Механизм действия гормонов. Классификации гормонов

В управлении метаболизмом гормоны участвуют следующим образом. Поток информации о состоянии внутренней среды организма и об изменениях, связанных с внешними воздействиями поступает в нервную систему, там перерабатывается и формируется ответный сигнал. Он поступает к органам–эффекторам в виде нервных импульсов по цетробежным нервам и опосредованно через эндокринную систему.

Пунктом, где сливаются потоки нервной и эндокринной информации является гипоталамус – сюда поступают нервные импульсы из разных отделов головного мозга. Они определяют продукцию и секрецию гипоталамических гормонов, влияющих в свою очередь через гипофиз на продукцию гормонов периферическими эндокринными железами. Гормоны периферических желез, в частности мозгового вещества надпочечников, контролируют секрецию гипоталамических. В конечном счете, содержание гормона в кровотоке поддерживается по принципу саморегуляции. Высокий уровень гормона выключает или ослабляет по механизму отрицательной обратной связи его образование, низкий уровень усиливает продукцию.

Гормоны действуют на ткани избирательно, что обусловлено неодинаковой чувствительностью к ним тканей. Органы и клетки, наиболее чувствительные к влиянию определенного гормона, принято называть мишенью гормона (орган-мишень или клетка-мишень).

Концепция ткани- мишени. Ткань-мишень – это такая ткань, в которой гормон вызывает специфическую физиологическую (биохимическую) реакцию Общую реакцию ткани- мишени на действие гормона определяет целый ряд факторов. Прежде всего это локальная концентрация гормона вблизи ткани-мишени, зависящая от:

1. скорости синтеза и секреции гормона;

2. анатомической близости ткани-мишени к источнику гормона;

3. констант связывания гормона со специфическим белком-переносчиком (если такой существует);

4. скорости превращения неактивной или малоактивной формы гормона в активную;

5. скорости исчезновения гормона из крови в результате распада или выведения.

Собственно тканевой ответ определяется:

Относительной активностью и (или) степенью занятости специфических рецепторов

Состоянием сенситизации - десентизации клетки.

Специфичность гормонов по отношению к клеткам-мишеням обусловлена нరличием у клеток специфических р䐵цепторов .

Все рецепторы гормонов можно разделить на 2 䑂ипа:

1) локализованныеࠠна наружной поверхности клеточной мембраны;

2) расположенные в цитоплазме клетки.

Свойства рецепторов:

Четкая субстратная специфичность;

Насыщаемость;

Сродство к гормону в пределе биологических концентраций гормона;

Обратимость действия.

В зависимости от того, где в клетке происходит передача информации, можно выделить следующие варианты действия гормонов :

1) Мембранный (локальный).

2) Мембранно-внутриклеточный или опосредованный.

3) Цитоплазматический (прямой).

Мембранный тип действия реализуется в месте связывания гормона с плазматической мембраной и заключается в избирательном изменении ее проницаемости. По механизму действия гормон в данном случае выступает как аллостерический эффектор транспортных систем мембраны. Так, например, обеспечивается трансмембранный перенос глюкозы под действием инсулина, аминокислот и некоторых ионов. Обычно мембранный тип действия сочетается с мембранно-внутриклеточным.

Мембранно-внутриклеточное действие гормонов характеризуется тем, что гормон не проникает в клетку, а влияет на обмен в ней через посредник, который является как бы представителем гормона в клетке – вторичным посредником (первичный посредник – сам гормон). По типу вторичных посредником действуют циклические нуклеотиды (цАМФ, цГМФ) и ионы кальция.


Регуляция – сложный комплексный механизм, реагирующий на различного рода воздействия изменением обмена веществ и поддерживающий постоянство внутренней среды.

Регуляция через цАМФ или цГМФ . В цитоплазматическую мембрану клетки встроен фермент аденилатциклаза, состоящий из 3-х частей – узнающей (набор рецепторов, располагающихсяна поверхности мембраны), сопрягающей (N-белок, занимающий в липидном бислое мембраны промежуточное положение между рецептором и каталитической частью) и каталитический (собственно ферментный белок, активный центр которого обращен внутрь клетки). В каталитическом белке имеются раздельные участки для связывания цАМФ и цГМФ.

Передача информации, источником которой является гормон, происходит следующим образом:

Гормон связывается с рецептором;

Комплекс гормон-рецептор взаимодействует с N-белком, изменяя его конфигурацию;

Изменение конфигурации приводит к превращению ГДФ (присутствующим в неактивном белке) в ГТФ;

Комплекс белок-ГТФ активирует собственно аденилатциклазу;

Активная аденилатциклаза нарабатывает цАМФ внутри клетки (АТФ ¾® цАМФ + H 4 P 2 O 7)

Аденилатциклаза работает до тех пор, пока сохраняется комплекс гормон-рецептор, поэтому одна молекула комплекса успевает образовывать от 10 до 100 молекул цАМФ.

Синтез цГМФ запускается таким же путем, с той лишь разницей, что комплекс гормон-рецептор активирует гуанилатциклазу, продуцирующую цГМФ из ГТФ.

Циклические нуклеотиды активируют протеинкиназы (цАМФ-зависимые или цГМФ-зависимые);

Активированные протеинкиназы фосфорилируют за счет АТФ разные белки;

Фосфорилирование сопровождается изменением функциональной активности (активацией или угнетением) этих белков.

Циклические нуклеотиды (цАМФ и цГМФ) действуют на разные белки, поэтому эффект зависит от мембранного рецептора, связывающего гормон. Характер рецептора определяет, будет буде изменена активность цАМФ- или цГМФ-зависимых белков-ферментов. Нередко эти нуклеотиды оказывают противоположные эффекты. Поэтому биохимические процессы в клетке под влиянием одного гормона могут активироваться или угнетаться в зависимости от того, какими рецепторами располагает клетка. Например, адреналин может связываться b- и a-рецепторами. Первые включают аденилатциклазу и образование цАМФ, вторые – гуанилатциклазу и образование ц ГМФ. Циклические нуклеотиды активируют разные белки, поэтому характер метаболических изменений в клетке зависит не от гормона, а от рецепторов, которыми располагает клетка.

Влияние циклических нуклеотидов на метаболизм прекращается с помощью ферментов фосфодиэстераз.

Таким образом, процесс управляемый через аденилатциклазную систему, зависит от соотношения между скоростью продукции цАМФ или цГМФ и скоростью их распада.

Механизм действия гормонов, включающий аденилатциклазную систему, присущ гормонам белковой и полипептидной природы, а также катехоламинам (адреналину, норадреналину).

Цитоплазматический механизм действия присущ гормонам стероидной природы.

Рецепторы стероидных гормонов расположены в цитоплазме клетки. Эти гормоны (обладающие липофильными свойствами), проникая в клетку, взаимодействуют с рецепторами с образованием гормон-рецепторного комплекса, который после молекулярной перестройки, приводящей к его активации, поступает в ядро клетки, где взаимодействует с хроматином. При этом происходит активация генов и в последующем развивается цепь процессов, сопровождающихся усиленным синтезом РНК, в том числе информационных. Это приводит к индукции соответствующих ферментов в ходе процесса трансляции, что влечет за собой изменение скорости и направленности метаболических процессов в клетке.

Таким образом, в этом случае гормональный эффект реализуется на уровне генетического аппарата клетки-мишени.

Биологические эффекты гормонов, воздействующих на генетический аппарат клетки, проявляются главным образом во влиянии на рост и дифференцировку тканей и органов.

Смешанный тип передачи информации свойственен иодтиронинам (гормонам щитовидной железы), которые по липофильным свойствам занимают промежуточное положение между водорастворимыми и липофильными (стероидными) гормонами. Эта группа гормонов реализует свой эффект и мембранно-внутриклеточным и цитозольным механизмами.

Первоначально термином “гормон” обозначали химические вещества, которые секретируются железами внутренней секреции в лимфатические или кровеносные сосуды, циркулируют в крови и оказывают действие на различные органы и ткани, находящиеся на значительном расстоянии от места их образования. Оказалось, однако, что некоторые из этих веществ (например, норадреналин), циркулируя в крови как гормоны, выполняют функцию нейропередатчика (нейротрансмиттера), тогда как другие (соматостатин) являются и гормонами, и нейропередатчиками. Кроме того, отдельные химические вещества секретируются эндокринными железами или клетками в виде прогормонов и только на периферии превращаются в биологически активные гормоны (тестостерон, тироксин, ангиотензиноген и др.).

Гормоны, в широком смысле слова, являются биологически активными веществами и носителями специфической информации, с помощью которой осуществляется связь между различными клетками и тканями, что необходимо для регуляции многочисленных функций организма. Информация, содержащаяся в гормонах, достигает своего адресата благодаря наличию рецепторов, которые переводят ее в пострецепторное действие (влияние), сопровождающееся определенным биологическим эффектом.

В настоящее время различают следующие варианты действия гормонов:

1) гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;

2) изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;

3) нейрокринное, или нейроэндокринное (синаптическое и несинаптическое), действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;

4) паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;

5) юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;

6) аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;

7) солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Синтез белковых гормонов, как и других белков, находится под генетическим контролем, и типичные клетки млекопитающих экспрессируют гены, которые кодируют от 5000 до 10 000 различных белков, а некоторые высокодифференцированные клетки – до 50 000 белков. Любой синтез белка начинается с транспозиции сегментов ДНК, затем транскрипции, посттранскрипционного процессинга, трансляции, посттрансляционного процессинга и модификации. Многие полипептидные гормоны синтезируются в форме больших предшественников-прогормонов (проинсулин, проглюкагон, проопиомеланокортин и др.). Конверсия прогормонов в гормоны осуществляется в аппарате Гольджи.

По химической природе гормоны делятся на белковые, стероидные (или липидные) и производные аминокислот.

Белковые гормоны подразделяют на пептидные: АКТГ, соматотропный (СТГ), меланоцитостимулирующий (МСГ), пролактин, паратгормон, кальцитонин, инсулин, глюкагон, и протеидные – глюкопротеиды: тиротропный (ТТГ), фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ), тироглобулин. Гипофизотропные гормоны и гормоны желудочно-кишечного тракта принадлежат к олигопептидам, или малым пептидам. К стероидным (липидным) гормонам относятся кортикостерон, кортизол, альдостерон, прогестерон, эстрадиол, эстриол, тестостерон, которые секретируются корой надпочечника и половыми железами. К этой группе можно отнести и стеролы витамина D – кальцитриол. Производные арахидоновой кислоты являются, как уже указывалось, простагландинами и относятся к группе эйкозаноидов. Адреналин и норадреналин, синтезируемые в мозговом слое надпочечника и других хромаффинных клетках, а также тироидные гормоны являются производными аминокислоты тирозина. Белковые гормоны гидрофильны и могут переноситься кровью как в свободном, так и в частично связанном с белками крови состоянии. Стероидные и тироидные гормоны липофильны (гидрофобны), отличаются небольшой растворимостью, основное их количество циркулирует в крови в связанном с белками состоянии.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными.

Белковые гормоны, факторы роста, нейротрансмиттеры, катехоламины и простагландины относятся к группе гормонов, для которых рецепторы расположены на плазматических мембранах клеток. Плазматические рецепторы в зависимости от структуры подразделяются на:

1) рецепторы, трансмембранный сегмент которых состоит из семи фрагментов (петель);

2) рецепторы, трансмембранный сегмент которых состоит из одного фрагмента (петли или цепи);

3) рецепторы, трансмембранный сегмент которых состоит из четырех фрагментов (петель).

К гормонам, рецептор которых состоит из семи трансмембранных фрагментов, относятся: АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, простагландины, гастрин, холецистокинин, нейропептид Y, нейромедин К, вазопрессин, адреналин (a-1 и 2, b-1 и 2), ацетилхолин (М1, М2, М3 и М4), серотонин (1А, 1В, 1С, 2), дофамин (Д1 и Д2), ангиотензин, вещество К, вещество Р, или нейрокинин 1, 2 и 3 типа, тромбин, интерлейкин-8, глюкагон, кальцитонин, секретин, соматолиберин, ВИП, гипофизарный аденилатциклазактивирующий пептид, глютамат (MG1 – MG7), аденин.

Ко второй группе относятся гормоны, имеющие один трансмембранный фрагмент: СТГ, пролактин, инсулин, соматомаммотропин, или плацентарный лактоген, ИФР-1, нервные факторы роста, или нейротрофины, фактор роста гепатоцитов, предсердный натрийуретический пептид типа А, В и С, онкостатин, эритропоэтин, цилиарный нейротрофический фактор, лейкемический ингибиторный фактор, фактор некроза опухолей (р75 и р55), нервный фактор роста, интерфероны (a, b и g), эпидермальный фактор роста, нейродифференцирующий фактор, факторы роста фибробластов, факторы роста тромбоцитов А и В, макрофагный колониестимулирующий фактор, активин, ингибин, интерлейкины-2, 3, 4, 5, 6 и 7, гранулоцито-макрофагный колониестимулирующий фактор, гранулоцитный колониестимулирующий фактор, липопротеин низкой плотности, трансферрин, ИФР-2, урокиназный плазминогенный активатор.

К гормонам третьей группы, рецептор которых имеет четыре трансмембранных фрагмента, относятся ацетилхолин (никотиновые мышечные и нервные), серотонин, глицин, g-аминомасляная кислота.

Мембранные рецепторы являются интегральными компонентами плазматических мембран. Связь гормона с соответствующим рецептором характеризуется высокой аффинностью, т.е. высокой степенью сродства рецептора к данному гормону.

Биологический эффект гормонов, взаимодействующих с рецепторами, локализованными на плазматической мембране, осуществляется с участием “вторичного мессенджера”, или передатчика.

В зависимости от того, какое вещество выполняет его функцию, гормоны можно разделить на следующие группы:

1) гормоны, оказывающие биологический эффект с участием циклического аденозинмонофосфата (цАМФ);

2) гормоны, осуществляющие свое действие с участием циклического гуанидинмонофосфата (цГМФ);

3) гормоны, опосредующие свое действие с участием в качестве внутриклеточного вторичного мессенджера ионизированного кальция или фосфатидилинозитидов (инозитолтрифосфат и диацилглицерин) или обоих соединений;

4) гормоны, оказывающие свое действие путем стимулирования каскада киназ и фосфатаз.

Механизмы, участвующие в образовании вторичных мессенджеров, оперируют через активирование аденилатциклазы, гуанилатциклазы, фосфолипазы С, фосфолипазы А2, тирозинкиназ, Са2+- каналов и др.

Кортиколиберин, соматолиберин, ВИП, глюкагон, вазопрессин, ЛГ, ФСГ, ТТГ, хорионический гонадотропин, АКТГ, паратгормон, простагландины типа Е, D и I, b-адренергические катехоламины оказывают гормональное действие через активирование рецептора посредством стимуляции системы аденилатциклаза – цАМФ. В то же время другая группа гормонов, таких, как соматостатин, ангиотензин II, ацетилхолин (мускариновый эффект), дофамин, опиоиды и a2-адренергические катехоламины, угнетают систему аденилатциклаза – цАМФ.

В образовании вторичных мессенджеров для таких гормонов, как гонадолиберин, тиролиберин, дофамин, тромбоксаны А2, эндоперекиси, лейкотриены, агниотензин II, эндотелин, паратгормон, нейропептид Y, a1-адренергические катехоламины, ацетилхолин, брадикинин, вазопрессин, участвуют система фосфолипаза С, инозитол трифосфат, Са2+-зависимая протеинкиназа С. Инсулин, макрофагный колониестимулирующий фактор, тромбоцитарный производный фактор роста опосредуют свое действие через тирозинкиназу, а предсердный натрийуретический гормон, гистамин, ацетилхолин, брадикинин, эндотелийпроизводный фактор или оксид азота, который в свою очередь участвует в опосредовании вазодилататорного действия брадикинина, и ацетилхолин – через гуанилатциклазу. Следует отметить, что разделение гормонов по принципу активирующих систем или того или иного вторичного мессенджера условно, так как многие гормоны после взаимодействия с рецептором активируют одновременно несколько вторичных мессенджеров.

Большинство гормонов, взаимодействующих с плазматическими рецепторами, имеющих 7 трансмембранных фрагментов, активируют вторичные мессенджеры через связывание с гуанилатнуклеотидными белками или G-белками или регуляторными белками (Г-белки), которые являются гетеротримерными белками, состоящими из a-, b-, g-субъединиц. Идентифицировано более 16 генов, кодирующих a-субъединицу, несколько генов для b- и g-субъединиц. Различные виды a-субъединиц оказывают неидентичные эффекты. Так, a-s-субъединица ингибирует аденилатциклазу и Са2+-каналы, a-q-субъединица – фосфолипазу С, a-i-субъединица ингибирует аденилатциклазу и Са2+- каналы и стимулирует фосфолипазу С, К+-каналы и фосфодиэстеразу; b-субъединица стимулирует фосфолипазу С, аденилатциклазу и Са2+-каналы, а g-субъединица стимулирует К+-каналы, фосфодиэстеразу и угнетает аденилатциклазу. Точная функция других субъединиц регуляторных белков пока не установлена.

Гормоны, комплексирующие с рецептором, имеющим один трансмембранный фрагмент, активируют внутриклеточные ферменты (тирозинкиназу, гуанилатциклазу, серин-треонин киназу, тирозинфосфатазу). Гормоны, рецепторы которых имеют 4 трансмембранных фрагмента, осуществляют передачу гормонального сигнала через ионные каналы.

Исследованиями последних лет показано, что вторичные мессенджеры представляют собой не какое-то одно из перечисленных соединений, а многоступенчатую (каскадную) систему, конечным субстратом (веществом) которой могут быть одно или несколько биологически активных соединений. Так, гормоны, взаимодействующие с рецепторами, имеющими 7 трансмембранных фрагментов и активирующие Г-белок, затем стимулируют аденилатциклазу, фосфолипазу или оба фермента, что ведет к образованию нескольких вторичных мессенджеров: цАМФ, инозитол трифосфата и диацилглицерина. К настоящему времени эта группа представлена наибольшим количеством (более 100) рецепторов, к которым относятся пептидергические, дофаминергические, адренергические, холинергические, серотонинергические и другие рецепторы. В этих рецепторах 3 внеклеточных фрагмента (петли) ответственны за распознавание и связывание гормона, 3 внутриклеточных фрагмента (петли) связывают Г-белок. Трансмембранные (внутримембранные) домены гидрофобны, а вне- и внутриклеточные фрагменты (петли) – гидрофильны. С-терминальный цитоплазматический конец рецепторной полипептидной цепи содержит участки, где под влиянием активированных Г-белков происходит фосфорилирование, характеризующее активное состояние рецептора с одновременным образованием вторичных мессенджеров: цАМФ, инозитол трифосфата и диацилглицерина.

Взаимодействие гормона с рецептором, имеющим один трансмембранный фрагмент, приводит к активированию ферментов (тирозинкиназы, фосфаттирозинфосфатазы и др.), осуществляющих фосфорилирование тирозиновых остатков на белковых молекулах.

Комплексирование гормона с рецептором, относящимся к третьей группе и имеющим 4 трансмембранных фрагмента, приводит к активированию ионных каналов и вхождение ионов, что в свою очередь или стимулирует (активирует) серин-треониновые киназы, опосредующие фосфорилирование определенных участков белка, или приводит к деполяризации мембраны. Передача сигнала любым из перечисленных механизмов сопровождается эффектами, характерными для действия отдельных гормонов.

История изучения вторичных мессенджеров начинается с исследований Сатерленда и др. (1959), которые показали, что распад гликогена печени под влиянием глюкагона и адреналина происходит посредством стимулирующего влияния этих гормонов на активность фермента клеточной мембраны аденилатциклазы, которая катализирует превращение внутриклеточного аденозинтрифосфата (АТФ) в цАМФ (схема 1).

Схема 1. Конверсия АТФ в цАМФ.

Собственно аденилатциклаза является гликопротеином с молекулярной массой около 150 000 кДа. Аденилатциклаза участвует с ионами Mg2+ в образовании цАМФ, концентрация которого в клетке составляет около 0,01-1 мкг моль/л, тогда как содержание АТФ в клетке достигает уровня до 1 мкг моль/л.

Образование цАМФ происходит с помощью аденилатциклазной системы, которая является одним из компонентов рецептора. Взаимодействие гормона с рецептором первой группы (рецепторы, имеющие 7 трансмембранных фрагментов) включает, по крайней мере, 3 следующих друг за другом этапа: 1) активирование рецептора, 2) передача гормонального сигнала и 3) клеточное действие.

Первый этап, или уровень, представляет собой взаимодействие гормона (лиганда) с рецептором, что осуществляется посредством ионных и водородных связей и гидрофобных соединений с вовлечением не менее 3 мембранных молекул Г-белка или регуляторного белка, состоящего из a-, b- и g-субъединиц. Это в свою очередь активирует мембраносвязанные ферменты (фосфолипазу С, аденилатциклазу) с последующим образованием 3 вторичных мессендежров: инозитол трифосфата, диацилглицерина и цАМФ.

Аденилатциклазная система рецептора состоит из 3 компонентов: собственно рецептора (стимуляторная и ингибиторная его части), регуляторного белка с его a-, b- и g-субъединицами и каталитической субъединицы (собственно аденилатциклазы), которые в обычном (т.е. нестимулированном) состоянии разобщены между собой (схема 2). Рецептор (обе его части – стимулирующая и ингибирующая) располагается на внешней, а регуляторная единица – на внутренней поверхности плазматической мембраны. Регуляторная единица, или Г-белок, в отсутствие гормона связана гуанозиндифосфатом (ГДФ). Комплексирование гормона с рецептором вызывает диссоциацию комплекса Г-белок – ГДФ и взаимодействие Г-белка, а именно его a-субъединицы с гуанозинтрифосфатом (ГТФ) и одновременное образование комплекса b/g-субъединицы, который способен вызывать определенные биологические эффекты. Комплекс ГТФ-a-субъединица, как уже отмечалось, активирует аденилатциклазу и последующее образование цАМФ. Последний активирует уже протеинкиназу А с соответствующим фосфорилированием различных белков, что проявляется также определенным биологическим действием. Кроме того, активированный комплекс ГТФ-a-субъединица в некоторых случаях регулирует стимуляцию фосфолипазы С, цГМФ, фосфодиэстеразы, Са2+- и К+-каналов и оказывает угнетающее влияние на Са2+-каналы и аденилатциклазу.

Схема 2. Механизм действия белковых гормонов путем активации цАМФ (объяснения в тексте).

Рс – рецептор, связывающий стимулирующий гормон,

Ст – стимулирующий гормон,

Ру – рецептор, связывающий угнетающий гормон,

Уг – угнетающий гормон,

Ац – аденилатциклаза,

Gy – гормонугнетающий белок,

Gc – гормонстимулирующий белок.

Роль гормона, таким образом, заключается в осуществлении замены комплекса Г-белок – ГДФ на комплекс Г-белок – ГТФ. Последний активирует каталитическую субъединицу, конвертируя ее в состояние, обладающее высокой аффинностью к комплексу АТФ-Mg2+, который быстро превращается в цАМФ. Одновременно с активацией аденилатциклазы и образованием цАМФ комплекс Г-белок – ГТФ вызывает диссоциацию гормонорецепторного комплекса путем снижения сродства рецептора к гормону.

Образовавшийся цАМФ активизирует в свою очередь цАМФ-зависимые протеинкиназы. Они представляют собой ферменты, осуществляющие фосфорилирование соответствующих белков, т.е. перенос фосфатной группы от АТФ к гидроксильной группе серина, треонина или тирозина, входящих в молекулу белка. Фосфорилированные таким образом белки непосредственно осуществляют биологический эффект гормона.

В настоящее время установлено, что регуляторные белки представлены более чем 50 различными белками, способными комплексироваться с ГТФ, которые подразделяются на Г-белки с небольшой молекулярной массой (20-25 кДа) и высокомолекулярные Г-белки, состоящие из 3 субъединиц (a – с мол. массой 39-46 кДа; b – 37 кДа и g-субъединица – 8 кДа). a-Субъединица является по сути ГТФазой, которая гидролизует ГТФ в ГДФ и свободный неорганический фосфат. b- и g-Субъединицы участвуют в образовании активного комплекса после взаимодействия лиганды с соответствующим рецептором. Высвобождая ГДФ в местах его связывания, a-субъединица вызывает диссоциацию и деактивацию активного комплекса, так как повторная ассоциация a-субъединицы – ГДФ с b- и g-субъединицами возвращает аденилатциклазную систему в исходное состояние. Установлено, что a-субъединица Г-белка в различных тканях представлена 8, b – 4 и g – 6 формами. Диссоциация субъединиц Г-белка в мембране клеток может приводить к одновременному образованию и взаимодействию различных сигналов, которые имеют на конце системы неодинаковые по силе и качеству биологические эффекты.

Собственно аденилатциклаза представляет собой гликопротеин с молекулярной массой 115 – 150 кДа. В различных тканях идентифицировано 6 ее изоформ, которые взаимодействуют с a-, b- и g-субъединицами, а также с Са2+ кальмодулином. В некоторых видах рецепторов помимо регуляторного стимулирующего (Гс) и регуляторного ингибирующего (Ги) белка идентифицирован дополнительный белок – трансдуцин.

Роль регуляторных белков в передаче гормонального сигнала велика, структуру этих белков сравнивают с “кассетой”, и многообразие ответа связано с высокой мобильностью регуляторного белка. Так, некоторые гормоны могут одновременно активировать в различной степени как Гс, так и Ги. Более того, взаимодействие некоторых гормонов с рецепторными регуляторными белками вызывает экспрессию соответствующих белков, регулирующих уровень и степень гормонального ответа. Активация, как показано выше, регуляторных белков является следствием их диссоциации от гормонально-рецепторного комплекса. В некоторых рецепторных системах в это взаимодействие вовлечено до 20 и более регуляторных белков, которые помимо стимуляции образования цАМФ активируют одновременно и кальциевые каналы.

Определенное количество рецепторов, которые относятся к первой группе, имеющих 7 трансмембранных фрагментов, опосредуют свое действие вторичными мессенджерами, относящимися к производным фосфатидилинозитола: инозитолтрифосфат и диацилглицерин. Инозитолтрифосфат контролирует клеточные процессы за счет генерации внутриклеточного кальция. Эта мессенджерная система может активироваться двумя путями, а именно через регуляторный белок или фосфотирозиновые белки. И в том, и в другом случае далее происходит активирование фосфолипазы С, которая гидролизует полифосфоинозидную систему. Эта система, как указано выше, включает два внутриклеточных вторичных мессенджера, которые образуются из мембранного полифосфоинозида, называемого фосфатидилинозитол-4, 5-бифосфатом (ФИФ2). Комплексирование гормона с рецептором вызывает гидролиз ФИФ2 фосфорилазой, в результате чего и образуются указанные мессенджеры – инозитол трифосфат (ИФ3) и диацилглицерин. ИФ3 способствует повышению уровня внутриклеточного кальция в первую очередь за счет мобилизации последнего из эндоплазматической сети, где он локализутся в так называемых кальциосомах, а затем за счет поступления в клетку внеклеточного кальция. Диацилглицерин в свою очередь активизирует специфические протеинкиназы и, в частности, протеинкиназу С. Последние фосфорилируют определенные ферменты, ответственные за конечный биологический эффект. Не исключено, что разрушение ФИФ2 наряду с выходом двух мессенджеров и увеличением содержания внутриклеточного кальция индуцирует и образование простагландинов, являющихся потенциальными стимуляторами цАМФ.

Посредством этой системы опосредуется действие таких гормонов, как гистамин, серотонин, простагландины, вазопрессин, холецистокинин, соматолиберин, тиролиберин, окситоцин, паратгормон, нейропептид Y, вещество Р, ангиотензин II, катехоламины, осуществляющие действие через a1-адренорецепторы, и др.

В группу фермента фосфолипазы С входят до 16 изоформ, которые в свою очередь подразделяются на b-, g- и d-фосфолипазу С. Показано, что b-фосфолипаза С взаимодействует с регуляторными белками, а g-фосфолипаза С – с тирозинкиназами.

Инозитолтрифосфат осуществляет действие через собственные специфические тетрамерные рецепторы, имеющие молекулярную массу 4х313 кДа. После комплексирования с таким рецептором выявлены так называемые “большие” инозитолтрифосфатные рецепторы или рианодиновые рецепторы, которые также относятся к тетрамерам и имеют молекулярную массу 4х565 кДа. Не исключено, что внутриклеточные кальциевые каналы рианодиновых рецепторов регулируются новым вторичным мессенджером – цАДФ-рибозой (L. Meszaros и соавт., 1993). Образование этого мессенджера опосредуется цГМФ и оксидом азота (NO), который активирует цитоплазматическую гуанилатциклазу. Таким образом, оксид азота может представлять собой один из элементов передачи гормонального действия с участием ионов кальция.

Как известно, кальций находится внутри клетки в связанном с белками состоянии и в свободной форме во внеклеточной жидкости. Идентифицированы такие внутриклеточные белки, связывающие кальций, как кальретикулин и кальсеквестрин. Внутриклеточный свободный кальций, который выполняет роль вторичного мессенджера, поступает из внеклеточной жидкости через кальциевые каналы плазматической мембраны клетки или высвобождается внутриклеточно из связи с белками. Внутриклеточный свободный кальций влияет на соответствующие киназы фосфорилаз лишь будучи связанным с внутриклеточным белком-кальмодулином (схема 3).

Схема 3. Механизм действия белковых гормонов через СА2+ (объяснения в тексте) Р – рецептор; Г – гормон; Са+белок – внутриклеточный кальций в связанной с белками форме.

Кальмодулин – рецепторный белок с высокой аффинностью к кальцию – состоит из 148 аминокислотных остатков и присутствует во всех содержащих ядро клетках. Его молекулярная масса (мол.м.) – 17000 кДа, каждая молекула имеет 4 рецептора для связывания кальция.

В состоянии функционального покоя концентрация свободного кальция во внеклеточной жидкости выше, чем внутри клетки, благодаря функционированию кальциевого насоса (АТФазы) и транспортировке кальция из клетки в межклеточную жидкость. В этот период кальмодулин находится в неактивной форме. Комплексирование гормона с рецептором приводит к повышению внутриклеточного уровня свободного кальция, который вступает в связь с кальмодулином, превращает его в активную форму и оказывает влияние на кальцийчувствительные белки или ферменты, ответственные за соответствующий биологический эффект гормона.

Повышенный уровень внутриклеточного кальция стимулирует затем кальциевый насос, который “перекачивает” свободный кальций в межклеточную жидкость, снижает его уровень в клетке, вследствие чего кальмодулин переходит в неактивную форму и в клетке восстанавливается состояние функционального покоя. Кальмодулин также воздействует на аденилатциклазу, гуанилатциклазу, фосфодиэстеразу, фосфорилазкиназу, миозинкиназу, фосфолипазу А2, Са2+- и Mg2+-АТФазу, стимулирует высвобождение нейротрансмиттеров, фосфорилирование белков мембран. Изменяя транспорт кальция, уровень и активность циклических нуклеотидов и опосредованно обмен гликогена, кальмодулин участвует в секреторных и других функциональных процессах, протекающих в клетке. Он является динамическим компонентом митотического аппарата, регулирует полимеризацию микротубулярно-ворсинчатой системы, синтез актомиозина и активацию мембран кальциевого “насоса”. Кальмодулин – аналог мышечного белка тропонина С, который путем связывания кальция образует комплекс актина и миозина, а также активирует миозин-АТФазу, необходимую для повторного взаимодействия актина и миозина.

Са2+-кальмодулиновый комплекс активирует Са2+-кальмодулинзависимую протеинкиназу, которая выполняет важную роль в передаче нервного сигнала (синтез и высвобождение нейротрансмиттеров), в стимуляции или угнетении фосфолипазы А2, активирует специфическую серин-треонинпротеиновую фосфатазу, называемую кальцинеурином, которая опосредует действие Т-клеточного рецептора в Т-лимфоцитах.

Кальмодулинзависимые протеинкиназы подразделяют на две группы: многофункциональные, которые хорошо охарактеризованы, и специфические, или “специального назначения”. К первой группе относятся такие, как протеинкиназа А, опосредующая фосфорилирование многих внутриклеточных белков. Протеинкиназы “специального назначения” фосфорилируют некоторые субстраты, такие, как киназа легкой цепи миозина, фосфорилазкиназа и др.

Протеинкиназа С представлена несколькими изоформами (мол.м. от 67 до 83 кДа), которые кодируются 10 различными генами. Классическая протеинкиназа С включает 4 различных изоформы (a-, b1-, b2- и g-изоформы); 4 других белковых изоформы (дельта,- эпсилон,- пи и oмега) и 2 атипичных белковых формы.

Классические протеинкиназы активируются кальцием и диацилглицерином, новые белковые протеинкиназы – диацилглицерином и форболовыми эфирами, а одна из атипичных протеинкиназ не отвечает ни на один из перечисленных активаторов, но для ее активности требуется наличие фосфатидилсерина.

Выше отмечалось, что гормоны, рецепторы которых имеют 7 трансмембранных фрагментов, после образования гормоно-рецепторного комплекса связываются с G-белками, имеющими небольшой молекулярный вес (20-25 кДа) и выполняющими различную функцию. Белки, взаимодействующие с рецепторной тирозинкиназой, называются ras-белками, а белки, участвующие в транспорте пузырька – rab-белками. Активированная форма представляет собой G-белок, комплексированный с ГТФ; неактивная форма ras-белка является следствием его комплексирования с ГДФ. В активировании ras-белка участвует гуаниннуклеотидный высвобождающий белок, а процесс инактивации осуществляется гидролизом ГТФ под влиянием ГТФазы. Активирование ras-белка в свою очередь посредством фосфолипазы С стимулирует образование вторичных мессенджеров: инозитолтрифосфата и диацилглицерина. Ras-белки впервые были описаны как онкогены (A.G. Gilman, 1987), так как повышенная экспрессия, или мутация, этих белков выявлена при злокачественных новообразованиях. В норме ras-белки вовлечены в различные регуляторные процессы, включая рост.

Некоторые белковые гормоны (инсулин, ИФР I и др.) свое первоначальное действие по активированию рецептора осуществляют через гормонально-чувствительную тирозинкиназу. Связывание гормона с рецептором ведет к конформационным изменениям или димеризации, которые вызывают активирование тирозинкиназы и последующее аутофосфорилирование рецептора. После гормональнорецепторного взаимодействия аутофосфорилирование усиливает как активность тирозинкиназы в другом димере, так и фосфорилирование внутриклеточных субстратов. Рецепторная тирозинкиназа является аллостерическим ферментом, в котором внеклеточный домен является регуляторной субъединицей, а внутриклеточный (цитоплазматический) домен – каталитической субъединицей. Активирование или фосфорилирование тирозинкиназы осуществляется через связывание с адапторным или SH2 белком, состоящим из двух SH2 доменов и одного SH3 домена. SH2 домены связывают специфические фосфотирозины рецепторной тирозиновой киназы, а SH3 связывают ферменты или сигнальные молекулы. Фосфорилированные белки (фосфотирозины) укорачиваются на 4 аминокислоты, что и обусловливает их специфическое высокоаффинное связывание с SH2 доменами.

Комплексы (фосфотирозиновые пептиды – SH2 домены) определяют селективность передачи гормонального сигнала. Конечный эффект передачи гормонального сигнала зависит от двух реакций – фосфорилирования и дефосфорилирования. Первая реакция находится под контролем различных тирозинкиназ, вторая – фосфотирозиновых фосфатаз. К настоящему времени идентифицировано более 10 трансмембранных фосфотирозиновых фосфатаз, которые подразделяются на 2 группы: а) большие трансмембранные белки/тендемные домены и б) небольшие внутриклеточные ферменты с одним каталитическим доменом.

Внутриклеточные фрагменты фосфотирозиновых фосфатаз отличаются большим разнообразием. Считается, что функция SH2 доменовых фосфотирозиновых фосфатаз (I и II типа) заключается в уменьшении сигнала посредством дефосфорилирования фосфорилирующих участков на рецепторной тирозинкиназе или усилении сигнала через связывание тирозинфосфорилирующих сигнальных белков на одном или обоих доменах SH2, а также передаче сигнала посредством взаимодействия одного белка SH2 с другим его белком или инактивирование процессом дефосфорилирования тирозинфосфорилированных вторичных мессенджерных молекул, таких, как фосфолипаза С-g или src-тирозинкиназа.

У некоторых гормонов передача гормонального сигнала осуществляется путем фосфорилирования остатков аминокислоты тирозина, а также серина или треонина. Характерным в этом плане является рецептор к инсулину, в котором может происходить фосфорилирование как тирозина, так и серина, причем фосфорилирование серина сопровождается снижением биологического эффекта инсулина. Функциональная значимость одновременного фосфорилирования нескольких аминокислотных остатков рецепторной тирозинкиназы не совсем понятна. Однако этим достигается модулирование гормонального сигнала, который схематически относят ко второму уровню рецепторных сигнальных механизмов. Этот уровень характеризуется активированием нескольких белковых киназ и фосфатаз (таких, как протеинкиназа С, цАМФ-зависимая протеинкиназа, цГМФ-зависимая протеинкиназа, кальмодулинзависимая протеинкиназа и др.), осуществляющих фосфорилирование или дефосфорилирование сериновых, тирозиновых или треониновых остатков, что вызывает соответствующие конформационные изменения, необходимые для проявления биологической активности.

Следует отметить, что такие ферменты, как фосфорилаза, киназа, казеиновая киназа II, ацетил-СоА карбоксилазная киназа, триглицеридная липаза, гликогенфосфорилаза, белковая фосфатаза I, АТФ цитратлиаза активируются путем процесса фосфорилирования, а гликогенсинтаза, пируватдегидрогеназа и пируваткиназа активируются процессом дефосфорилирования.

Третий уровень регуляторных сигнальных механизмов в действии гормонов характеризуется соответствующим ответом на клеточном уровне и проявляется изменением метаболизма, биосинтеза, секреции, роста или дифференцировки. Это включает процессы транспорта различных веществ через клеточную мембрану, синтез белков, стимуляцию рибосомальной трансляции, активирование микроворсинчатой тубулярной системы и транслокацию секреторных гранул к мембране клетки. Так, активирование транспорта аминокислот, глюкозы через клеточную мембрану осуществляется соответствующими белками-транспортерами через 5-15 минут после начала действия таких гормонов, как СТГ и инсулин. Различают 5 белков-транспортеров для аминокислот и 7 – для глюкозы, из которых 2 относятся к натрийглюкозным симпортерам или котранспортерам.

Вторичные мессенджеры гормонов влияют на экспрессию генов, модифицируя процессы транскрипции. Так, цАМФ регулирует скорость транскрипции ряда генов, ответственных за синтез гормонов. Это действие опосредуется цАМФ-ответным элементом активирующего белка (CREB). Последний белок (CREB) комплексируется со специфическими участками ДНК, являясь общим транскрипционным фактором.

Многие гормоны, взаимодействующие с рецепторами, расположенными на плазматической мембране, после образования гормоно-рецепторного комплекса подвергаются процессу интернализации, или эндоцитозу, т.е. транслокации, или переносу гормоно-рецепторного комплекса внутрь клетки. Этот процесс происходит в структурах, называемых “покрытые ямки”, расположенных на внутренней поверхности клеточной мембраны, выстланной белком клатрином. Агрегированные таким образом гормоно-рецепторные комплексы, которые локализуются в “покрытых ямках”, затем интернализируются путем инвагинации мембраны клетки (механизм очень напоминает процесс фагоцитоза), превращаясь в пузырьки (эндосомы или рецептосомы), а последние транслоцируются внутрь клетки.

Во время транслокации эндосома подвергается процессу ацидофикации (подобно тому, что происходит в лизосомах), результатом чего может быть деградация лиганды (гормона) или диссоциация гормоно-рецепторного комплекса. В последнем случае высвободившийся рецептор возвращается на клеточную мембрану, где он повторно взаимодействует с гормоном. Процесс погружения рецептора вместе с гормоном внутрь клетки и возврат рецептора на мембрану клетки называется процессом рециклирования рецептора. В период функционирования рецептора (период полураспада рецептора составляет от нескольких до 24 часов и более) он успевает осуществить от 50 до 150 таких “челночных” циклов. Процесс эндоцитоза является составной или дополнительной частью рецепторного сигнального механизма в действии гормонов.

Помимо этого, с помощью процесса интернализации осуществляется деградация белковых гормонов (в лизосомах) и клеточная десенситизация (снижение клеточной чувствительности к гормону) путем уменьшения количества рецепторов на клеточной мембране. Установлено, что судьба гормоно-рецепторного комплекса после процесса эндоцитоза различна. У большинства гормонов (ФСГ, ЛГ, хорионический гонадотропин, инсулин, ИФР 1 и 2, глюкагон, соматостатин, эритропоэтин, ВИП, липопротеиды низкой плотности) эндосомы внутри клетки подвергаются диссоциации. Освободившийся рецептор возвращается на мембрану клетки, а гормон подвергается процессу деградации в лизосомальном аппарате клетки.

У других гормонов (СТГ, интерлейкин-2, эпидермальный, нервный и тромбоцитарный факторы роста) после диссоциации эндосом рецептор и соответствующий гормон подвергаются процессу деградации в лизосомах.

Некоторые гормоны (трансферин, маннозо-6-фосфат, содержащие белки, и незначительная часть инсулина, СТГ в некоторых тканях-мишенях) после диссоциации эндосом возвращаются, как и их рецепторы, на клеточную мембрану. Несмотря на то, что у перечисленных гормонов имеет место процесс интернализации, нет единого мнения о непосредственном внутриклеточном действии белкового гормона или его гормоно-рецепторного комплекса.

Рецепторы к гормонам коры надпочечников, половым гормонам, кальцитриолу, ретиноивой кислоте, тироидным гормонам локализованы внутриклеточно. Перечисленные гормоны липофильны, транспортируются белками крови, имеют длительный период полураспада и их действие опосредуется гормоно-рецепторным комплексом, который, связываясь со специфическими областями ДНК, активирует или инактивирует специфические гены.

Связывание гормона с рецептором приводит к изменениям физико-химических свойств последнего, и этот процесс называется активацией или трансформацией рецептора. Изучение трансформации рецепторов in vitro показало, что температурный режим, наличие гепарина, АТФ и других компонентов в инкубационной среде изменяют скорость этого процесса.

Нетрансформированные рецепторы являются белком с молекулярной массой 90 кДа, который идентичен стрессовому или белку температурного шока с той же молекулярной массой (M. Catell и соавт., 1985). Последний белок встречается в a- и b-изоформах, которые кодируются различными генами. Аналогичная ситуация наблюдается и в отношении стероидных гормонов.

Помимо стрессового белка с мол. м. 90 кДа, в нетрансформированном рецепторе выявлен белок с мол. м. 59 кДа (M. Lebean и соавт., 1992), названный иммунофилином, который непосредственно не связан с рецептором стероидных гормонов, но образует комплексы с белком мол. м. 90 кДа. Функция белка иммунофилина недостаточно ясна, хотя его роль в регуляции функции рецептора стероидных гормонов доказана, так как он связывает иммуносупрессивные вещества (например, рапамицин и FK 506).

Стероидные гормоны транспортируются в крови в связанном с белками состоянии и лишь незначительная их часть находится в свободной форме. Гормон, находящийся в свободной форме, способен взаимодействовать с мембраной клетки и проходить через нее в цитоплазму, где связывается с цитоплазматическим рецептором, который отличается высокой специфичностью. Например, из гепатоцитов выделены рецепторные белки, связывающие только глюкокортикоидные гормоны или эстрогены. В настоящее время идентифицированы рецепторы к эстрадиолу, андрогенам, прогестерону, глюкокортикоидам, минералокортикоидам, витамину Д, тироидным гормонам, а также к ретиноивой кислоте и некоторым другим соединениям (эдиксоновый рецептор, диоксиновый рецептор, пероксисомный пролиферативный активаторный рецептор и дополнительный рецептор Х к ретиноивой кислоте). Концентрация рецепторов в соответствующих тканях-мишенях составляет 103 до 5 104 на клетку.

Рецепторы стероидных гормонов имеют 4 домена: аминотерминальный домен, имеющий значительные различия у рецепторов к перечисленным гормонам и состоящий из 100-600 аминокислотных остатков; ДНК-связывающий домен, состоящий примерно из 70 аминокислотных остатков; гормоносвязывающий домен, включающий около 250 аминокислот, и карбоксилтерминальный домен. Как отмечено, аминотерминальный домен имеет наибольшие различия как по форме, так и по аминокислотной последовательности. Он состоит из 100-600 аминокислот и наименьшие его размеры выявлены в рецепторе тироидных гормонов, а наибольшие – в рецепторе глюкокортикоидных гормонов. Этот домен определяет особенности рецепторного ответа и у большинства видов он характеризуется высокой степенью фосфорилирования, хотя нет прямой корреляции между степенью фосфорилирования и биологическим ответом.

ДНК-связывающий домен характеризуется 3 интронами, два из которых имеют так называемые “цинковые пальцы”, или структуры с содержанием ионов цинка с 4 цистеиновыми мостиками.”Цинковые пальцы” участвуют в специфическом связывании гормона с ДНК. На ДНК-связывающем домене имеется небольшая область для специфического связывания ядерных рецепторов и называемая “гормоноотвечающие элементы”, которая модулирует начало транскрипции. Эта область локализуется внутри другого фрагмента, состоящего из 250 нуклеотидов, ответственного за инициацию транскрипции. ДНК-связывающий домен обладает наибольшим постоянством структуры среди всех внутриклеточных рецепторов.

Гормоносвязывающий домен участвует в связывании гормона, а также в процессах димеризации и регуляции функции других доменов. Он непосредственно примыкает к ДНК-связывающему домену.

Карбоксилтерминальный домен также участвует в процессах гетеродимеризации, взаимодействует с различными транскриптационными факторами, включая проксимальные промоторы белков.

Наряду с этим имеются данные, что стероиды вначале связываются специфическими белками мембраны клетки, которые транспортируют их к цитоплазматическому рецептору или, минуя его, непосредственно к рецепторам ядра. Цитоплазматический рецептор состоит из двух субъединиц. В ядре клетки субъединица А, взаимодействуя с ДНК, триггирует (запускает) процесс транскрипции, а субъединица B связывается с негистоновыми белками. Эффект действия стероидных гормонов проявляется не сразу, а спустя определенное время, которое необходимо для образования РНК и последующего синтеза специфического белка.

Тироидные гормоны (тироксин-Т4 и трийодтиронин-Т3), как и стероидные, легко диффундируют через липидную клеточную мембрану и связываются внутриклеточными белками. По другим данным, тироидные гормоны взаимодействуют сначала с рецептором на плазматической мембране, где комплексируются с белками, образуя так называемый внутриклеточный пул тироидных гормонов. Биологическое действие в основном осуществляется Т3, в то время как Т4 дейодируется, превращаясь в Т3, который связывается с цитоплазматическим рецептором. Если стероидцитоплазматический комплекс транслоцируется в ядро клетки, то тироидцитоплазматический комплекс сначала диссоциирует и Т3 непосредственно связывается рецепторами ядра, обладающими к нему высокой аффинностью. Кроме того, высокоаффинные рецепторы к Т3 обнаруживаются и в митохондриях. Считается, что калоригенное действие тироидных гормонов осуществляется в митохондриях посредством генерации новой АТФ, для образования которой используется аденозиндифосфат (АДФ).

Тироидные гормоны регулируют синтез белка на уровне транскрипции и это их действие, обнаруживаемое через 12-24 часа, может быть блокировано введением ингибиторов синтеза РНК. Помимо внутриклеточного действия, тироидные гормоны стимулируют транспорт глюкозы и аминокислот через клеточную мембрану, непосредственно влияя на активность некоторых локализованных в ней ферментов.

Таким образом, специфическое действие гормона проявляется лишь после его комплексирования с соответствующим рецептором. В результате процессов по распознаванию, комплексированию и активированию рецептора последний генерирует ряд вторичных мессенджеров, которые вызывают последовательную цепь пострецепторных взаимодействий, заканчивающихся проявлением специфического биологического эффекта гормона.

Отсюда следует, что биологическое действие гормона зависит не только от его содержания в крови, но и от количества и функционального состояния рецепторов, а также от уровня функционирования пострецепторного механизма.

Количество клеточных рецепторов, как и других компонентов клетки, постоянно изменяется, отражая процессы их синтеза и деградации. Основная роль в регуляции количества рецепторов принадлежит гормонам. Имеется обратная зависимость между уровнем гормонов в межклеточной жидкости и количеством рецепторов. Так, например, концентрация гормона в крови и межклеточной жидкости очень низкая и составляет 1014-109 М, что значительно ниже, чем концентрация аминокислот и других различных пептидов (105-103 М). Количество рецепторов выше и составляет 1010-108 М, причем на плазматической мембране их около 1014-1010 М, а внутриклеточный уровень вторичных мессенджеров несколько выше – 108-106 М. Абсолютное количество рецепторных мест на мембране клетки составляет от нескольких сотен до 100 000.

Многочисленные исследования показали, что рецепторы обладают характерным свойством усиливать действие гормона не только описанными механизмами, но и посредством так называемого “нелинейного связывания”. Характерна еще одна особенность, которая заключается в том, что наибольший гормональный эффект не означает наибольшего связывания гормона рецепторами. Так, например, максимальная стимуляция инсулином транспорта глюкозы в адипоциты наблюдается при связывании гормоном лишь 2% инсулиновых рецепторов (J. Gliemann и соавт., 1975). Такие же взаимоотношения установлены для АКТГ, гонадотропинов и других гормонов (M.L. Dufau и соавт., 1988). Это объясняется двумя феноменами: ”нелинейным связыванием” и наличием так называемых “резервных рецепторов”. Так или иначе, но амплификация, или усиление действия гормона, являющееся следствием этих двух феноменов, выполняет важную физиологическую роль в процессах биологического действия гормона в норме и при различных патологических состояниях. Так, например, при гиперинсулинизме и ожирении на 50-60% снижается количество инсулиновых рецепторов, локализованных на гепатоцитах, адипоцитах, тимоцитах, моноцитах, и, наоборот, инсулиндефицитные состояния у животных сопровождаются увеличением количества рецепторов к инсулину. Наряду с количеством рецепторов к инсулину изменяется и их аффинность, т.е. способность комплексироваться с инсулином, а также изменяется трансдукция (передача) гормонального сигнала внутри рецептора. Таким образом, изменение чувствительности органов и тканей к гормонам осуществляется посредством механизмов обратной связи (down regulation). Для состояний, сопровождающихся высокой концентрацией гормона в крови, характерно уменьшение количества рецепторов, что клинически проявляется в виде резистентности к данному гормону.

Некоторые гормоны могут влиять на количество не только “собственных” рецепторов, но и рецепторов к другому гормону. Так, прогестерон уменьшает, а эстрогены увеличивают количество рецепторов одновременно и к эстрогенам, и к прогестерону.

Снижение чувствительности к гормону может быть обусловлено следующими механизмами: 1) уменьшением аффинности рецептора вследствие влияния других гормонов и гормонорецепторных комплексов; 2) снижением количества функционирующих рецепторов в результате их интернализации или высвобождения из мембраны во внеклеточное пространство; 3) инактивацией рецептора вследствие конформационных изменений; 4) разрушением рецепторов путем повышения активности протеаз или деградацией гормоно-рецепторного комплекса под влиянием ферментов лизосом; 5) угнетением синтеза новых рецепторов.

Для каждого вида гормонов имеются агонисты и антагонисты. Последние представляют собой вещества, которые способны конкурентно связывать рецептор к гормону, снижая или полностью блокируя его биологический эффект. Агонисты, наоборот, комплексируясь с соответствующим рецептором, усиливают действие гормона или полностью имитируют его присутствие, причем иногда период полураспада агониста в сотни и более раз превышает время деградации естественного гормона, а, следовательно, в течение этого времени проявляется биологический эффект, что естественно используется в клинических целях. Так, например, агонистами глюкокортикоидов являются дексаметазон, кортикостерон, альдостерон, а частичными агонистами – 11b-гидроксипрогестерон, 17a-гидроксипрогестерон, прогестерон, 21-деоксикортизол, а их антагонистами – тестостерон, 19-нортестостерон, 17-эстрадиол. К неактивным стероидам в отношении рецепторов к глюкокортикоидам относятся 11a-гидроксипрогестерон, тетрагидрокортизол, андростендион, 11a-, 17a-метилтестостерон. Эти взаимоотношения учитывают не только в эксперименте при уточнении действия гормонов, но и в клинической практике.

Расшифровка механизмов действия гормонов в организме животных представляет возможность глубже понять физиологические процессы - регуляцию обмена веществ, биосинтеза белков, роста и дифференцировки тканей.

Это важно и с практической точки зрения, в связи со все более широким применением естественных и синтетических гормональных препаратов в животноводстве и ветеринарии.

В настоящее время насчитывается около 100 гормонов, которые образуются в железах внутренней секреции, поступают в кровь и оказывают разностороннее влияние на метаболизм в клетках, тканях и органах. Трудно определить в организме такие физиологические процессы, которые не находились бы под регулирующим влиянием гормонов. В отличие от множества ферментов, которые вызывают в организме отдельные узко направленные изменения, гормоны оказывают множественные воздействия на процессы обмена веществ и другие физиологические функции. В то же время ни один из гормонов, как правило, полностью не обеспечивает регуляцию отдельных функций. Для этого необходимо воздействие ряда гормонов в определенной последовательности и взаимодействии. Так, например, соматотропин стимулирует процессы роста лишь при активном участии инсулина и гормонов щитовидной железы. Рост фолликулов в основном обеспечивает фоллитропин, а их созревание и процесс овуляции осуществляется под регулирующим воздействием лютропина и т. д.

Большинство гормонов в крови связано с альбуминами или глобулинами, что предохраняет их от быстрого разрушения ферментами и поддерживает оптимальную концентрацию метаболически активных гормонов в клетках и тканях. Гормоны оказывают непосредственное воздействие на процесс биосинтеза белков. Стероидные и белковые гормоны (половые, тройные гормоны гипофиза) в тканях-мишенях вызывают увеличение количества и объема клеток. Другие гормоны, такие как инсулин, глюко — и минералокортикоиды, воздействуют на синтез белков опосредованно.

Первым звеном физиологического действия гормонов в организме животных являются рецепторы клеточных мембран. В одних и тех же клетках имеются в большом количестве несколько видов; специфических рецепторов, с помощью которых они избирательна связывают молекулы различных гормонов, циркулирующих в крови. Например, жировые клетки в своих мембранах имеют специфические рецепторы для глюкагона, лютропина, тиротропина, кортикотропина.

Большинство гормонов белковой природы в связи с крупными размерами их молекул не могут проникать в клетки, а находятся на их поверхности и, взаимодействуя с соответствующими рецепторами, влияют на обмен веществ внутри клеток. Так, в частности, действие тиротропина связано с фиксацией его молекул на поверхности клеток щитовидной железы, под влиянием которых увеличивается проницаемость клеточных мембран для ионов натрия, а в их присутствии повышается интенсивность окисления глюкозы. Инсулин увеличивает проницаемость оболочек клеток в тканях и органах для молекул глюкозы, что способствует снижению ее концентрации в крови и переходу в ткани. Стимулирующее действие на синтез нуклеиновых кислот и белков соматотропин оказывает также путем воздействия на мембраны клеток.

Одни и те же гормоны могут влиять на обменные процессы в клетках тканей различными путями. Наряду с изменением проницаемости клеточных оболочек и мембран внутриклеточных структур для различных ферментов и других химических веществ, под влиянием тех же гормонов может изменяться ионный состав среды вне и внутри клеток, а также активность различных ферментов и интенсивность обменных процессов.

Гормоны оказывают влияние на активность ферментов и генный аппарат клеток не непосредственно, а с помощью медиаторов (посредников). Одним из таких медиаторов является циклический 3′, 5′-аденозинмонофосфат (циклический АМФ). Циклический АМФ (цАМФ) образуется внутри клеток из аденозинтрифосфорной кислоты (АТФ) с участием расположенного на клеточной мембране фермента аденилциклазы, которая активируется при воздействии соответствующих гормонов. На внутриклеточных мембранах имеется фермент фосфодиэстераза, которая превращает цАМФ в менее активное вещество - 5′-аденозинмонофосфат и этим прекращает действие гормона.

При воздействии на клетку нескольких гормонов, стимулирующих в ней синтез цАМФ, реакция катализируется одной и той же аденилциклазой, но рецепторы в мембранах клеток для этих гормонов строго специфичны. Поэтому, например, кортикотропин воздействует только на клетки коры надпочечников, а тиротропин - на клетки щитовидной железы и т. д.

Детальные исследования показали, что действие большинства белковых и пептидных гормонов приводит к стимуляции активности аденилциклазы и увеличению концентрации в клетках-мишенях цАМФ, с которым связана дальнейшая передача информации гормонального воздействия при активном участии целого ряда протеинкиназ. цАМФ выполняет роль внутриклеточного медиатора-посредника гормона, обеспечивающего повышение активности зависимых от него протеинкиназ в цитоплазме и ядрах клеток. В свою очередь, цАМФ-зависимые протеинкиназы катализируют фосфорилирование белков рибосом, что имеет прямое отношение к регуляции синтеза белков в клетках-мишенях при воздействии пептидных гормонов.

Стероидные гормоны, катехоламины, гормоны щитовидной железы в связи с малыми размерами молекул проходят через мембрану клеток и вступают в связь с рецепторами цитоплазмы внутри клеток. В дальнейшем стероидные гормоны в комплексе со своими рецепторами, представляющими белки кислого характера, переходят в ядро клетки. Допускают, что пептидные гормоны, по мере расщепления гормон-рецепторных комплексов, также воздействуют на специфические рецепторы цитоплазмы, комплекса Гольджи и оболочки ядра.

Не все гормоны стимулируют активность фермента аденилциклазы и увеличение ее концентрации в клетках. Некоторые пептидные гормоны, в частности инсулин, оцитоцин, кальцитонин, оказывают на аденилциклазу тормозящее воздействие. Физиологический эффект их действия, как полагают, обусловлен не увеличением концентрации цАМФ, а ее уменьшением. При этом в клетках, обладающих специфической чувствительностью к упомянутым гормонам, повышается концентрация другого циклического нуклеотида - циклического гуанозинмонофосфата (цГМФ). Результат действия гормонов в клетках организма в конечном итоге зависит от воздействия обоих циклических нуклеотидов - цАМФ и цГМФ, являющихся универсальными внутриклеточными медиаторами - посредниками гормонов. В отношении действия стероидных гормонов, которые в комплексе со своими рецепторами проникают в ядро клетки, роль цАМФ и цГМФ как внутриклеточных посредников считают сомнительной.

Многие, если не все, гормоны конечный физиологический эффект проявляют опосредованно - через изменение биосинтеза белков-ферментов. Биосинтез белков является сложным многоэтапным процессом, осуществляемым при активном участии генного аппарата клеток.

Регулирующее воздействие гормонов на биосинтез белков осуществляется в основном путем стимуляции РНК-полимеразной реакции с образованием рибосомных и ядерных видов РНК, а также информационных РНК и путем влияния на функциональную активность рибосом и другие звенья белкового обмена. Специфические протеинкиназы в ядрах клеток стимулируют фосфорилирование соответствующих белковых компонентов и РНК-полимеразную реакцию с образованием информационных РНК, кодирующих синтез белков в клетках и органах-мишенях. При этом в ядрах клеток осуществляется дерепрессирование генов, которые освобождаются от угнетающего действия специфических репрессоров - ядерных белков-гистонов.

Такие гормоны, как эстрогены и андрогены в ядрах клеток связываются с белками-гистонами, репрессирующими соответствующие гены, и тем самым приводят генный аппарат клеток в активное функциональное состояние. При этом андрогены влияют на генный аппарат клеток слабее, чем эстрогены, что обусловлено более активным соединением последних с хроматином и ослаблением синтеза РНК в ядрах.

Вместе с активизацией белкового синтеза в клетках осуществляется образование белков-гистонов, являющихся репрессорами активности генов, а это препятствует метаболическим функциям ядер и чрезмерному проявлению стимуляции роста. Следовательно, в ядрах клеток имеется свой механизм генетической и митотической регуляции метаболизма и роста.

В связи с влиянием гормонов на анаболические процессы в организме усиливается ретенция питательных веществ корма и, следовательно, увеличивается количество субстратов для межуточного обмена веществ, активизируются регулирующие механизмы биохимических процессов, связанные с более эффективным использованием азотистых и других соединений.

На процессы синтеза белков в клетках оказывают влияние соматотропин, кортикостероиды, эстрогены, а также тироксин. Эти гормоны стимулируют синтез различных информационных РНК и тем самым усиливают синтез соответствующих белков. В процессах белкового синтеза важное значение принадлежит также инсулину, который стимулирует связывание информационных РНК с рибосомами и, следовательно, активирует синтез белков. Путем активации хромосомного аппарата клеток гормоны влияют на увеличение скорости белкового синтеза и концентрации ферментов в клетках печени и других органов и тканей. Однако механизм влияния гормонов на внутриклеточный обмен изучен еще недостаточно.

Действие гормонов, как правило, тесно связано с функциями ферментов, обеспечивающими биохимические процессы в клетках, тканях и органах. Гормоны участвуют в биохимических реакциях как специфические активаторы или ингибиторы ферментов, оказывая свое влияние на ферменты путем обеспечения их связи с различными биоколлоидами.

Поскольку ферменты являются белковыми телами, воздействие гормонов на их функциональную активность проявляется прежде всего путем влияния на биосинтез ферментов и катаболических белков-коферментов. Одним из проявлений активности гормонов является их участие во взаимодействии ряда ферментов в различных звеньях сложных реакций и процессов. Как известно, в построении коферментов определенную роль выполняют витамины. Полагают, что в этих процессах регулирующую функцию также выполняют гормоны. Например, кортикостероиды оказывают влияние на фосфорилирование некоторых витаминов группы В.

Для простагландинов особенно важным является их высокая физиологическая активность и очень малое побочное действие. В настоящее время известно, что простагландины действуют внутри клеток подобно медиаторам и играют важную роль в реализации эффекта действия гормонов. При этом активизируются процессы синтеза циклического аденозинмонофосфата (цАМФ), способного передавать узконаправленное действие гормонов. Возможно допустить, что фармакологические вещества внутри клеток действуют благодаря выработке специфических простагландинов. Сейчас во многих странах изучается механизм действия простагландинов на клеточно-молекулярном уровне, так как всестороннее изучение действия простагландинов может дать возможность целенаправленно воздействовать на обмен веществ и другие физиологические процессы в организме животных.

На основании изложенного можно сделать заключение, что гормоны оказывают в организме животных сложное и разностороннее действие. Комплексное влияние нервной и гуморальной регуляции обеспечивает согласованное течение всех биохимических и физиологических процессов. Однако в тончайших деталях механизм действия гормонов еще достаточно не изучен. Эта проблема интересует многих ученых и представляет большой интерес для теории и практики эндокринологии, а также животноводства и ветеринарии.

Гормоны, секретируемые железами внутренней секреции, связываются с транспортными белками плазмы или в некоторых случаях адсорбируются на клетках крови и доставляются к органам и тканям, влияя на их функцию и обмен веществ. Некоторые органы и ткани обладают очень высокой чувствительностью к гормонам, поэтому их называют органами-мишенями или тканями -мишенями. Гормоны влияют буквально на все стороны обмена веществ, функции и структуры в организме.

Согласно современным представлениям, действие гормонов основано на стимуляции или угнетении каталитической функции определенных ферментов. Этот эффект достигается посредством активации или ингибирования уже имеющихся ферментов в клетках за счет ускорения их синтеза путём активации генов. Гормоны могут увеличивать или уменьшать проницаемость клеточных и субклеточных мембран для ферментов и других биологически активных веществ, благодаря чему облегчается или тормозится действие фермента. гормон органический организм железа

Мембранный механизм . Гормон связывается с клеточной мембраной и в месте связывания изменяет её проницаемость для глюкозы, аминокислот и некоторых ионов. В этом случае гормон выступает как эффектор транспортных средств мембраны. Такое действие оказывает инсулин, изменяя транспорт глюкозы. Но этот тип транспорта гормонов редко встречается в изолированном виде. Инсулин, например, обладает как мембранным, так и мембранно-внутриклеточным механизмом действия.

Мембранно-внутриклеточный механизм . По мембранно-внутриклеточному типу действуют гормоны, которые не проникают в клетку и поэтому влияют на обмен веществ через внутриклеточного химического посредника. К ним относят белково-пептидные гормоны (гормоны гипоталамуса, гипофиза, поджелудочной и паращитовидной желез, тиреокальцитонин щитовидной железы); производные аминокислот (гормоны мозгового слоя надпочечников - адреналин и норадреналин, щитовидной железы - тироксин, трийодтиронин).

Внутриклеточный (цитозольный) механизм действия . Он характерен для стероидных гармонов (кортикостероидов, половых гормонов - андрогенов, эстрогенов и гестагенов). Стероидные гормоны взаимодействуют с рецепторами, находящимися в цитоплазме. Образовавшийся гормон-рецепторный комплекс переносится в ядро и действует непосредственно на геном, стимулируя или угнетая его активность, т.е. действует на синтез ДНК, изменяя скорость транскрипции и количество инфармационной (матричной) РНК (мРНК). Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции, что приводит к изменению функциональной активности клетки.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое) , действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Синтез белковых гормонов, как и других белков, находится под генетическим контролем, и типичные клетки млекопитающих экспрессируют гены, которые кодируют от 5000 до 10 000 различных белков, а некоторые высокодифференцированные клетки – до 50 000 белков. Любой синтез белка начинается с транспозиции сегментов ДНК , затем транскрипции, посттранскрипционного процессинга, трансляции, посттрансляционного процессинга и модификации. Многие полипептидные гормоны синтезируются в форме больших предшественников - прогормонов (проинсулин, проглюкагон, проопиомеланокортин и др.). Конверсия прогормонов в гормоны осуществляется в аппарате Гольджи.

    Существуют два основных механизма действия гормонов на уровне клетки:
  1. Реализация эффекта с наружной поверхности клеточной мембраны.
  2. Реализация эффекта после проникновения гормона внутрь клетки.

1)Реализация эффекта с наружной поверхности клеточной мембраны

В этом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент - аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорнои кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов - циклического 3,5-аденозинмонофосфата (цАМФ). цАМФ активирует клеточный фермент протеинкиназу, реализующую действие гормона. Установлено, что гормоно-зависимая аденилатциклаза - это общий фермент, на который действуют различные гормоны, в то время как рецепторы гормонов множественны и специфичны для каждого гормона. Вторичными посредниками кроме цАМФ могут быть циклический 3,5-гуанозинмонофосфат (цГМФ), ионы кальция, инозитол-трифосфат. Так действуют пептидные, белковые гормоны, производные тирозина - катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными .

Плазматические рецепторы в зависимости от структуры подразделяются на:

  1. семи фрагментов (петель);
  2. рецепторы, трансмембранный сегмент которых состоит из одного фрагмента (петли или цепи);
  3. рецепторы, трансмембранный сегмент которых состоит из четырех фрагментов (петель).

К гормонам, рецептор которых состоит из семи трансмембранных фрагментов, относятся:
АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, простагландины, гастрин, холецистокинин, нейропептид Y, нейромедин К, вазопрессин, адреналин (a-1 и 2, b-1 и 2), ацетилхолин (М1, М2, М3 и М4), серотонин (1А, 1В, 1С, 2), дофамин (Д1 и Д2), ангиотензин, вещество К, вещество Р, или нейрокинин 1, 2 и 3 типа, тромбин, интерлейкин-8, глюкагон, кальцитонин, секретин, соматолиберин, ВИП, гипофизарный аденилатциклазактивирующий пептид, глютамат (MG1 – MG7), аденин.

Ко второй группе относятся гормоны, имеющие один трансмембранный фрагмент:
СТГ, пролактин, инсулин, соматомаммотропин, или плацентарный лактоген, ИФР-1, нервные факторы роста, или нейротрофины, фактор роста гепатоцитов, предсердный натрийуретический пептид типа А, В и С, онкостатин, эритропоэтин, цилиарный нейротрофический фактор, лейкемический ингибиторный фактор, фактор некроза опухолей (р75 и р55), нервный фактор роста, интерфероны (a, b и g), эпидермальный фактор роста, нейродифференцирующий фактор, факторы роста фибробластов, факторы роста тромбоцитов А и В, макрофагный колониестимулирующий фактор, активин, ингибин, интерлейкины-2, 3, 4, 5, 6 и 7, гранулоцито-макрофагный колониестимулирующий фактор, гранулоцитный колониестимулирующий фактор, липопротеин низкой плотности, трансферрин, ИФР-2, урокиназный плазминогенный активатор.

К гормонам третьей группы, рецептор которых имеет четыре трансмембранных фрагмента, относятся:
ацетилхолин (никотиновые мышечные и нервные), серотонин, глицин, g-аминомасляная кислота.

Cопряжение рецептора с эффекторными системами осуществляется через так называемый G-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мембраны. G-белок в активированной форме стимулирует через аденилатцик-лазу синтез циклического АМФ, который запускает каскадный механизм активирования внутриклеточных белков.

Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты «вторичных» мессенджеров внутри клетки, является процесс фосфорилирования – дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев – тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток.

Аденилатциклазная мессенджерная система

Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков:
1)рецептор гормона ;
2)фермент аденилатциклаза , выполняющая функцию синтеза циклического АМФ (цАМФ);
3)G-белок , осуществляющий связь между аденилатциклазой и рецептором;
4)цАМФ-зависимая протеинкиназа , катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность;
5)фосфодиэстераза , которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала

Показано, что связывание гормона с β-адренергическим рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что в свою очередь обеспечивает взаимодействие рецептора со вторым белком сигнального пути – ГТФ-связывающим.

ГТФ-связывающий белок – G-белок – представляет собой смесь 2 типов белков:
активного G s (от англ. stimulatory G)
ингибиторного G i
В составе каждого из них имеется три разные субъединицы (α-, β- и γ-), т.е. это гетеротримеры. Показано, что β-субъединицы G s и G i идентичны; в то же время α-субъединицы, являющиеся продуктами разных генов, оказались ответственными за проявление G-белком активаторной и ингибиторной активности. Гормонрецепторный комплекс сообщает G-белку способность не только легко обменивать эндогенный связанный ГДФ на ГТФ, но и переводить G s -белок в активированное состояние, при этом активный G-белок диссоциирует в присутствии ионов Mg 2+ на β-, γ-субъединицы и комплекс α-субъединицы G s в ГТФ-форме; этот активный комплекс затем перемещается к молекуле аденилатциклазы и активирует ее. Сам комплекс затем подвергается самоинактивации за счет энергии распада ГТФ и реассоциации β- и γ-субъединиц с образованием первоначальной ГДФ-формы G s .

Рец - рецептор; G - G-белок; АЦ -аденилатциклаза.

Представляет собой интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы и катализирует реакцию синтеза цАМФ из АТФ:

Каталитический компонент аденилатциклазы, выделенный из разных тканей животных, представлен одним полипептидом. В отсутствие G-белков он практически неактивен. Содержит две SH-группы, одна из которых вовлечена в сопряжение с G s -белком, а вторая необходима для проявления каталитической активности.Под действием фосфоди-эстеразы цАМФ гидролизуется с образованием неактивного 5"-АМФ.

Протеинкиназа – это внутриклеточный фермент, через который цАМФ реализует свой эффект. Протеинкиназа может существовать в 2 формах. В отсутствие цАМФ протеинкиназа представлена в виде тетрамерного комплекса, состоящего из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц; в этой форме фермент неактивен. В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну R 2 -субъединицу и две свободные каталитические субъединицы С; последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность.

Активность многих ферментов регулируется цАМФ-зависимым фосфорилированием, соответственно большинство гормонов белково-пептидной природы активирует этот процесс. Однако ряд гормонов оказывает тормозящий эффект на аденилатциклазу, соответственно снижая уровень цАМФ и фосфорилирование белков. В частности, гормон соматостатин, соединяясь со своим специфическим рецептором – ингибиторным G-белком (Gi , являющимся структурным гомологом Gs-белка), ингибирует аденилатциклазу и синтез цАМФ, т.е. вызывает эффект, прямо противоположный вызываемому адреналином и глюкагоном. В ряде органов простагландины (в частности, РGЕ 1) также оказывают ингибиторный эффект на аденилатциклазу, хотя в том же органе (в зависимости от типа клеток) и тот же PGE 1 может активировать синтез цАМФ.

Более подробно изучен механизм активирования и регуляции мышечной гликогенфосфорилазы, активирующей распад гликогена. Выделяют 2 формы:
каталитически активную – фосфорилаза а и
неактивную – фосфорилаза b .

Обе фосфорилазы построены из двух идентичных субъединиц, в каждой остаток серина в положении 14 подвергается процессу фосфорилирования–дефосфорилирования, соответственно активированию и инактивированию.

Под действием киназы фосфорилазы b, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы b подвергаются ковалентному фосфорилиро-ванию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние.

В мышечной ткани открыты 3 типа регуляции гликогенфосфорилазы.
Первый тип ковалентная регуляция , основанная на гормонзависимом фосфорилировании–дефосфорилировании субъединиц фосфорилазы.
Второй тип аллостерическая регуляция . Она основана на реакциях аденилирования–деаденилирования субъединиц гликогенфосфорилазы b (соответственно активирование–инактивирование). Направление реакций определяется отношением концентраций АМФ и АТФ, присоединяющихся не к активному центру, а к аллостерическому центру каждой субъединицы.

В работающей мышце накопление АМФ, обусловленное тратой АТФ, вызывает аденилирование и активирование фосфорилазы b. В покое, наоборот, высокие концентрации АТФ, вытесняя АМФ, приводят к аллостерическому ингибированию этого фермента путем деаденилирования.
Третий тип кальциевая регуляция , основанная на аллостерическом активировании киназы фосфорилазы b ионами Са 2+ , концентрация которых повышается при мышечном сокращении, способствуя тем самым образованию активной фосфорилазы а.

Гуанилатциклазная мессенджерная система

Довольно долгое время циклический гуанозинмонофосфат (цГМФ) рассматривался как антипод цАМФ. Ему приписывали функции, противоположные цАМФ. К настоящему времени получено много данных, что цГМФ принадлежит самостоятельная роль в регуляции функции клеток. В частности, в почках и кишечнике он контролирует ионный транспорт и обмен воды, в сердечной мышце служит сигналом релаксации и т.д.

Биосинтез цГМФ из ГТФ осуществляется под действием специфической гуанилатциклазы по аналогии с синтезом цАМФ:

Адреналинрецепторный комплекс: АЦ - аденилатциклаза, G - G-белок; С и R - соответственно каталитические и регуляторные субъединицы протеинкиназы; КФ - киназа фосфорилазы b; Ф - фосфорилаза; Глк-1-P - глюкозо-1-фосфат; Глк-6-P - глюкозо-6-фосфат; УДФ-Глк - уридиндифосфатглюкоза; ГС - гликогенсинтаза.

Известны четыре разные формы гуанилатциклазы, три из которых являются мембраносвязанными и одна – растворимая открыта в цитозоле.

Мембраносвязанные формы состоят из 3 участков :
рецепторного , локализованного на внешней поверхности плазматической мембраны;
внутримембранного домена и
каталитического компонента , одинакового у разных форм фермента.
Гуанилатциклаза открыта во многих органах (сердце, легкие, почки, надпочечники, эндотелий кишечника, сетчатка и др.), что свидетельствует о широком ее участии в регуляции внутриклеточного метаболизма, опосредованном через цГМФ. Мембраносвязанный фермент активируется через соответствующие рецепторы короткими внеклеточными пептидами, в частности гормоном предсердным натрийуретическим пептидом (АНФ), термостабильным токсином грамотрицательных бактерий и др. АНФ, как известно, синтезируется в предсердии в ответ на увеличение объема крови, поступает с кровью в почки, активирует гуанилатциклазу (соответственно повышает уровень цГМФ), способствуя экскреции Na и воды. Гладкие мышечные клетки сосудов также содержат аналогичную рецептор-гуанилатциклазную систему, посредством которой связанный с рецептором АНФ оказывает сосудорасширяющее действие, способствуя снижению кровяного давления. В эпителиальных клетках кишечника активатором рецептор–гуанилатциклазной системы может служить бактериальный эндотоксин, который приводит к замедлению всасывания воды в кишечнике и развитию диареи.

Растворимая форма гуанилатциклазы является гемсодержащим ферментом, состоящим из 2 субъединиц. В регуляции этой формы гуанилатциклазы принимают участие нитровазодилататоры, свободные радикалы – продукты перекисного окисления липидов. Одним из хорошо известных активаторов является эндотелиальный фактор (EDRF) , вызывающий релаксацию сосудов. Действующим компонентом, естественным лигандом, этого фактора служит оксид азота NO. Эта форма фермента активируется также некоторыми нитрозовазодилататорами (нитроглицерин, нитропруссид и др.), используемыми при болезнях сердца; при распаде этих препаратов также освобождается NO.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са 2+ -зависимой ферментной системы со смешанной функцией, названной NO-синтазой:

Оксид азота при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию цГМФ, который снижает силу сердечных сокращений путем стимулирования ионных насосов, функционирующих при низких концентрациях Са 2+ . Однако действие NO кратковременное, несколько секунд, локализованное – вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Получены доказательства, что большинство эффектов цГМФ опосредовано через цГМФ-зависимую протеинкиназу, названную протеинкина-зой G. Этот широко распространенный в эукариотических клетках фермент получен в чистом виде. Он состоит из 2 субъединиц – каталитического домена с последовательностью, аналогичной последовательности С-субъединицы протеинкиназы А (цАМФ-зависимой), и регуля-торного домена, сходного с R-субъединицей протеинкиназы А. Однако протеинкиназы А и G узнают разные последовательности белков, регулируя соответственно фосфорилирование ОН-группы серина и треонина разных внутриклеточных белков и оказывая тем самым разные биологические эффекты.

Уровень циклических нуклеотидов цАМФ и цГМФ в клетке контролируется соответствующими фосфодиэстеразами, катализирующими их гидролиз до 5"-нуклеотидмонофосфатов и различающимися по сродству к цАМФ и цГМФ. Выделены и охарактеризованы растворимая кальмоду-линзависимая фосфодиэстераза и мембраносвязанная изоформа, не регулируемая Са 2+ и кальмодулином.

Са 2+ -мессенджерная система

Ионам Са 2+ принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са 2+ является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са 2+ могут быть внутри- и внеклеточными. В норме концентрация Са 2+ в цитозоле не превышает 10 -7 М, и основными источниками его являются эндоплазматический ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са 2+ (до 10 –6 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций–мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са 2+ -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са 2+ -связывающий белок кальмодулин. При повышении концентрации Са 2+ в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов – мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы b, активируемой ионами Са 2+ , как и NO-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са 2+ -связывающих белков. При повышении концентрации кальция связывание Са 2+ с кальмодулином сопровождается конформационными его изменениями, и в этой Са 2+ -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название).

К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфолипазы С. В результате последовательных реакций образуются два потенциальных вторичных мессенджера – диацилглицерол и инозитол-1,4,5-трифосфат.

Биологические эффекты этих вторичных мессенджеров реализуются по-разному. Действие диацилглицерола, как и свободных ионов Са 2+ , опосредовано через мембраносвязанный Са-зависимый фермент протеинкиназу С , которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1,4,5-трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са 2+ в цитозоль.

Таким образом, представленные данные о вторичных мессенджерах свидетельствуют о том, что каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ, хотя нельзя исключить возможности существования тесной связи между этими системами. Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G – цГМФ; Са 2+ -кальмодулинзависимые протеинкиназы находятся под контролем внутриклеточной [Са 2+ ], а протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са 2+ и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мес-сенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки: ионных каналов, внутриклеточных структурных элементов и генетического аппарата.

2)Реализация эффекта после проникновения гормона внутрь клетки

Во этом случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связываются в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина - гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Известно, что эффект стероидных гормонов реализуется через генетический аппарат путем изменения экспрессии генов. Гормон после доставки с белками крови в клетку проникает (путем диффузии) через плазматическую мембрану и далее через ядерную мембрану и связывается с внутриядерным рецептором–белком. Комплекс стероид–белок затем связывается с регуляторной областью ДНК, с так называемыми гормончувствительными элементами, способствуя транскрипции соответствующих структурных генов, индукции синтеза белка de novo и изменению метаболизма клетки в ответ на гормональный сигнал.

Следует подчеркнуть, что главной и отличительной особенностью молекулярных механизмов действия двух основных классов гормонов является то, что действие пептидных гормонов реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, в то время как стероидные гормоны (а также тиреоидные гормоны, ретиноиды, витамин D3-гормоны) выступают в качестве регуляторов экспрессии генов.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека