Цвета шума и их влияние на человека. Все разновидности шума в звукодизайне: от белого до черного…

Звуковые волны имеют разную природу, а следствием их хаотичного колебания является шум.

Мы всегда сталкиваемся с шумами в повседневной жизни, будь это звуки авто, дождя, метро, моря, ветра. Существует разнообразное множество видов шумов. Их различают даже по цвету.

Шум белого цвета – это «ежедневный шум». Сюда входят:

  • шум моря;
  • звучание дождя;
  • ночные шорохи;
  • журчанье реки;
  • шум автомагистрали;
  • гул поездов.

Он не является негативным для человека, но непрерывное влияние звуков разной частоты может послужить причиной к повышению или понижению давления, боли в области головы. Для отдельных людей белый шум является неотъемлемым условием крепкого сна. Большинство не способно окунуться в ночные сны, в случае если отсутствует известное «ш-ш-ш» на фоне. Отчего замещение ежедневных звуков так пленительно влияет на людей? Бывает ли других цветов шум?

Мысль о смене одного шума другим, может показаться, на первый взгляд, нелепой. Есть ли в этом толк? «Я не могу уснуть из-за мешающих звуков, включу-ка я посторонние шумы». Удивительно. И тем не менее большинство людей заверяют, что не готовы полноценно засыпать без описываемого шума. А некоторые компании готовы предложить вам купить приспособление, воссоздающее приспособленные шумы для крепкого сна. Что происходит с нашим телом в эти моменты?

Суть краткого ответа состоит в следующем: шум белого цвета является комфортным для отдельных индивидов.

А сейчас развернутый ответ. Шум белого цвета является стационарным звуком. Он состоит из многоспектральных элементов. Они одинаково размещены по целому спектру вовлеченных частот.

Что-нибудь ясно? Давайте представим концерт с большим числом музыкантов. Любой из них играет по ноте. Подобный ансамбль воспроизводит в одно и то же время многочисленные звуки, которые доступны нашему уху. Это представляет собой шум белого цвета.

Бывает так, что вы пробуждаетесь от шума, его вины здесь нет. Вас будит появившаяся несогласованность и модификация звукового тона. Шум белого цвета блокирует аналогичные острые перемены, словно защищает вас от внезапных или неприятных звуков.

«Самый элементарный вариант состоит в том, что наш слух всегда находится в рабочем состоянии, даже во время сна», - поясняет Сэт Горовиц, автор книг. Потому и многие люди выбирают слушать шум белого цвета, создаваемый любым механизмом, а не интенсивный, а затем спадающий храп мужа.

Это действительно похоже на истину. Если вдруг вам не по душе конкретно шум белого цвета, то попытайтесь слушать звуки прочих тонов.

В прикладных областях шум розового цвета известен как фликкер-шум. Звучание пролетающего вертолета – это яркий пример шума такого типа. Он обладает прекрасным лечебным эффектом при депрессиях и неврозах. Недавние исследования выявили, что если фильмы построены на закономерностях розового шума, то они являются более притягательными для кинозрителей, так как отвечают рисунку разделения внимания людей.

Анализ, который провел профессор Jue Zhang из Университета Пекина, выявил, что шум наиболее привлекательным наименованием «розовые шумы» может помочь окунуться в сон намного стремительнее.

Розовые шумы - это вид звука, в котором все октавы обладают равной мощью, или полностью согласованными частотами. Вообразите себе звук дождя, падающего на асфальт или ветра, который шелестит листву деревьев.

Шумы других цветов

  • Коричневый шум похож на звучание водопада. Знаменит он тем, что вступая в резонанс с органами человека, коричневый шум создает нарушение деятельности ЖКТ. При ярко выраженной насыщенности шум может причинить вред людям.
  • Шум синего цвета согласно звуковым чувствам наиболее резкий, чем шум белого цвета. Данный вид образуется вследствие изменений розового шума.
  • В мире не существует не только шума синего, но и фиолетового цвета. Возникает он благодаря спектральному анализу шумов коричневого и белого цвета.
  • Уникальность шума серого цвета состоит в том, что в целом диапазоне частот он содержит идентичную громкость для ушей людей. Спектр шума серого цвета возникает при сочетании шумов коричневого и белого цвета. Человек расценивает его аналогично белому.
  • Апельсиновый или шум оранжевого цвета обладает весьма трудным изложением с научной точки зрения. Но произвести его достаточно легко – вручите детям пластиковые сопрано-дудки и позвольте им погреметь.
  • Шум красного цвета присущ для водных ресурсов. Такого рода звук мы слышим от отдаленных объектов, которые есть в океане с берега.
  • Шумом природный среды является зеленый шум.
  • Черный шум – это то, чего иногда нам не хватает в городской суете: черный шум – это тишина.

Бесспорно, далеко не все в восторге от шума такого типа. Отдельные люди, напротив, становятся восприимчивее к фоновым звучаниям. Вероятно, кто-то из нас воспринимает бесконечный шум, как умиротворяющий поток, а кто-то выхватывает из него резкие отдельные ноты.

Влияние звуков на людей зависит от:

  • степени шума;
  • его характеристик и диапазона;
  • периода воздействия;
  • резонансных явлений.
  • состояния самочувствия;
  • личных особенностей людей и приспособленности организма.

Негативное воздействие шума проявляется во влиянии на эмоциональную установку, мотивацию, инициативу, бывает, но обычно никак не выражается в ухудшении работы, но тем не менее причиняет неудобство людям.

Могут быть неприятными шипение, колеблющийся шум, грохот и скрип; они уменьшают способность быстро и четко осуществлять координированные движения.

Мощный шум вызывает проблемы в распознавании цвета, способности определить время и расстояние, уменьшает качество зрения, изменяет визуальное восприятие.

В период с 18-45 мы способны с меньшими проблемами выдержать мощные шумы, чем более молодые или, наоборот, пожилые люди. Женщины намного лучше мужчин переносят шумы. Если вы обладаете повышенным давлением, то мощный шум будете переносить тяжелее, чем люди, у которых оно в норме. С другой стороны, в обычном жизненном пространстве люди не воспринимают обычные шумы. Без звуков человек существовать не может.

Если вокруг человека слишком тихо и спокойно, то это негативно воздействует на эмоциональный фон, ведь такого рода тишина непривычна для любого из нас.

2017, . Все права защищены.

ПРОСТО ПРОФЕССИОНАЛИЗМ

Цвета шума

Цвета шума - система терминов, приписывающая некоторым видам шумовых сигналов определённые цвета исходя из аналогии между спектром сигнала произвольной природы (точнее, его спектральной плотностью или, говоря математически, параметрами распределения случайного процесса) и спектрами различных цветов видимого света.

Эта абстракция широко используется в отраслях техники, имеющих дело с шумом (акустика, электроника, физика и т. д.).


Белый шум - это сигнал с равномерной спектральной плотностью на всех частотах и дисперсией, равной бесконечности. Является стационарным случайным процессом.

Другими словами, такой сигнал имеет одинаковую мощность в любой полосе частот. К примеру полоса сигнала в 20 герц между 40 и 60 герц имеет такую же мощность, что и полоса между 4000 и 4020 герц. Неограниченный по частоте белый шум возможен только в теории, так как в этом случае его мощность бесконечна. На практике сигнал может быть белым шумом только в ограниченной полосе частот.


Розовый шум

Спектральная плотность розового шума определяется формулой ~1 / f (плотность обратно пропорциональна частоте). Равномерно в любых частотах. Например, мощность сигнала в полосе частот между 40 и 60 герц равна мощности в полосе между 4000 и 6000 герц. Спектральная плотность такого сигнала по сравнению с белым шумом затухает на 3 децибела на каждую октаву.

Пример розового шума - звук пролетающего вертолёта. Розовый шум обнаруживается, например, в сердечных ритмах, в графиках электрической активности мозга, в электромагнитном излучении космических тел.
Иногда розовым шумом называют любой шум, спектральная плотность которого уменьшается с увеличением частоты.

Синий (голубой) шум

Синий шум - вид сигнала, чья спектральная плотность увеличивается на 3 дБ на октаву. То есть его спектральная плотность пропорциональна частоте и, аналогично белому шуму, на практике он должен быть ограничен по частоте. На слух синий шум воспринимается более резким, нежели белый. Синий шум получается, если продифференцировать розовый шум; их спектры зеркальны.

Броуновский (красный) шум

Спектральная плотность красного шума пропорциональна 1/f², где f - частота. Это означает, что на низких частотах шум имеет больше энергии, даже больше, чем розовый шум. Энергия шума падает на 6 децибел на октаву. Акустический красный шум слышится как приглушённый, в сравнении с белым или розовым шумом. Спектр красного шума (в логарифмической шкале) зеркально противоположен спектру фиолетового.
На слух броуновский шум воспринимается более «тёплым», чем белый.


Фиолетовый шум

Это вид сигнала, чья спектральная плотность увеличивается на 6 дБ на октаву. То есть его спектральная плотность пропорциональная квадрату частоты и, аналогично белому шуму, на практике он должен быть органичен по частоте. Фиолетовый шум получается, если продифференцировать белый шум. Спектр фиолетового шума зеркально противоположен спектру красного.


Серый шум

Термин серый шум относится к шумовому сигналу, который имеет одинаковую громкость для человеческого уха на всём диапазоне частот. Спектр серого шума получается, если сложить спектры броуновского и фиолетового шумов. В спектре серого шума виден большой «провал» на средних частотах, однако человеческое ухо воспринимает серый шум точно так же, как и белый.


Существуют и другие, «менее официальные» цвета:


Оранжевый шум - шум с конечной спектральной плотностью. Спектр такого шума имеет полоски нулевой энергии, рассеянные по всему спектру. Эти полоски располагаются на частотах музыкальных нот.

Красный шум - может быть как синонимом броуновского или розового шума, так и обозначением естественного шума, характерного для больших водоёмов - морей и океанов, поглощающих высокие частоты. Красный шум слышен с берега от отдалённых объектов, находящихся в океане.

Зелёный шум - шум естественной среды. Подобен розовому шуму с усиленной областью частот в районе 500 Гц.

Чёрный шум
Термин «чёрный шум» имеет несколько определений:

-Тишина
Шум со спектром 1/f, где > 2. Используется для моделирования различных природных процессов. Считается характеристикой "природных и искусственных катастроф, таких как наводнения, обвалы и т. п."

-Ультразвуковой белый шум (с частотой более 20 кГц), аналогичный т. н. «черному свету» (с частотами слишком высокими, чтобы его можно было воспринимать, но способному воздействовать на наблюдателя или приборы). Шум, спектр которого имеет преимущественно нулевую энергию за исключением нескольких пиков.

Шум - беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры.

  • Первоначально слово шум относилось исключительно к звуковым колебаниям, однако в современной науке оно было распространено и на другие виды колебаний (радио-, электричество).

    Классификация шумов

    Шум - совокупность апериодических звуков различной интенсивности и частоты. С физиологической точки зрения шум - это всякий неблагоприятный воспринимаемый звук.

    По спектру

    Шумы подразделяются на стационарные и нестационарные.

    По характеру спектра

    По характеру спектра шумы подразделяют на:

  • широкополосный шум с непрерывным спектром шириной более 1 октавы;
  • тональный шум, в спектре которого имеются выраженные тона. Выраженным тон считается, если одна из третьоктавных полос частот превышает остальные не менее, чем на 7 дБ.

По частоте (Гц)

По частотной характеристике шумы подразделяются на:

  • низкочастотный (<400 Гц)
  • среднечастотный (400-1000 Гц)
  • высокочастотный (>1000 Гц)

По временны́м характеристикам

  • постоянный;
  • непостоянный, который в свою очередь делится на колеблющийся, прерывистый и импульсный.

По природе возникновения

  • Механический
  • Аэродинамический
  • Гидравлический
  • Электромагнитный

    Измерение шумов

    Для количественной оценки шума используют усредненные параметры, определяемыми на основании статистических законов. Для измерения характеристик шума применяются шумомеры, частотные анализаторы, коррелометры и др.

    Уровень шума чаще всего измеряют в децибелах.

    Сила звука в децибелах

  • Разговор: 40-45
  • Офис: 50-60
  • Улица: 70-80
  • Фабрика (тяжелая промышленность): 70-110
  • Цепная пила: 100
  • Старт реактивного самолёта: 120
  • Вувузела: 130

Источники шума

Источниками акустического шума могут служить любые колебания в твёрдых, жидких и газообразных средах; в технике основные источники шума - различные двигатели и механизмы. Общепринятой является следующая классификация шумов по источнику возникновения: - механические; - гидравлические; - аэродинамические; - электрические.

Повышенная шумность машин и механизмов часто является признаком наличия в них неисправностей или нерациональности конструкций. Источниками шума на производстве является транспорт, технологическое оборудование, системы вентиляции, пневмо- и гидроагрегаты, а также источники, вызывающие вибрацию.

Неакустические шумы

Радиоэлектронные шумы - случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

Воздействие шума на человека

Шум звукового диапазона приводит к снижению внимания и увеличению ошибок при выполнении различных видов работ. Шум замедляет реакцию человека на поступающие от технических устройств сигналы. Шум угнетает центральную нервную систему (ЦНС), вызывает изменения скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, язвы желудка, гипертонической болезни. При воздействии шума высоких уровней (более 140 дБ) возможен разрыв барабанных перепонок, контузия, а при ещё более высоких (более 160 дБ) и смерть.

Гигиеническое нормирование шума

Для определения допустимого уровня шума на рабочих местах, в жилых помещениях, общественных зданиях и территории жилой застройки используется ГОСТ 12.1.003-83. ССБТ «Шум. Общие требования безопасности», СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Нормирование шума звукового диапазона осуществляется двумя методами: по предельному спектру уровня шума и по дБА. Первый метод устанавливает предельно допустимые уровни (ПДУ) в девяти октавных полосах со среднегеометрическими значениями частот 63, 125, 250, 500, 1000, 2000, 4000, 8000 ГЦ. Второй метод применяется для нормирования непостоянных шумов и в тех случаях, когда не известен спектр реального шума. Нормируемым показателем в этом случае является эквивалентный уровень звука широкополосного постоянного шума, оказывающий на человека такое же влияние, как и реальный непостоянный шум, измеряемый по шкале А шумомера.

Цвета шума

Цвета шума - система терминов, приписывающая некоторым видам шумовых сигналов определённые цвета исходя из аналогии между спектром сигнала произвольной природы (точнее, его спектральной плотностью или, говоря математически, параметрами распределения случайного процесса) и спектрами различных цветов видимого света. Эта абстракция широко используется в отраслях техники, имеющих дело с шумом (акустика, электроника, физика и т. д.).

Белый шум

Белый шум - стационарный шум, спектральные составляющие которого равномерно распределены по всему диапазону задействованных частот. Примерами белого шума являются шум близкого водопада(отдаленный шум водопада - розовый, так как высокочастотные составляющие звука затухают в воздухе сильнее низкочастотных), или шум Шоттки на клеммах большого сопротивления. Название получил от белого света, содержащего электромагнитные волны частот всего видимого диапазона электромагнитного излучения.

В природе и технике «чисто» белый шум (то есть белый шум, имеющий одинаковую спектральную мощность на всех частотах) не встречается (ввиду того, что такой сигнал имел бы бесконечную мощность), однако под категорию белых шумов попадают любые шумы, спектральная плотность которых одинакова (или слабо отличается) в рассматриваемом диапазоне частот.

Статистические свойства

Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию, математически описываемую дельта-функцией Дирака по всем измерениям многомерного пространства, в котором этот сигнал рассматривается. Сигналы, обладающие этим свойством, могут рассматриваться как белый шум. Данное статистическое свойство является основным для сигналов такого типа.

То, что белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области. Наборы, принимаемые сигналом, могут быть произвольными с точностью до главного статистического свойства (однако постоянная составляющая такого сигнала должна быть равна нулю). К примеру, двоичный сигнал, который может принимать только значения, равные нулю или единице, будет являться белым шумом только если последовательность нулей и единиц будет некоррелирована. Сигналы, имеющие непрерывное распределение (к примеру, нормальное распределение), также могут быть белым шумом.

Дискретный белый шум - это просто последовательность независимых (то есть статистически не связанных друг с другом) чисел.

Фликкер-шум, розовый шум

Фликкер-шум (фликкерный шум , 1/f шум , иногда розовый шум в узком прикладном понимании такого термина) - электронный шум, наблюдаемый практически в любых электронных устройствах; его источниками могут являться неоднородности в проводящей среде, генерация и рекомбинация носителей заряда в транзисторах и т. п. Обычно упоминается в связи с постоянным током.

Фликкерный шум имеет спектр розового шума, поэтому его иногда так и называют. Однако следует различать розовый шум, как математическую модель сигнала определённого вида, и фликкерный шум, как вполне определённое явление в электрических цепях.

В 1996 году в Институте теплофизики УрО РАН В. П. Ковердой и В. Н. Скоковым были экспериментально обнаружены интенсивные тепловые пульсации при переходе от пузырькового режима кипения жидкого азота к плёночному на тепловом участке высокотемпературного сверхпроводника. Спектр этих пульсаций соответствует фликкер-шуму

Красный шум

Красный шум (броуновский шум ) - шумовой сигнал, который производит броуновское движение. Из-за того, что по-английски он называется Brown (Brownian) noise , его название часто переводят на русский язык как коричневый шум .
Спектральная плотность красного шума пропорциональна 1/f², где f - частота. Это означает, что на низких частотах шум имеет больше энергии, даже больше, чем розовый шум. Энергия шума падает на 6 децибел на октаву. Акустический красный шум слышится как приглушённый, в сравнении с белым или розовым шумом

Синий (голубой) шум

Синий шум - вид сигнала, чья спектральная плотность увеличивается на 3 дБ на октаву. То есть его спектральная плотность увеличивается с ростом частоты, и, аналогично белому шуму, на практике он должен быть ограничен по частоте. На слух синий шум воспринимается более резким, нежели белый. Синий шум получается, если продифференцировать розовый шум; их спектры зеркальны.

Фиолетовый шум

Фиолетовый шум - вид сигнала, чья спектральная плотность увеличивается на 6 дБ на октаву. То есть его спектральная плотность пропорциональная квадрату частоты и, аналогично белому шуму, на практике он должен быть ограничен по частоте. Фиолетовый шум получается, если продифференцировать белый шум. Спектр фиолетового шума зеркально противоположен спектру красного.


Серый шум

Термин серый шум относится к шумовому сигналу, который имеет одинаковую субъективную громкость для человеческого слуха на всём диапазоне воспринимаемых частот. Спектр серого шума получается, если сложить спектры броуновского и фиолетового шумов. В спектре серого шума виден большой «провал» на средних частотах, однако человеческий слух субъективно воспринимает серый шум как равномерный по спектральной плотности (без преобладания каких-либо частот).




Американский глоссарий Федерального стандарта 1037C по телекоммуникациям даёт определения белому, розовому, синему и чёрному шуму

Оранжевый шум

Оранжевый шум - квазистационарный шум с конечной спектральной плотностью. Спектр такого шума имеет полоски нулевой энергии, рассеянные по всему спектру. Эти полоски располагаются на частотах музыкальных нот.

Красный шум

Красный шум - может быть как синонимом броуновского или розового шума, так и обозначением естественного шума, характерного для больших водоёмов - морей и океанов, поглощающих высокие частоты. Красный шум слышен с берега от отдалённых объектов, находящихся в океане.

Зелёный шум

Зелёный шум - шум естественной среды. Подобен розовому шуму с усиленной областью частот в районе 500 Гц

Чёрный шум

Термин «чёрный шум» имеет несколько определений:

  • Тишина
  • Шум со спектром 1/f β , где β > 2 (Manfred Schroeder, «Fractals, chaos, power laws »). Используется для моделирования различных природных процессов. Считается характеристикой "природных и искусственных катастроф, таких как наводнения, обвалы рынка и т. п. "
  • Ультразвуковой белый шум (с частотой более 20 кГц), аналогичный т. н. «черному свету» (с частотами слишком высокими, чтобы его можно было воспринимать, но способному воздействовать на наблюдателя или приборы).
  • Шум, спектр которого имеет преимущественно нулевую энергию за исключением нескольких пиков

Ученые определили, какие фильмы больше остальных притягивают внимание зрителей. Оказалось, что в основе наиболее увлекательных фильмов лежит так называемый розовый шум. Работа исследователей принята к печати в журнал Psychological Science. Коротко о ней пишет New Scientist.

За отправную точку своей работы ученые взяли исследование, проведенное в 90-х годах прошлого века. Группа специалистов наблюдала за зрителями, которые смотрели кино. Оказалось, что временные отрезки, в течение которых их внимание было занято фильмом, распределялись весьма характерным образом. Исследователи применили к распределению математическую операцию, известную как преобразования Фурье, и получили розовый шум. Этим термином обозначают шум, спектральная плотность которого обратно пропорциональна его частоте. Послушать розовый шум можно .

Авторы нового исследования решили проверить, имеет ли распределение длительности фрагментов от одной монтажной склейки до другой характеристики розового шума. Ученые проанализировали 150 наиболее кассовых голливудских фильмов, снятых в период с 1935 по 2005 годы. Оказалось, что при монтаже фильмов последних лет чаще используются закономерности розового шума.

По мнению исследователей, фильмы, построенные на закономерностях розового шума, популярны по той причине, что они соответствуют рисунку распределения внимания людей. Авторы полагают, что производители фильмов используют розовый шум ненамеренно, - просто они повторяют принципы построения популярных фильмов, в которых был найден успешный прием.

_________________________________________________________________

Информационная справка

До сих пор мы говорили о признаках когнитивного порядка, сигнатурах , которые можно наблюдать, если изучаемое явление представлено дискретно, как множество элементов-экземпляров. Если какие-то индивидуальные параметры этих элементов соответствуют степенной статистике, и особенно закону Зипфа , мы можем предполагать, что для этого явления когнитивный порядок является значимой упорядочивающей силой, во всяком случае, в некоторых его аспектах. В наших примерах такими множествами выступали города России с их населением, слова русского языка с их частотностью, озёра России с их площадью.

Однако, не всегда возможно представить изучаемое явление дискретно, как множественную структуру, состоящую из отдельных элементов. Иногда структура изучаемого явления слабо различима, так что оно не представляется как множество, в других случаях мы просто не можем получить статистическую сводную информацию по индивидуальным параметрам элементов явления. В такой ситуации мы должны опираться на целостные наблюдаемые характеристики явления, в числе которых особую роль играют шумы .

Шумами мы называем любое нерегулярное изменение одного из целостных параметров наблюдаемого явления. Например, для горящего костра такими нерегулярно изменяющимися параметрами являются интенсивность звука и интенсивность излучения (вероятно, есть и другие) - при этом мы не различаем, какая часть костра производит звук или излучение, мы берём его как целое. Но примеров шумов различной природы можно привести сколько угодно: интенсивность потока автомобилей на автотрассе, биржевые котировки, уровень грунтовых вод, электрическая активность клеток, сила тока в проводнике, тектоническая активность и.т.д. В каждом из этих примеров мы имеем дело с измеримой величиной, которая подвержена флуктуациям.

Во многих случаях флуктуации являются периодическими, например, периодически изменяется расстояние Солнца от Земли, периодически меняется уровень приливов, положение маятника и т.д. Однако, периодическая динамика обычно появляется в очень простых системах, управляемых физическим порядком. Мы же сосредоточимся на сложных системах и явлениях, в которых флуктуации параметров обычно являются иррегулярными, не-периодическими. Напомню, именно в сложных системах возникают "тепличные" условия для действия когнитивного порядка.

Итак, шум – не-периодическое, иррегулярное изменение параметра явления любого рода. При этом особый интерес для нас представляют шумы целостных параметров (шумы, которые производятся явлением как целостностью), потому что они позволяют услышать "суть явления", даже если оно не поддаётся нормальному структурному анализу. В частности, параметры шумов позволяют определить, какой порядок управляет явлением - физический или когнитивный.

Классическим и хорошо разработанным методом анализа шумов является спектральный анализ. Упрощённо, этот метод основан на преобразовании Фурье, которое представляет изменяющуюся в течение выделенного промежутка времени величину S(t) как сумму гармоник кратной частоты:

Пусть, например, мы исследуем шумовой сигнал длительностью 1 сек. Его можно представить как сумму периодических (гармонических) сигналов с частотами 1, 2, 3, 4, 5 ... герц. Каждый из членов этой суммы имеет вид косинусоиды и является частотным компонентом исходного сигнала. При этом, в зависимости от сигнала, вклад различных компонентов будет разным, что отражается в разных коэффициентах A1 , A2 , А3 ,...

Построив диаграмму, на которой по оси X мы откладываем частоту компонентов (это число совпадает с количеством раз, сколько соответствующая косинусоида укладывается в исходном промежутке длительностью в 1 сек.), а по оси Y - соответствующий коэффициент A , возведённый в квадрат, мы получим частотный спектр мощности исходного шумового сигнала, который наглядно отражает вклад каждой гармоники в мощность общего сигнала.

Если вы не слишком хорошо понимаете, о чём тут идёт речь, рекомендую сначала ознакомиться с очень простым введением в теорию периодических процессов и преобразований Фурье . Оно написано так, чтобы в этом разобрались даже люди гуманитарных специальностей. Если вы будете интуитивно понимать, что такое спектр мощности флуктуаций и шумов, это очень поможет в дальнейшем чтении Прологов.

Обратим внимание на связь между частотными компонентами ряда Фурье и гармоническим рядом. Если длительность исходного сигнала равна 1 сек, то первая гармоника имеет частоту 1 гц. и длительность 1 сек. Вторая гармоника имеет удвоенную частоту по сравнению с первой 2 гц. и период 1/2 сек. (то есть, в течение 1 сек. она совершает два полных колебания). Третья гармоника имеет частоту 3 гц. и период 1/3 сек. и т.д. Ряд периодов гармоник точно соответствует важному для нас гармоническому ряду:

Иррегулярные изменения параметров различных явлений чрезвычайно распространены и уже давно изучаются, в том числе и с помощью спектрального анализа. Выяснилось, что с точки зрения спектра наибольшее распространение имеют три типа шумов. Оказалось также, что спектры этих шумов соответствуют степенным функциям. Эти шумы получили цветовые обозначения: белый шум , коричневый шум и розовый шум . Далее мы поговорим о каждом из них.

Белый шум

Белый шум - это шум, частотные компоненты которого имеют примерно одинаковую мощность во всех диапазонах частот . Благодаря этому свойству он и получил своё обозначение: считается, что белый солнечный свет представляет собой равномерную смесь электромагнитных колебаний различных частот. По аналогии, белым шумом стали именовать любые сигналы, обладающие характерным плоским спектром. Например, вот типичный образец белого шума и соответствующий ему спектр мощности:

Как мы видим, в спектре не наблюдается каких-то систематичных отклонений от горизонтальной плоской линии. А усредняя спектры большого числа образцов белого шума или усредняя по соседним частотам, мы бы получили плоскую горизонтальную линию.

В природе этот тип шумов чаще всего наблюдается в связи с тепловыми флуктуациями, например, такой спектр имеют тепловые шумы в полупроводниках - если включить на полную громкость какой-нибудь электронный усилитель, то мы услышим мягкое шипение - это и есть тепловой белый шум.

Белый шум знаменателен тем, что имеется очень простой числовой способ его генерации. Возьмём какой-нибудь числовой диапазон и будем совершенно случайно выбирать из него числа. Составив результаты в один ряд, мы получим последовательность чисел, имеющую спектр белого шума. Это приводит к естественному объяснению белого шума как результата совершенно случайных процессов. Например, так можно объяснить тепловые шумы в полупроводниках.

Коричневый шум

Спектр коричневого шума соответствует степенной функции с показателем -2 . Своё название этот шум получил по фамилии Brown, которую носил первооткрыватель "броуновского" движения. Разглядывая под микроскопом пыльцу растений в воде, он обнаружил, что частицы хаотически движутся, а не остаются неподвижными. Это было объяснено случайными ударами молекул воды, налетающих на частицы пыльцы. В результате частицы медленно хаотически дрейфовали, блуждали. Идею случайного блуждания хорошо иллюстрирует сам внешний вид коричневого сигнала:

Однако, построив этот же спектр в двойных логарифмических координатах, мы вполне проясняем соответствие спектра степенной функции:

Несмотря на случайные отклонения, спектр очевидно укладывается на прямую линию, соответствующую показателю степени -2. Усредняя по многим образцам шума или сглаживая по соседним точкам, мы получим практически прямую линию.

Коричневый шум получается числовым методом настолько же простым, как и в случае белого шума - и он демонстрирует их глубокую родственность. Чтобы получить коричневый шум, на каждом шаге следует не просто брать случайные числа в качестве следующего значения сигнала, а прибавлять случайное значение к предыдущему значению сигнала. Например, если на предыдущем шаге сигнал имел значение 100, и у нас выпало случайное число -7, то следующее значение сигнала будет равно 93.

Говоря иначе, в белом шуме случайной величиной является каждое следующее значение сигнала, а в коричневом случайной величиной является изменение сигнала (поэтому говорят, что белый шум - это дифференциал, производная коричневого шума).

Характерный блуждающий вид коричневого шума демонстрирует его важное отличие от белого: белый шум представляет собой флуктуации, которые лежат в определенной полосе, за пределы которой они практически не выходят. Напротив, коричневый шум, если есть достаточно времени, гарантировано покинет любую, даже очень большую полосу значений:

В связи с этим принято говорить, что белый шум - стационарный , а коричневый - нестационарный . (Обратим внимание, как это напоминает понятие сходящихся и расходящихся числовых рядов).

Коричневый шум широко распространён в явлениях различной природы. Он возникает повсюду, где имеется случайный прирост каких-либо параметров. Например, в броуновском движении микрочастиц таким параметром является координата частиц. Коричневому спектру хорошо соответствует нормальное движение биржевых котировок, которое также состоит из приростов стоимости акций, близких к случайным. Вообще, там, где мы имеем величину, которая по каким-то причинам не склонна меняться мгновенно, а только относительно небольшими приростами, мы встречаем флуктуации, обладающие спектром коричневого шума. Естественно, что физическая реальность, в которой множество таких инерционных величин (координаты тел, их импульсы и т.д.), даёт массу примеров коричневого шума.

Если белый шум на слух похож на шум сыплющегося песка или шум в электронном усилителе, то коричневый шум, из-за огромного превосходства низких частот, похож на шум в цехе машиностроительного завода, который наполнен громким и "тяжёлым" гулом огромных агрегатов.

Розовый шум

Розовым шумом или фликкер-шумом называют шум, спектр мощности которого соответствует степенной функции с показателем -1 . Формально, по промежуточному показателю степени (у коричневого он равен -2, у белого - 0), розовый шум находится ровно посредине между коричневым и белым шумом. Это же иллюстрирует и типичный вид розового шума:

Шум не такой "плоский" как белый, но и не так сильно бродит, как коричневый.

Своё название розовый шум получил благодаря аналогии с цветовым спектром электромагнитных волн. Белый свет имеет равномерный плоский спектр и если усилить мощность низкочастотных компонентов - а они отвечают за красную область цветового спектра - то белый свет превратится в красноватый, розовый. Спектр розового шума этим и отличается: более мощными в нём являются низкие частоты. (но нужно помнить, что если мы взглянем на спектр не в логарифмических, а в обычных координатах, мы увидим, что в действительности самые низкочастотные компоненты многократно мощнее прочих. По аналогии, это соответствует ситуации, когда излучение красного цвета многократно сильнее других, перебивает их, так что точнее розовый шум следовало бы называть красным ).

Розовый шум наблюдается в самых разных явлениях. Впервые на него обратили внимание в физике полупроводников, во флуктуациях тока через полупроводники, когда было обнаружено, что кроме обычного теплового шума, в них присутствует шум, имеющий степенной спектр с показателем около -1. Особенно он становится заметен на низких частотах, в которых этот шум имеет максимум мощности. В физике этот шум называют "мерцающим шумом", фликкер-шумом и его происхождение до сих пор остается загадкой. Он обладает воистину странными свойствами. Например, оказалось, что даже в полупроводниках, полностью изолированных от внешнего мира, от перепадов температуры и т.д., происходят медленные флуктуации тока длительностью в недели и даже месяцы, имеющие розовый спектр. С позиций нынешней физики это не поддается удовлетворительному объяснению, поскольку считается, что полупроводниках не могут происходить какие-то обратимые процессы, имеющие такой масштаб времени. Проблема стала ещё серьёзнее, когда было обнаружено, что фликкер-шум присутствует не только в полупроводниках, а практически в любых проводящих средах. Это поставило крест на объяснениях (впрочем, довольно сложных), которые основывались на уникальных свойствах полупроводников, таких как наличие плоскостей контакта между областями различной проводимости и т.д.

Проблему фликкер-шума усугубляет то обстоятельство, что до сих пор не было достаточно простой и прозрачной числовой модели, которая могла бы порождать розовый шум. А если мы не понимаем в принципе, как можно создать розовый шум, то нам сложно объяснить, как он возникает в природных явлениях.

Тем не менее, загадка фликкер-шума осталась бы узкоспециализированной темой, если бы шумы с таким спектром не были бы обнаружены в множестве других явлений самой разной природы. Мы не станем тут их перечислять - на тему розового шума уже написано немало - а лишь приведём пару важных для нас примеров. Во-первых, розовым спектром обладают звуки человеческой речи, а также большинства музыкальных произведений разных стилей и народов. Во-вторых, розовым спектром обладают флуктуации электропотенциалов отдельных нейронов мозга, а также в целом, такой спектр имеют электроэнцефалограммы мозга здоровых людей.

На слух розовый шум не такой "плоский" и "скучный", как белый шум, но и не такой угнетающе "тяжёлый", как коричневый. Ближе всего он, пожалуй, похож на звук водопада, когда мы находимся неподалёку от него.

Розовый шум иногда обозначают как "шум 1/f ", потому что уравнение спектра мощности для розового шума соответствует степенной функции:

где W(f) - мощность гармоники, имеющей частоту f , W(1) - мощность первой гармоники, а f - частота. Естественно, что мы можем по аналогии обозначать коричневый шум как "шум 1/f²", потому что уравнение его спектра:

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека