чем в 10 раз превышает количество «проводников», которые соединяют сетчатку с соответствующими центрами мозга.

Это делает понятной функцию слоев сетчатки: она заключается в осуществлении коммутации между отдельными фоторецепторами и участками зрительного центра мозга. С одной стороны, они не перегружают мозг «мелкой», второстепенной информацией, а с другой – не допускают потери важной составляющей зрительной информации о среде, которую наблюдает глаз. Поэтому каждая колбочка с фовеальной зоны имеет свой персональный канал прохождения нервных импульсов к мозгу.

Однако по мере удаления от фовеолы такие каналы образуются уже для групп фоторецепторов. Этому служат горизонтальные, биполярные амакринные и , а также внешние и внутренние её слои. Если каждая ганглиозная клетка для передачи сигналов в мозг имеет только свое персональное волокно (аксон), то это означает, что она благодаря коммутационному действию биполярных и горизонтальных клеток должна иметь синапсический контакт или с одним (в зоне фовеолы), или с несколькими (в периферийной зоне) фоторецепторами.

Ясно, что для этого нужно осуществлять соответствующую горизонтальную коммутацию фоторецепторов и биполярных клеток на более низком уровне, а также биполярных и ганглиозных клеток на высшем уровне. Такая коммутация обеспечивается через отростки горизонтальных и амакриновых клеток.

Синапсические контакты – это электрохимические контакты (синапсы) между клетками, которые осуществляются благодаря электрохимическим процессам с участием специфических веществ (нейромедиаторов). Ими обеспечивается «передача вещества» по «нервам-проводникам». Поэтому связи между различными дендритами сетчатки зависят не только от нервных импульсов, но и от процессов во всем организме. Эти процессы могут поставлять нейромедиаторы в зоны синапсов в сетчатке и в мозг как с участием нервных импульсов, так и с током крови, а также других жидкостей.

Дендриты – это отростки нервных клеток, которые воспринимают сигналы от других нейронов, рецепторных клеток, и проводят нервные импульсы через синапсические контакты к телу нейронов. Совокупность дендритов образует дендритную ветку. Совокупность дендритных ветвей называют дендритным деревом.

Амакриновые клетки осуществляют «боковое торможение» между соседними ганглиозными клетками. Этой обратной связью обеспечивается коммутация биполярных и ганглиозных клеток. Так не только решается задача подключения к мозгу ограниченного количества нервных волокон большого количества фоторецепторов, но и осуществляется предварительная обработка информации, поступающая от сетчатки к мозгу, то есть пространственная и временная фильтрация зрительных сигналов.

Таковы функции сетчатки глаза. Как видно, она очень хрупка и важна. Берегите ее!

Кажется, что чем больше мы ее изучаем, тем большее удивление вызывает эта сложность, представлявшаяся ранее нам такой ясной и доступной, но сейчас, на новом витке научного познания, остающаяся как никогда непостижимой.

Мысль о том, что живые существа меняются с течением времени, высказывалась многими задолго до Чарльза Дарвина. Среди ранних эволюционистов был не только Ламарк, но и дед Дарвина - Эразм. Однако эти идеи не могли стать господствующими в науке, так как за ними не стояло рационалистического объяснения механизма эволюции. Ламарк постулировал некое вложенное во все живое стремление к совершенству - особую сущность, которую он называл принципом градации. Дарвин же нашел механистическое объяснение процессу изменения органического мира, и оно оказалось очень простым и понятным образованной публике того времени - естественный отбор (natural selection).

Имеется много документальных подтверждений того, что Дарвин был поражен сложностью глаза, несмотря на то, что по сравнению с современной наукой, у него было мало знаний. И все же, хотя он не мог объяснить, как именно это происходило, он верил, что такая удивительная сложность могла развиваться путем естественного процесса эволюции. Очень маленькие изменения, отобранные в качестве преимущественных, могли передаваться и увеличиваться на протяжении многих поколений для того, чтобы создать основное чудо сложности как человеческий глаз.

Очевидно, что Дарвин не был сумасшедшим. Он предложил свою теорию эволюции, и его основные объяснения касательно постепенного развития сложных структур, таких как глаза, убедили большинство современных исследователей. Итак, что именно он предложил для объяснения сложности таких структур, как человеческий глаз? Рассмотрите следующую цитату Дарвина:

Разум говорит мне, что если бы могли происходить постепенные переходы от простого несовершенного глаза к сложному и совершенному, то каждый уровень перехода был бы полезным для его обладателя, как это и есть. Если далее глаз непрерывно изменяется, и эти изменения наследуются, что также соответствует действительности, и если бы такие изменения были полезны для любого животного при изменяющихся условиях жизни, тогда трудность поверить в то, что совершенный и сложный глаз мог быть создан путем естественного отбора, хоть это и непостижимо для нашего воображения, не рассматривалась бы как ниспровергающая теорию.

Дарвин не был в состоянии дать объяснение тому, что происходило в реальности, но он предложил последовательную эволюцию человеческого глаза, приводя примеры различий в глазах других существ, которые казались менее сложными. Эти различия были расположены в последовательном порядке в прогрессии: от наиболее простых до наиболее сложных глаз. Появилось большое количество посредников, которые соединяли один тип глаза с другим в эволюционной шкале.

Некоторые из "наиболее простых" глаз - это ни что иное, как просто пятно из небольшого количества светочувствительных клеток, объединенных вместе. Такой тип глаза годится только для различения света от тьмы. Он не может определять изображения. Начиная от такого простого глаза, Дарвин продолжал демонстрировать существа с последовательно более сложными глазами, пока не была достигнута сложность человеческого глаза.

Определенно, такой сценарий кажется рациональным. Тем не менее, многие из теорий, которые изначально казались на бумаге целесообразными, вскоре были опровергнуты. Такие теории требуют прямого экспериментального доказательства для своей поддержки, прежде чем их примут в качестве "научных". Неужели сложные структуры, такие как глаза, действительно эволюционировали в реальной жизни? Не существует документального подтверждения, что у кого-то эволюционировал глаз, или хотя бы глазное пятно, с помощью любого механизма отбора в существе, у которого раньше не было глаз. Также, нет документального свидетельства в пользу эволюции одного типа глаз в другой тип в любом существе, никакая эволюция глаз вообще никогда не наблюдалась. Конечно, доводом является то, что для такой эволюции необходимо тысячи или миллионы лет. Возможно и так, но без возможности наблюдения и испытания, такие предположения, хотя и целесообразные, должны содержать большую степень веры.

Необходимая вера в такой сценарий увеличивается еще больше, когда принимается во внимание тот факт, что даже простое светочувствительное пятно является чрезвычайно сложным, вовлекая большое количество специальных протеинов и белковых систем. Эти протеины и системы интегрированы таким способом, что если хотя бы что-то одно отсутствовало, то зрение прекратилось бы. Другими словами, чтобы такое чудо как зрение произошло даже в светочувствительном пятне, много различных протеинов и систем должны были эволюционировать одновременно, поскольку без них не было бы зрения.

Например, первый шаг в зрении - это обнаружение фотонов. Для того чтобы уловить фотон, специализированные клетки используют молекулу, которая называется "11-цис-ретиналь". Когда фотон света взаимодействует с этой молекулой, он почти мгновенно изменяет ее форму. Эта форма теперь называется "транс-ретиналь". Такое изменение приводит к изменению формы другой молекулы, которая называется родопсином (rhodopsin). Новая форма родопсина называется метародопсином II (metarhodopsin II). Метародопсин ІІ далее присоединяется к другому протеину, трансдусину (transducin), заставляя его отпустить присоединенную молекулу, которая называется GDP, и подобрать другую молекулу, GTP.

Молекула GTP-трансдусин-метародопсин II присоединяется к другому протеину, который называется фосфодиэстераза. Когда это происходит, фосфодиэстераза расщепляет молекулы, которые называются cGMPs. Это расщепление cGMPs уменьшает их относительное количество в клетке. Такое уменьшение cGMPs воспринимается ионным каналом. Этот ионный канал закрывается и не дает иону натрия проникать в клетку. Это блокирование проникновения натрия в клетку является причиной нарушения баланса заряда вдоль мембраны клетки. Это нарушение равновесия заряда посылает электрический ток в мозг. Потом мозг интерпретирует этот сигнал, а результат называется зрением. Необходимо много других протеинов, чтобы вернуть протеины и другие упоминавшиеся молекулы назад к их первоначальным формам, чтобы они могли уловить другой фотон света и дать сигнал мозгу. Если какой-нибудь из этих протеинов или молекул отсутствует, даже в наиболее простой глазной системе, зрение не состоится.

Конечно, возникает вопрос, как могла такая система постепенно эволюционировать?

Все части должны находиться на месте одновременно. Например, какую пользу извлек бы червь, не имеющий глаз, эволюционировав неожиданно протеин 11-цис-ретиналь в маленькой группе или "пятне" клеток на голове? Такие клетки могут определять фотоны, но что из этого? Какая польза в этом для червя?

Теперь, предположим, что эти клетки развили каким-то образом все необходимые протеины, чтобы активизировать электрический заряд сквозь свои мембраны в ответ на фотон света, который падает на них. Ну и что? Какая польза из того, что они имеют возможность установить электрический потенциал на своих мембранах, если не существует нервного пути к мозгу червя? Что бы было, если бы этот путь внезапно эволюционировал, и такой сигнал мог бы посылаться в мозг червя. И что из этого? Каким образом червь собирается узнать, что делать с этим сигналом? Он должен будет научиться понимать, что означает этот сигнал. Изучение и интерпретация являются очень сложными процессами, вовлекающими много разных протеинов в других уникальных системах. Теперь червь в течение своей жизни должен эволюционировать возможность передать эту способность своим потомкам. Если он не передаст эту способность, то потомок должен будет научиться сам, в противном же случае зрение не даст ему никакого преимущества.

Все эти прекрасные процессы требуют регулирования. Никакая из функций не может быть полезной, пока она не будет регулироваться (включаться и выключаться). Если светочувствительные клетки не могут выключаться, когда они включены, зрение может и не состоятся. Такая способность к регулированию тоже чрезвычайно сложна, и в нее вовлекается множество протеинов и других молекул, при этом чтобы зрение принесло пользу, все они должны находиться на своем месте... изначально.

Но, что если мы не станем объяснять происхождение первого, чувствительного к свету "пятна". Эволюция более сложных глаз, с такой точки зрения, представляется простой, не так ли? Не совсем.

Дело в том, что для каждого из различных компонентов требуется наличие уникальных протеинов, выполняющих специфические функции, которые должны быть закодированы уникальным геном в ДНК этого существа. Ни гены, ни протеины, которые они кодируют, не функционируют самостоятельно. Существование уникального гена или протеина означает, что вовлекается уникальная система других генов или протеинов со своей функцией. В такой системе отсутствие хотя бы одного системного гена, протеина или молекулы означает, что целая система становиться нефункциональной. Принимая во внимание тот факт, что эволюция одного гена или протеина никогда не наблюдалась и не воспроизводилась в лабораторных условиях, такие, на первый взгляд незначительные различия, внезапно становятся очень важными и огромными.

Дефекты дизайна

А как насчет "дефектов дизайна" в человеческом глазе? Существует известный аргумент в пользу эволюции, что интеллектуальный дизайнер ничего не создавал бы с дефектами. Эволюция, с другой стороны, будучи естественным процессом проб и ошибок, легко объясняет существование дефектов в природном мире. Хотя многих это доказательство убедило, оно само по себе предполагает мотивы и возможности дизайнера. Говорить, что все созданное должно соответствовать нашим индивидуальным убеждениям о совершенстве, перед тем как мы сможем определить дизайн, вводит в заблуждение.

Другая проблема выявления дефектов дизайна в природе заключается в том, что нам не известна вся информация, которую необходимо знать. То, что нам изначально кажется дефектом дизайна, может оказаться преимуществом, как только мы больше узнаем о потребностях определенной системы или существа. В любом случае, давайте детальнее рассмотрим предполагаемые дефекты дизайна человеческого глаза. В своей книге 1986 года, "Слепой часовщик", известный биолог-эволюционист Ричард Доукинс выдвигает это аргумент дефекта в дизайне глазе человека:

Любой инженер естественно предположил бы, что фотоэлементы будут направлены к свету, а их провода будут направленными обратно к мозгу. Он высмеивал бы любое предположение, что фотоэлементы могут быть направленными от света, а их провода, остались на стороне, наиболее близко расположенной к этому свету. И все же, точно так это происходит во всех сетчатках позвоночных. Каждый фотоэлемент, в действительности, подключен "задом наперед", а его провод торчит в сторону, наиболее близкой к свету. Провод должен двигаться по поверхности сетчатки к месту, где он проходит через отверстие в сетчатке (так называемое "слепое пятно"), чтобы затем присоединиться к оптическому нерву. Это означает, что свет, вместо того чтобы без препятствий проходить к фотоэлементам, должен преодолеть массу соединенных проводов, и, по-видимому, испытывает некоторое ослабление и искажение (фактически, не очень большое, но, тем не менее, это является принципом, который оскорбил бы любого мыслящего инженера). Я не ожидаю точного объяснения этого странного положения дел. Соответствующий период эволюции произошел так давно.

Доказательство Доукинса, определенно, кажется интуитивным. Проблема Доукинса не в обосновании интуицией, а скорее в недостатке проверки его гипотезы. Она может казаться сколь угодно обоснованной до тех пор, пока Доукинс не будет иметь возможности проверить свои предположения, чтобы в действительности увидеть насколько "перевернутая" конструкция сетчатки лучше "неперевернутой" для потребностей человека. Эта гипотеза остается непроверенной, и поэтому не поддерживается научным методом. Кроме этой проблемы существует еще одна: даже если бы Доукинс доказал с научной стороны, что перевернутая сетчатка на самом деле более необходима для человеческого зрения, это все еще не опровергло бы дизайн с научной точки зрения.

Сила теории дизайна остается не в ее возможности проявлять совершенство в дизайне, а в ее возможности указывать на статистическую невозможность натуралистического метода для объяснения сложности жизни, которая очевидна в такой структуре, как человеческий глаз. Предполагаемые дефекты не устраняют этого статистического вызова эволюционным теориям. Ошибка Доукинса заключается в предположении, что размышления, знания и мотивация всех дизайнеров похожи на его размышления, знания и мотивацию. Проблемы Доукинса далее обостряются его собственным признанием, что перевернутая сетчатка прекрасно функционирует. Его аргумент обсуждает не технические неисправности перевернутой сетчатки, а касается эстетики. Перевернутая сетчатка не кажется ему правильной, не смотря на тот факт, что она используется животными, обладающими наиболее острыми в мире зрительными системами (формирующими изображение).

Неперевернутая против перевернутой

Наиболее развитые неперевернутые сетчатки в мире принадлежат осьминогу и кальмару (головоногим). Средняя сетчатка осьминога содержит 20 миллионов клеток-фоторецепторов. Средняя человеческая сетчатка содержит примерно 126 миллионов клеток-фоторецепторов. Это ничто по сравнению с птицами, у которых в 10 раз больше фоторецепторов и в 2-5 раз больше колбочек, чем у людей.

В сетчатке глаза человека есть место, которое называется "центральной ямкой". Ямка является центральным местом в центральной части человеческой сетчатки, называемой пятном. В этой области у людей намного большая концентрация фоторецепторов, особенно колбочек. Также, кровяные сосуды, нервные и ганглиозные клетки расположены в ней таким образом, что они не размещаются между источником света и клетками фоторецепторов, тем самым, устраняя даже эту незначительную помеху непосредственному проходу света. Это создает область высокой визуальной резкости с уменьшением визуальной резкости к периферии человеческой сетчатки.

Колбочки в пятне (и в любом другом месте) также имеют пропорцию 1:1 по отношению к ганглиозным клеткам. Ганглиозные клетки помогают предварительно обрабатывать информацию, полученную от фоторецепторов сетчатки. Что касается палочек сетчатки, одна ганглиозная клетка получает информацию от множества, даже сотен клеток-палочек, но с колбочками, наибольшая концентрация которых находится в пятне, дело обстоит по-другому. Пятно обеспечивает информацию, необходимую для максимальной детализации изображения и, полученная с помощью периферийных участков сетчатки информация помогает обеспечивать как пространственную, так и контекстуальную информацию. По сравнению с периферией, пятно в 100 раз более чувствительно к мельчайшим деталям, чем остальная часть сетчатки. Это дает возможность человеческому глазу фокусироваться на определенном участке в поле зрения, не будучи сильно отвлеченным периферийным зрением.

Сетчатки птиц, с другой стороны, не имеют пятна или ямки, расположенных центрально. Зрительная резкость равна во всех областях. Сетчатки осьминога также не имеют центрально расположенной ямки, но у них есть то, что называется линейным централисом. Он формирует диапазон высшей резкости горизонтально вдоль сетчатки осьминога. Уникальной особенностью глаз осьминога является то, что, не смотря на положение их тела, их глаза всегда поддерживают одну и ту же позицию относительно гравитационного поля Земли, используя орган равновесия статоцист.

Причина этого кроется в том факте, что в сетчатке осьминога размещены определения горизонтальных и вертикальных проекции в полях их зрения. Это предвиденный способ оценивания горизонтальности и вертикальности. Осьминоги используют данную способность не для создания изображения, как это делают позвоночные, а для того, чтобы замечать модели движений. Интересно то, что, не зависимо от формы объекта, осьминог отвечает на конкретные движения, похожие на движения жертвы, так как если бы это действительно была жертва. Тем не менее, если их обычная жертва не двигается, осьминог не реагирует на отсутствие движения. В этом аспекте, зрение осьминога похоже на сложные глаза насекомых.

В действительности, глаз осьминога рассматривается, как сложный глаз с единственной линзой. В некоторых других отношениях, он также более простой в процессе обработки информации, чем глаз позвоночных. Фоторецепторы состоят только из палочек, и информация, передаваемая ими, не проходит сквозь какой-нибудь вид периферийной обработки ганглиозными клетками. Глаза осьминога устроены не для того, чтобы воспринимать мельчайшие детали, но для восприятия схем и способов движения, устраняя, таким образом, потребность в очень высокой обработке, которая наблюдается в глазах человека и позвоночных.

Высокая мощность обработки в человеческом глазе и в глазах других позвоночных не дешева. Она очень дорогая, и тело платит высокую цену за поддержку такого высокого уровня определения и силы обработки. Сетчатка имеет наивысшие из всех тканей тела потребности в энергии и показатели метаболизма веществ. Потребление кислорода человеческой сетчаткой (на грамм ткани) на 50% больше, чем печени, на 300% больше, чем коры головного мозга и на 600% больше миокарда (сердечной мышцы). Но это средний показатель метаболизма кислорода для сетчатки в целом. Отдельно же взятый слой клеток-фоторецепторов имеет значительно больший показатель обмена веществ. Вся эта энергия должна поставляться быстро и в нужном количестве.

Непосредственно под каждым фоторецептором находится слой сосудистой оболочки глаза. Этот слой содержит густой капиллярный пласт, который называется сосудисто-капиллярным. Единственное, что отделяет капилляры от прямого контакта с фоторецепторами - это очень тонкий (как одна клетка) пигментный эпителий сетчатки (ПЭС). Эти капилляры намного больше средних, будучи 18-50 микронов в диаметре. Они обеспечивают огромное количество крови на грамм ткани и составляют 80% притока крови для всего глаза. С другой стороны, артерия сетчатки, которая проходит сквозь "слепое пятно" и распределяется вдоль внешней сетчатки, обеспечивая потребности нервного слоя, вносит только 5% всего снабжения крови сетчатке. Большая близость хороидального снабжения крови к клеткам фоторецепторов без лишней промежуточной ткани или пространства, такого, как нервы или ганглиозные клетки, (то есть, из неперевернутой системы) обеспечивает наиболее быструю и эффективную поставку жизненно-важных питательных веществ, и устраняет большое количество производимых отходов. Клетки, которые удаляют эти отходы и пополняют запасы некоторых необходимых элементов в фоторецепторах, - это клетки ПЭС.

Каждый день палочки и колбочки сбрасывают примерно 10% своих сегментированных дисков. Среднее число дисков у палочек составляет от 700 до 1000, у колбочек - 1000-1200. Это само по себе создает потребность в обмене веществ в клетках ПЭС, которые должны перерабатывать большое количество сброшенных дисков. К счастью, им не нужно далеко перемещаться, чтобы достичь клеток ПЭС, поскольку они обрушиваются с конца фоторецептора, который непосредственно контактирует со слоем клеток ПЭС. Если бы эти диски сбрасывались в обратном направлении (к линзам и роговице), то их высокий уровень сбрасывания, в результате, создал бы мрачное затемнение перед фоторецепторами, которое не очищалось бы настолько быстро, как это было бы необходимо для поддержания высокого уровня визуальной четкости.

Высокий уровень переработки поддерживает высокий уровень чувствительности фоторецепторов. Клетки ПЭС также содержат изомеразу ретинола (витамина А). Трансретинал должен превратиться обратно в 11-цисретинал в визуальном молекулярном каскаде. С помощью витамина А и ретинальной изомеразы клетки ПЭС способны выполнять эту задачу, перенося затем такие обновленные молекулы обратно к фоторецепторам. Интересно, что клетки ПЭС в сетчатках головоногих не имеют ретинальной изомеразы.Тем не менее, сетчатки всех позвоночных все же обладают этим важным энзимом. Описанные выше функции требуют большого количества энергии. И клетки ПЭС так же, как и клетки фоторецепторов, должны быть максимально приближены к хорошему кровяному снабжению, что и наблюдается в действительности.

Как подразумевает само их название, клетки ПЭС пигментированы очень темным черным цветом, который называется меланином. Меланин поглощает рассеивающийся свет, тем самым, предотвращая побочное отражение фотонов и косвенную активацию фоторецепторов. Это значительно помогает в создании четкого/резкого изображения на сетчатке. Для некоторых позвоночных, таких как, к примеру, кошка, существует отличающаяся система, у которой в наличии имеется отражающий слой, позволяющий лучше видеть в темноте (в шесть раз лучше, чем люди), но плохо в дневное время.

Итак, мы видим, что перевернутые сетчатки имеют, по крайней мере, минимальные, если не существенные преимущества, основанные на потребностях их владельцев. У нас также имеется доказательство, что наилучшие глаза в мире для определения изображения и его интерпретации - это всегда глаза с "перевернутой" сетчаткой, у которых есть ретинальная организация. Касательно недостатков в общем, то они не имеют практического значения по сравнению с соответствующими функциями. Даже Докинс признает, что это неудобство является в основном эстетическим. Рассмотрите следующее утверждение Докинса:

За одним исключением, фотоэлементы всех глаз, которые я успел проиллюстрировать, располагались спереди нервов, что соединяли их с мозгом. Это очевидно, но не универсально. Земляной червь, …предположительно, содержит свои фотоэлементы на неправильной стороне соединяющих нервов. То же делает и глаз позвоночных. Фотоэлементы направлены в обратную сторону от света. Это не так глупо как кажется. Поскольку они очень маленькие и прозрачные, то не столь важно, куда они направлены: большинство фотонов будут направляться прямо и затем проходить сквозь ряд помех, нагруженных пигментами, которые ждут, чтобы их поймать.

Эволюционная теория в примерах

В принципе, все органы зрения предназначены для того, чтобы захватывать отдельные частицы света - фотоны. Вполне возможно, что ещё в докембрийский период жили организмы, способные воспринимать свет. Это могли быть и многоклеточные существа, и одноклеточные. Однако первое известное нам животное, наделённое зрением, появилось около 540 миллионов лет назад. А всего через сто миллионов лет, в ордовикском периоде, уже существовали все известные нам сегодня типы органов зрения. Нам остаётся лишь правильно расставить их, чтобы понять их эволюцию.

У одноклеточных животных - например, эвглены зелёной - имеется лишь светочувствительное пятно: "глазок". Оно различает свет, что жизненно важно для той же эвглены, ведь без энергии света в её организме не может протекать фотосинтез, а значит, не образуются органические вещества. До появления этой органеллы - глазка - одноклеточные животные хаотично сновали в толще воды, пока случайно не попадали на свет. Эвглена же всегда плывёт только на свет.

У первых многоклеточных животных органы зрения были крайне примитивны. Так, у многих морских звёзд по всей поверхности тела разбросаны отдельные светочувствительные клетки. Эти животные способны лишь различать светлое и тёмное. Заметив проплывающую тень - хищник? - они спешат зарыться в песок.

У некоторых животных светочувствительные клетки группировались в виде "глазного пятна". Теперь можно было, пусть и очень приблизительно, оценить, с какой стороны двигался хищник. Более пятисот миллионов лет назад глазные пятна появляются у медуз. Этот орган зрения позволял им ориентироваться в пространстве, и медузы заселяют открытое море. Дождевым червям подобные пятна помогают скрываться от света в земле.

Следующую ступень эволюции глаза демонстрируют ресничные черви. В передней части их тела имеются два симметричных пятна: в каждом из них до тысячи светочувствительных клеток. Эти пятна наполовину погружены в пигментную чашку. Свет падает лишь на верхнюю половину пятен, не прикрытую пигментом, и это позволяет животному определить, где находится источник света. При желании можно назвать ресничного червя "животным с двумя глазами".

Постепенно глазное пятно ещё глубже вдавливалось в эпителий. Образовался желобок - "глазной бокал". Подобным органом зрения обладают, например, речные улитки. Его чувствительность заметно зависит от направления взгляда. Однако улитка видит всё вокруг себя расплывчатым, словно глядит сквозь матовое стекло.

Острота зрения повышалась по мере того, как сужалось наружное отверстие глаза. Так появился глаз с точечным зрачком, напоминавший камеру-обскуру. Им смотрит на мир моллюск наутилус, родич давно вымерших аммонитов. Толщина глаза у наутилуса - около сантиметра. На его сетчатке имеется до четырёх миллионов светочувствительных клеток. Однако этот орган зрения улавливает слишком мало света. Поэтому мир для наутилуса выглядит мрачно.

Итак, на каком-то этапе эволюция привела к появлению двух различных органов зрения. Один - назовём его "глаз оптимиста" - позволял видеть всё в светлых красках, но очертания предметов были смутными, неясными, расплывчатыми. Другой - "глаз пессимиста" - видел всё в чёрных тонах; мир казался грубым, изломанным, резко очерченным. Именно от него и происходит наш человеческий глаз.

Позднее над зрачком нарастает прозрачная плёнка; она защищает его от попадания грязи и в то же время меняет его преломляющую способность. Теперь всё больше частиц света попадает внутрь глаза, к его светочувствительным клеткам. Так возникает первый примитивный хрусталик. Он фокусирует свет. Чем больше хрусталик, тем острее зрение. Для обладателя такого органа зрения - а именно он и называется "глазом" - окружающий мир становится ярким и отчётливым.

Глаз оказался таким совершенным органом зрения, что природа "изобрела" его дважды: он появился у головоногих моллюсков, а позднее у нас, позвоночных, причём у обеих групп животных выглядит он по-разному, да и развивается из различных тканей: у моллюсков - из эпителия, а у человека сетчатка и стекловидное тело возникают из нервной ткани, а хрусталик и роговица - из эпителия.

Добавим, что у насекомых, трилобитов, ракообразных и некоторых других беспозвоночных животных сформировался сложный - фасеточный - глаз. Он состоял из множества отдельных глазков - омматидиев. Глаз стрекозы содержит, например, до тридцати тысяч таких глазков.

На все лишь полмиллиона лет

Шведские биологи Дан-Эрик Нильсон и Сюзанна Пелгер из Лундского университета смоделировали на компьютере историю эволюции глаза. В этой модели всё началось с появления тонкого слоя клеток, чувствительных к свету. Над ним лежала прозрачная ткань, сквозь которую проникал свет; под ним - непрозрачный слой ткани.

Отдельные, незначительные мутации могли менять, например, толщину прозрачного слоя или кривизну светочувствительного слоя. Они происходили случайно. Ученые лишь внесли в свою математическую модель правило: если мутация улучшала качество изображения хотя бы на один процент, то она закреплялась в последующих поколениях.

В конце концов, "зрительная плёнка" превратилась в "пузырёк", заполненный прозрачным студнем, а затем и в "рыбий глаз", снабжённый настоящим хрусталиком. Нильсон и Пелгер попробовали оценить, сколько времени могла длиться подобная эволюция, причём они выбрали худший, самый медленный вариант развития. Всё равно результат оказался сенсационным. Краткая история глаза насчитывала всего… чуть более полумиллиона лет - сущий миг для планеты. За это время сменилось 364 тысячи поколений животных, наделённых различными промежуточными типами органов зрения. Путём естественного отбора природа "проверила" все эти формы и выбрала лучшую - глаз с хрусталиком.

Подобная модель наглядно доказывает, что как только первые примитивные организмы открыли саму возможность "запечатлевать" мир - моментально копировать одним из своих органов расположение окружающих предметов и их форму, - тут же этот орган начал совершенствоваться, пока не достиг высшей формы развития. История глаза, в самом деле, оказалась краткой; она была "молниеносной войной" за возможность "видеть всё в истинном свете". В победителях числятся все - и человек, и рыбы, и насекомые, и улитки, и даже эвглена, порой получше нас, "амбивалентных", различающая, где чёрное, а где белое.

Позднее немецкий биолог Вальтер Геринг выяснил, что ген под названием Pax-6 формирует органы зрения у человека, мышей и плодовых мушек дрозофил. Если он имеет дефект, глаз не развивается вовсе или остаётся в зачаточном виде. В свою очередь, при встраивании гена Pax-6 в определённые участки генома у животного появлялись дополнительные глаза.

Опыты показали, что ген Pax-6 отвечает лишь за развитие органов зрения, а не за их тип. Так, с помощью гена, принадлежавшего мыши, учёный запускал механизм развития глаз у дрозофил, причём у них появлялись дополнительные органы зрения - тоже фасеточные - на ногах, крыльях и усиках. "С их помощью насекомые также могли воспринимать свет, - отмечает Вальтер Геринг, - ведь нервные окончания тянулись от дополнительных органов зрения к соответствующему участку головного мозга".

Позднее тот же генетик сумел вырастить на голове лягушки дополнительные глаза, манипулируя геном Pax-6, взятым у дрозофилы. Его коллеги обнаружили тот же самый ген у лягушек, крыс, перепелов, кур и морских ежей. Исследование гена Pax-6 показывает, что все известные нам типы органов зрения могли возникнуть благодаря генетическим мутациям одного и того же "первоглаза".

Впрочем, есть и другие мнения. Ведь, например, у медуз нет гена Pax-6, хотя органы зрения есть. Возможно, этот ген лишь на каком-то этапе эволюции стал управлять развитием зрительного аппарата.

Вот что говорит по этому поводу Д. Э. Нильсон:

У простейших организмов ген Pax-6 отвечает за формирование передней части тела, а поскольку она лучше всего приспособлена для размещения здесь органов чувств, этот ген позднее стал отвечать и за развитие органов зрения.


Орган зрения — один из ᴦлавных органов чувств, он играет значительную роль в процессе восприятия окружающей среды. В многообразной деятельности человека, в исполнении многих самых тонких работ органу зрения принадлежит первостепенное значение. Достигнув совершенства у человека, орган зрения улавливает световой поток, направляет его на специальные светочувствительные клетки, воспринимает черно-белое и цветное изображение, видит предмет в объеме и на различном расстоянии.
Орган зрения расположен в глазнице и состоит из глаза и вспомогательного аппарата (рис. 144).

Рис. 144. Строение глаза (схема):
1 — склера; 2 — сосудистая оболочка; 3 — сетчатка; 4 — центральная ямка; 5 — слепое пятно; 6 — зрительный нерв; 7— конъюнктива; 8— цилиар-ная связка; 9—роговица; 10—зрачок; 11, 18— оптическая ось; 12 — передняя камера; 13 — хруϲталик; 14 — радужка; 15 — задняя камера; 16 — ресничная мышца; 17— стекловидное тело

Глаз (oculus) состоит из глазного яблока и зрительного нерва с его оболочками. Глазное яблоко имеет округлую форму, передний и задний полюсы. Первый соответствует наиболее выступающей части наружной фиброзной оболочки (роговицы), а второй — наиболее выступающей части, которая находится латеральное выхода зрительного нерва из глазного яблока. Линия, соединяющая эти точки, называется наружной осью глазного яблока, а линия, соединяющая точку на внутренней поверхности роговицы с точкой на сетчатке, получила название внутренней оси глазного яблока. Изменения соотношений этих линий вызывают нарушения фокусировки изображения предметов на сетчатке, появление близорукости (миопия) или дальнозоркости (гиперметропия).
Глазное яблоко состоит из фиброзной и сосудистой оболочек, сетчатки и ядра глаза (водянистая влага передней и задней камер, хрусталик, стекловидное тело).
Фиброзная оболочка — наружная плотная оболочка, которая выполняет защитную и светопроводящую функции. Передняя ее часть называется роговицей, задняя — склерой. Роговица — это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы — 12 мм, толщина — около 1 мм.
Склера состоит из плотной волокнистой соединительной ткани, толщиной около 1 мм. На границе с роговицей в толще склеры находится узкий канал — венозный синус склеры. К склере прикрепляются глазодвигательные мышцы.
Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственной сосудистой оболочки, ресничного тела и радужки. Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры, срастается рыхло с наружной оболочкой; между ними находится околососудистое пространство в виде узкой щели.
Ресничное тело напоминает среднеутолщенный отдел сосудистой оболочки, который лежит между собственной сосудистой оболочкой и радужкой. Основу ресничного тела составляет рыхлая соединительная ткань, богатая сосудами и гладкими мышечными клетками. Передний отдел имеет около 70 радиально расположенных ресничных отростков, которые составляют ресничный венец. К последнему прикрепляются радиально расположенные волокна ресничного пояса, которые затем идут к передней и задней поверхности капсулы хрусталика. Задний отдел ресничного тела — ресничный кружок — напоминает утолщенные циркулярные полоски, которые переходят в сосудистую оболочку. Ресничная мышца состоит из сложнопереплетенных пучков гладких мышечных клеток. При их сокращении происходят изменение кривизны хруϲталика и приспособление к четкому видению предмета (аккомодация).
Радужка — самая передняя часть сосудистой оболочки, имеет форму диска с отверстием (зрачком) в центре. Она состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно.
В радужке различают переднюю поверхность, которая формирует заднюю стенку передней камеры глаза, и зрачковый край, который офаничивает отверстие зрачка. Задняя поверхность радужки составляет переднюю поверхность задней камеры глаза, ресничный край соединяется с ресничным телом и склерой при помощи гребенчатой связки. Мышечные волокна радужки, сокращаясь или расслабляясь, уменьшают или увеличивают диаметр зрачков.
Внутренняя (чувствительная) оболочка глазного яблока — сетчатка — плотно прилегает к сосудистой. Сетчатка имеет большую заднюю зрительную часть и меньшую переднюю «слепую» часть, которая объединяет ресничную и радужковую части сетчатки. Зрительная часть состоит из внутренней пигментной и внутренней нервной частей. Последняя имеет до 10 слоев нервных клеток. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выполняют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.
На заднем отделе сетчатки находится ᴍеϲто выхода зрительного нерва — диск зрительного нерва, а латеральное от него располагается желтоватое пятно. Здесь находится наибольшее количество колбочек; это ᴍеϲто является ᴍеϲтом наибольшего видения.
В ядро глаза входят передняя и задняя камеры, заполненные водянистой влагой, хруϲталик и стекловидное тело. Передняя камера глаза — это пространство между роговицей спереди и передней поверхностью радужки сзади. ᴍеϲто по окружности, где находится край роговицы и радужки, ограничено гребенчатой связкой. Между пучками этой связки расположено пространство радужно-роговичного узла (фонтановы пространства). Через эти пространства водянистая влага из передней камеры оттекает в венозный синус склеры (шлеммов канал), а затем поступает в передние ресничные вены. Через отверстие зрачка передняя камера соединяется с задней камерой глазного яблока. Задняя камера в свою очередь соединяется с пространствами между волокнами хрусталика и ресничным телом. По периферии хруϲталика лежит пространство в виде пояска (петитов канал), заполненное водянистой влагой.
Хрусталик — это двояковыпуклая линза, которая расположена сзади камер глаза и обладает светопреломляющей способностью. В нем различают переднюю и заднюю поверхности и экватор. Вещество хрусталика бесцветное, прозрачное, плотное, не имеет сосудов и нервов. Внутренняя его часть — ядро — намного плотнее периферической части. Снаружи хруϲталик покрыт тонкой прозрачной эластичной капсулой, к которой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хруϲталика и его преломляющая способность.
Стекловидное тело — это желеобразная прозрачная масса, которая не имеет сосудов и нервов и покрыта мембраной. Расположено оно в стекловидной камере глазного яблока, сзади хруϲталика и плотно прилегает к сетчатке. Сбоку хрусталика в стекловидном теле находится углубление, называемое стекловидной ямкой. Преломляющая способность стекловидного тела близка к таковой водянистой влаги, которая заполняет камеры глаза. Кроме того, стекловидное тело выполняет опорную и защитную функции.
Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока (рис. 145), фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока.


Рис. 145. Мышцы глазного яблока:
А — вид с латеральной стороны: 1 — верхняя прямая мышца; 2 — мышца, поднимающая верхнее веко; 3 — нижняя косая мышца; 4 — нижняя прямая мышца; 5 — латеральная прямая мышца; Б — вид сверху: 1 — блок; 2 — влагалище сухожилия верхней косой мышцы; 3 — верхняя косая мышца; 4— медиальная прямая мышца; 5 — нижняя прямая мышца; 6 — верхняя прямая мышца; 7 — латеральная прямая мышца; 8 — мышца, поднимающая верхнее веко

Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза относятся к поперечнополосатым мышцам и сокращаются произвольно.
Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы, которая в области зрительного канала и верхней глазничной щели срастается с твердой оболочкой головного мозга. Глазное яблоко покрыто оболочкой (или теноновой капсулой), которая рыхло соединяется со склерой и образует эписклеральное пространство. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.
Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании — полностью его закрывают. Веки имеют переднюю и заднюю поверхность и свободные края. Последние, соединившись спайками, образуют медиальный и латеральные углы глаза. В медиальном углу находятся слезное озеро и слезное мясцо. На свободном крае верхнего и нижнего век около медиального угла видно небольшое возвышение — слезный сосочек с отверстием на верхушке, которая является началом слезного канальца.
Пространство между краями век называется глазной щелью. Вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей, а с внутренней стороны — конъюнктивой века, которая затем переходит в конъюнктиву глазного яблока. Углубление, которое образуется при переходе конъюнктивы век на глазное яблоко, называется конъюнктивальным мешком. Веки, кроме защитной функции, уменьшают или перекрывают доступ светового потока.
На границе лба и верхнего века находится бровь, представляющая собой валик, покрытый волосами и выполняющий защитную функцию.
Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей. Слезная железа находится в одноименной ямке в латеральном углу, у верхней стенки глазницы и покрыта тонкой соединительно-тканной капсулой. Выводные протоки (их около 15) слезной железы открываются в конъюнктивальный мешок. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом ᴍеϲте берут начало слезные канальцы, которые открываются в слезный мешок. Последний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жидкость попадает в полость носа.
Проводящие пути зрительного анализатора (рис. 146). Свет, который попадает на сетчатку, проходит вначале через прозрачный светопреломляющий аппарат глаза: роговицу, водянистую влагу передней и задней камер, хрусталик и стекловидное тело. Пучок света на своем пути регулируется зрачком. Светопреломляющий аппарат направляет пучок света на более чувствительную часть сетчатки — ᴍеϲто наилучшего видения — пятно с его центральной ямкой. Пройдя через все слои сетчатки, свет вызывает там сложные фотохимические преобразования зрительных пигментов. В результате этого в светочувствительных клетках (палочках и колбочках) возникает нервный импульс, который затем передается следующим нейронам сетчатки — биполярным клеткам (нейроцитам), а после них — нейроцитам ганглиозного слоя, ганглиозным нейроцитам. Отростки последних идут в сторону диска и формируют зрительный нерв. Пройдя в череп через канал зрительного нерва по нижней поверхности головного мозга, зрительный нерв образует неполный зрительный перекрест. От зрительного перекреста начинается зрительный тракт, который состоит из нервных волокон ганглиозных клеток сетчатки глазного яблока. Затем волокна по зрительному тракту идут к подкорковым зрительным центрам: латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В латеральном коленчатом теле волокна третьего нейрона (ганглиозных нейроцитов) зрительного пути заканчиваются и вступают в контакт с клетками следующего нейрона. Аксоны этих нейроцитов проходят через внутреннюю капсулу и достигают клеток затылочной доли около шпорной борозды, где и заканчиваются (корковый конец зрительного анализатора). Часть аксонов ганглиозных клеток проходит через коленчатое тело и в составе ручки поступает в верхний холмик. Далее из серого слоя верхнего холмика импульсы идут в ядро глазодвигательного нерва и в дополнительное ядро, откуда происходит иннервация глазодвигательных мышц, мышц, которые суживают зрачки, и ресничной мышцы. Эти волокна несут импульс в ответ на световое раздражение и зрачки суживаются (зрачковый рефлекс), также происходит поворот в необходимом направлении глазных яблок.

Рис. 146. Схема строения зрительного анализатора:
1 — сетчатка; 2— неперекрещенные волокна зрительного нерва; 3 — перекрещенные волокна зрительного нерва; 4— зрительный тракт; 5— корковый анализатор

Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул — хромолипо-протеинов. В качестве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Последние всегда находятся в форме 11-цисретиналя и в норме связываются с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин, который через ряд промежуточных стадий вновь подвергается расщеплению на ретиналь и опсин. При этом молекула теряет цвет и этот процесс называют выцветанием. Схема превращения молекулы родопсина представляется следующим образом.


Процесс зрительного возбуждения возникает в период между образованием люми- и метародопсина II. После прекращения воздействия света родопсин тотчас же ресᴎнтезируется. Вначале полностью при участии фермента рети-нальизомеразы транс-ретиналь превращается в 11-цисретиналь, а затем последний соединяется с опсином, вновь образуя родопсин. Этот процесс беспрерывный и лежит в основе темновой адаптации. В полной темноте необходимо около 30 мин, чтобы все палочки адаптировались и глаза приобрели максимальную чувствительность. Формирование изображения в глазу происходит при участии оптических систем (роговицы и хруϲталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика.

При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассᴍатриваемый предмет.
Преломляющую силу оптической системы глаза выражают в диоптриях («Д» — дптр). За 1 Д принимается сила линзы, фокусное расстояние которой составляет 1 м. Преломляющая сила глаза человека составляет 59 дптр при рассмотрении далеких предметов и 70,5 дптр при рассмотрении близких.
Существуют три ᴦлавные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия; старческая дальнозоркость, или пресбиопия (рис. 147). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости (миопии) лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вᴍеϲто точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вогнутые линзы с отрицательными диоптриями.



Рис. 147. Ход лучей света в нормальном глазу (А), при близорукости
(Б1 и Б2), при дальнозоркости (В1 и В2) и при астигматизме (Г1 и Г2):
Б2, В2 — двояковогнутая и двояковыпуклая линзы для исправления дефектов близорукости и дальнозоркости; Г2 — цилиндрическая линза для коррекции астигматизма; 1 — зона четкого видения; 2 — зона размытого изображения; 3 — корректирующие линзы

При дальнозоркости (гиперметропии) глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями.
Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хруϲталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока.

Исправлять это нарушение рефракции можно с помощью двояковыпуклых линз. Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.
Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 мин, или 1 единице.
Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.
Поле зрения — это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.
Цветоощущение — способность глаза различать цвета. Благодаря этой зрительной функции человек способен воспринимать около 180 цветовых оттенков. Цветовое зрение имеет большое практическое значение в ряде профессий, особенно в искусстве. Как и острота зрения, цветоощущение является функцией колбочкового аппарата сетчатки. Нарушения цветового зрения могут быть врожденными и передаваться по наследству и приобретенными.
Нарушение цветового восприятия носит название дальтонизма и определяется с помощью псевдоизохроматических таблиц, в которых представлена совокупность цветных точек, образующих какой-либо знак. Человек с нормальным зрением легко различает контуры знака, а дальтоник нет.

Глазная сетчатка - внутренний участок зрительных органов, состоящий из большого количества слоев. Прилегая к оболочке, состоящей из сосудов, она располагается вплоть до зрачка. Сетчатку составляют две её части, наружная и внутренняя. В наружном отделе сетчатки находится пигмент, а во внутреннем располагаются светочувствительные компоненты. Давайте ответим на вопрос, сетчатка глаза, что это такое? Также подробнее рассмотрим строение сетчатки глаза человека.

Если человек ощущает ухудшение зрения, исчезает способность отличать цвета - необходимо комплексное исследование на остроту зрения, и в большинстве случаев, проблемы вызваны патологическими изменениями глазной сетчатки.

Сетчатка - самая внутренняя из трех оболочек глазного яблока, прилегающая к сосудистой оболочке

Ретина (сетчатка) – лишь один из многих слоев глазного яблока. Помимо нее существуют следующие слои сетчатки глаза:

  1. Роговица – прозрачная оболочка, расположенная в передней части глазного яблока, содержащая сосуды. Находится на своеобразной границе со склерой.
  2. Передняя камера - расположена посередине роговицы и радужной областью глаза.
  3. Радужная область – здесь расположен просвет для зрачка. Радужка полностью состоит из мышечных тканей, благодаря сокращениям которых изменяется размер зрачка. Именно благодаря этому слою, зрительные органы, способны распознавать цвета. На цвет радужной области оказывает влияние количество пигмента. Так, у обладателей карего цвета глаз, пигмента наблюдается больше, чем у обладателей зеленых или голубых.
  4. Зрачок – проем в радужной области, через который свет, распределяется по внутренней части глазного яблока.
  5. Хрусталик – своеобразная природная оптическая линза. Являясь довольно эластичной, легко изменяет форму. Хрусталик отвечает за фокусировку зрения, благодаря чему человек может различать предметы, находящиеся на различном расстоянии от себя.
  6. Стекловидное тело – имеет гелеобразное состояние. Значение данного слоя заключается в поддержке сферичной формы глазного яблока, а также участие в обмене веществ, органов зрения.
  7. Ретина – слой глазного яблока, отвечающий за зрение.
  8. Склера – внешний слой, переходящий в роговицу.
  9. Зрительный нерв – один из главных слоев зрительных органов. Несет ответственность за трансляцию сигнала от глаз в определенные мозговые участки. Клетки зрительного нерва образованы одним из отделов сетчатой оболочки, и являются прямым продолжением ретины.

Окончательное формирование сетчатки завершается к 5 годам жизни ребенка.

Как становится видно из этого списка, структура строения глазного яблока чрезвычайна сложна. Однако строение и функции сетчатки глаза человека еще более многообразны. Каждый элемент ретины, тесно связан между собой, и повреждение любого из этих слоев приводит к непредсказуемым последствиям. В сетчатке расположена нейронная цепь, отвечающая за зрительное восприятие. Данная оболочка содержит в себе биполярные нейроны, фоторецепторы и ганглионарные клетки.

Устройство и функционирование сетчатки глаза

  1. Мембрана Бруха и пигментный эпителий – носители сразу несколько функций, являясь своеобразным барьером для проникновения излучения света. Также обладают транспортными и трофическими функциями.
  2. Слой, состоящий из фотосенсоров . Здесь располагаются специальные рецепторы, содержащие в себе зрительный пигмент. Несут ответственность за поглощение световых волн, обладающих определенной длиной. Фоторецепторы образуются из соединения палочек и колбочек.
  3. Ядерный слой . Подразделяется на внутренний и внешний. Во внешнем слое расположены ядра фоторецепторов, а во внутреннем, огромное количество различных клеток, несущих ответственность за обработку сигналов, исходящих из внешнего слоя.
  4. Сетчатый слой. Также имеет два подразделения. Внутренний слой содержит в себе нервные окончания ретины. Наружный слой является образованием межклеточного контакта фоторецепторов, биполярных клеток и нейронов.
  5. Нервные волокна – аксоны ганглиозных клеток, транспортирующие информацию зрительному нерву. Ганглиозные клетки, получившие импульс, исходящий из фоторецепторов через сеть биполярных нейронов, преобразуют его и доставляют к зрительному нерву.
  6. Пограничная мембрана. Внешняя часть являет собой образование терминальных пластин и плоских адгезионных контактов фоторецепторов. Именно здесь расположена внешняя часть отростков клеток мюллера. Мюллеровские клетки – ответственны за сбор и проводку света от поверхности ретины к фоторецепторам. Внутренняя часть мембраны – своеобразный барьер для отделения ретины от стекловидного тела.
  7. Слои ретины – одна из самых сложных систем зрительных органов. Каждый из этих слоев играет значимую роль, и его повреждение может вызвать катастрофические патологии.

Сетчатка — светочувствительная часть глаза, состоящая из фоторецепторов

Развитие ретины

Сетчатка формируется на самом раннем этапе развития эмбриона. Пигментный эпителий берет свое начало из наружного листа глазного бокала. А часть ретины, состоящая из нейросенсоров, становится производной внутреннего листа. Примерно на пятой неделе, клетки способны принять определенную форму и начинают образовывать единый слой, в котором синтезируется первый пигмент. В это же время формируются базальная пластина и элементы мембраны Бруха. В течение периода с пятой по шестую неделю появляются хориокапилляры, около которых возникает базальная мембрана.

Функционирование ретины

До того как ответить на вопрос, что такое сетчатка глаза, нужно понять, каким функционалом она наделена. Ретина – чувствительная область зрительного органа, отвечающая за восприятие цветов, сумеречное зрение и остроту. Помимо этого, внутренние оболочки сетчатки, отвечают за обмен питательных веществ всего глазного яблока.

В ретине расположены палочки и колбочки, отвечающие за центральное и периферическое зрение. Свет, попадающий в глаза, с помощью них, преобразуются в электрический импульс. Благодаря центральному зрению человек способен различать предметы, находящиеся в том или ином отдалении с определенной четкостью. Периферическое зрение обеспечивает возможность ориентирования в пространстве. Помимо этого, в ретине находится слой, отвечающий за восприятие световых волн, имеющих разную длину. Так, человеческий глаз получает возможность различать цвета и оттенки. Когда эти функции нарушены, необходимо комплексное тестирование качества зрения. Как только зрение начало ухудшаться, появились мушки, искры или пелена, следует, немедленно обратится за квалифицированной помощью. Правильная анатомия сетчатки глаза – играет ключевую роль в этом вопросе. Необходимо помнить, что спасти зрение можно только при своевременном вмешательстве в ходе заболевания.

Ретина — сетчатая оболочка глаза, играющая важную роль в зрительных процессах и восприятии цветового спектра. Ретина образована из множества слоев, обладающих определенным функционалом. Основная симптоматика, связанная с заболеваниями сетчатки, это ухудшение зрительных процессов. Выявить недуг, способен специалист, проводя плановый осмотр.


Высокоорганизованные клетки сетчатки образуют 10 ретинальных слоев

Построение изображения на глазной сетчатке

Строение глазного яблока – весьма своеобразно и имеет сложную структуру. Глаза – зрительный орган, отвечающий за световосприятие. При помощи фоторецепторов воспринимаются световые лучи, имеющие определенную длину волны. Диапазон волны, имеющий длину 400-800 нм, оказывает определенное влияние, вслед за которым, берет свое начало формирование определенных импульсов, и их отправка в специальные части мозга. Именно так и обретают свою форму зрительные образы. Сетчатка выполняет функцию, благодаря которой, человек способен определить формы и размеры окружающих предметов, их величину и расстояние от объекта до глазного яблока.

Заболевания органов зрения

Функция сетчатки глаза – сложно построенный механизм, и результат его сбоя может привести к печальным последствиям. Так, вследствие нарушения одного из слоев зрительного аппарата, человек может ощутить не только дискомфорт в области глаз, но и полностью ослепнуть. Очень важно, при обнаружении первых признаков расстройства органов зрения, вовремя обратиться за квалифицированной помощью.

Разновидностей заболеваний довольно много, они включают в себя отслоения ретины, дистрофию мышечных тканей, различные опухоли и разрывы. Причиной возникновения могут послужить травмы, инфекции и хронические заболевания. В группу риска входят люди, имеющие такие диагнозы, как врожденная близорукость, сахарный диабет и гипертония. Людям пожилого возраста и беременным женщинам, также рекомендуется посещение офтальмолога. Помните, что многие глазные заболевания ничем не выдают себя на начальных этапах.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека