Слуховая сенсорная система строение и функции таблица. Расположение и структура рецепторных клеток спирального органа

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Звуковые волны — это механические колебания среды различной частоты и амплитуды. Эти колебания мы воспринимаем как звуки, отличающиеся между собой по высоте и громкости.

Наш слуховой анализатор способен воспринимать звуковые колебания в диапазоне частот от 16 Гц до 20000 Гц. Образец низкого звука (125 Гц) — гудение холодильника, а высокого звука (5000 Гц) — комариный пищания. Частоты ниже 16 Гц (инфразвук) и выше 20000 Гц (ультразвук) не вызывают у нас звуковых ощущений. Однако и инфразвук, и ультразвук влияют на наш организм. Интенсивность звуковых волн мы воспринимаем как громкость звуков. Единицей их измерения является бел (децибел): громкость тихого шепота равен 10 децибел, громкого крика — 80 — 90 децибел, а звук в 130 децибел вызывает сильную боль в ушах.

На барабанной перепонке размещается воздушная полость — среднее ухо . Оно соединено с помощью эвстахиевой трубы с глоткой, а через нее — с полостью рта. Эти каналы соединяют внешнюю среду со средним ухом и является предохранителем, защищающим его от травм. Обычно вход в евстахиевой трубы закрыт, он открывается только при глотании. Если среднее ухо испытывает чрезмерного давления вследствие действий звуковых волн, достаточно открыть рот и сделать глоток: давление в среднем ухе сравнится с атмосферным.

Среднее ухо — это усилитель, который может изменять амплитуду звуковых волн, которые передаются с барабанной перепонки к внутреннему уху. Как это происходит? От барабанной перепонки тянется цепочка маленьких косточек, подвижно соединенных между собой: молоточек, наковальня и стремя. Рукоятка молоточка прикреплена к барабанной перепонке, а стремя упирается в другую мембрану. Это перепонка отверстия, которое называют овальным окном, — она ​​границей между средним и внутренним ухом.

Колебания барабанной перепонки вызывают движение слуховых косточек, которые толкают мембрану овального окна, и она начинает колебаться. По площади эта мембрана значительно меньше, чем барабанная перепонка, и поэтому она колеблется с большей амплитудой. Усиленные колебания мембраны овального окна передаются к внутреннему уху.

Внутреннее ухо располагается в глубине височной кости черепа. Именно здесь в специальном устройстве, называемом улиткой, расположенный рецепторный аппарат слухового анализатора. Улитка — костный канал, внутри которого размещаются две продольные мембраны. Нижняя (базальная) мембрана образована плотной соединительной тканью, а верхняя — тоненькой однослойной. Мембраны разделяют канал улитки на три части — верхний, средний и нижний каналы. Нижний и верхний канал на верхушке завитки сочетаются между собой, а средний является замкнутой полостью. Каналы заполнены жидкостями: нижний и верхний — перилимфой, а средний — эндолимфой, что вязкая по перилимфу. Верхний канал начинается от овального окна, а нижний — заканчивается округлым окном, которое расположено под овальным. Колебания мембраны овального окна передаются пе-рилимфы, в ней возникают волны. Они распространяются верхним и нижним каналами, достигая мембраны округлого окна.

Строение рецепторного аппарата слухового анализатора

К каким последствиям приводит перемещения волн в перилимфе? Чтобы выяснить это, рассмотрим строение рецепторного аппарата слухового анализатора. На базальной мембране среднего канала по всей его длине расположен так называемый кортоев орган — аппарат, содержащие рецепторы и опорные клетки. На каждой рецепторной клетке содержится до 70 выростов — волосков. Над волосковыми клетками расположена покровная мембрана, контактирует с волосками. Кортиева орган разделен на участки, каждый из которых отвечает за восприятие волн определенной частоты.

Жидкости, содержащиеся в каналах завитки, является передаточным звеном, которая доносит энергию звуковых колебаний в покровной мембраны кортиива органа. Когда волна перемещается перилимфой в верхнем канале, тоненькая мембрана между ним и средним каналом прогибается, действует на эндолимфу, а и прижимает покровную мембрану в волосковых клеток. В ответ на механическое воздействие — нажатие на волоски — в рецепторах формируются сигналы, которые они передают на дендриты чувствительных нейронов. В этих нейронах возникают нервные импульсы, которые по аксонам, объединяемых в слуховой нерв, направляются в центральный отдел звукового анализатора. Высота звука, который мы воспринимаем, определяется тем, с какого участка кортиева органа поступил сигнал.

Центральный отдел слухового анализатора

Нервные импульсы по чувствительным нейронам слуховых нервов поступают в многочисленных ядер ствола головного мозга, где происходит первичная обработка сигналов, далее — к таламуса, а из него — в височной области коры (слуховой зоны). Здесь при участии ассоциативных зон коры происходит распознавание слуховых стимулов, а у нас возникают звуковые ощущения. На всех уровнях обработки сигнала являются ведущие пути, благодаря которым происходит постоянный обмен информацией между симметрично расположенными ядрами, которые относятся к центральным структурам левого и правого уха.

Слух имеет важное значение в жизни человека, что связано в первую очередь с восприятием речи. Человек слышит не все звуковые сигналы, а лишь те, которые имеют для него биологическое и социальное значение. Поскольку звук представляет собой распространяющиеся волны, основными характеристиками которых являются частота и амплитуда, то и слух характеризуется теми же параметрами. Частота субъективно воспринимается как тональность звука, а амплитуда как его интенсивность, громкость. Человеческое ухо способно воспринимать звуки частотой от 20 Гц до 20000 Гц и интенсивностью до 140 дБ (болевой порог). Наиболее тонкий слух лежит в диапазоне 1–2 тыс. Гц, т.е. в области речевых сигналов.

Периферический отдел слухового анализатора – орган слуха, состоит из наружного, среднего и внутреннего уха (рис. 4).

Рис. 4. Ухо человека: 1 – ушная раковина; 2 – наружный слуховой проход; 3 – барабанная перепонка; 4 – евстахиева труба; 5 – молоточек; 6 – наковальня; 7 – стремечко; 8 – овальное окно; 9 – улитка.

Наружное ухо включает в себя ушную раковину и наружный слуховой проход. Эти структуры выполняют функцию рупора и концентрируют звуковые колебания в определенном направлении. Ушная раковина к тому же участвует в определении локализации звука.

Среднее ухо включает барабанную перепонку и слуховые косточки.

Барабанная перепонка, отделяющая наружное ухо от среднего, представляет собой перегородку толщиной 0,1 мм, сплетенную из волокон, идущих в различных направлениях. По своей форме она напоминает направленную внутрь воронку. Барабанная перепонка начинает колебаться при действии звуковых колебаний, проходящих через наружный слуховой проход. Колебания перепонки зависят от параметров звуковой волны: чем выше частота и громкость звука, тем выше частота и больше амплитуда колебаний барабанной перепонки.

Эти колебания передаются слуховым косточкам – молоточку, наковальне и стремечку. Поверхность стремечка прилегает к мембране овального окна. Слуховые косточки образуют между собой систему рычагов, которая усиливает колебания, передаваемые с барабанной перепонки. Отношение поверхности стремечка к барабанной перепонке равно 1:22, что во столько же раз усиливает давление звуковых волн на мембрану овального окна. Это обстоятельство имеет большое значение, так как даже слабые звуковые волны, действующие на барабанную перепонку способны преодолеть сопротивление мембраны овального окна и привести в движение столб жидкости в улитке. Таким образом, энергия колебаний, передаваемая на внутреннее ухо, возрастает примерно в 20 раз. Однако при очень громких звуках та же система косточек с помощью специальных мышц ослабляет передачу колебаний.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, существует еще круглое окно, тоже закрытое мембраной. Колебания жидкости в улитке, возникшие у овального окна и прошедшие по ходам улитки, достигают, не затухая, круглого окна. Если бы этого окна с мембраной не было, из-за несжимаемости жидкости колебания ее были бы невозможны.

Полость среднего уха сообщается с наружной средой через евстахиеву трубу , которая обеспечивает поддержание в полости постоянного давления, близкого к атмосферному, что создает наиболее благоприятные условия для колебаний барабанной перепонки.

Внутреннее ухо (лабиринт) включает в себя слуховой и вестибулярный рецепторные аппараты. Слуховая часть внутреннего уха – улитка представляет собой спирально закрученный, постепенно расширяющийся костный канал (у человека 2,5 витка, длина хода около 35 мм) (рис. 5).

По всей длине костный канал разделен двумя перепонками: более тонкой вестибулярной (рейснеровой) мембраной и более плотной и упругой – основной (базилярной, базальной) мембраной. На вершине улитки обе эти мембраны соединяются и в них имеется отверстие – геликотрема. Вестибулярная и основная мембраны делят костный канал на три хода или лестницы, заполненных жидкостью.

Верхний канал улитки, или вестибулярная лестница, берет начало от овального окна и продолжается до вершины улитки, где он через геликотрему сообщается с нижним каналом улитки – барабанной лестницей, которая начинается в области круглого окна. Верхний и нижний каналы заполнены перилимфой, напоминающей по составу спинномозговую жидкость. Средний – перепончатый канал (улитковая лестница) не сообщается с полостью других каналов и заполнен эндолимфой. На базилярной (основной) мембране в улитковой лестнице расположен рецепторный аппарат улитки – орган Корти , состоящий из волосковых клеток. Над волосковыми клетками расположена покровная (текториальная) мембрана. При передаче звуковых колебаний через систему слуховых косточек к улитке в последней происходит колебание жидкости и, соответственно, мембраны, на которой находятся волосковые клетки. Волоски касаются текториальной мембраны и деформируются, что и является непосредственной причиной возбуждения рецепторов и генерации рецепторного потенциала. Рецепторный потенциал вызывает выделение в синапсе медиатора – ацетилхолина, что в свою очередь приводит к генерации потенциалов действия в волокнах слухового нерва. Далее это возбуждение передается к нервным клеткам спирального ганглия улитки, а оттуда в слуховой центр продолговатого мозга – кохлеарные ядра. После переключения на нейронах кохлеарных ядер импульсы поступают к следующему клеточному скоплению – ядрам верхнеоливарного комплекса моста. Все афферентные пути из кохлеарных ядер и ядер комплекса верхней оливы заканчиваются в задних холмах, или нижнем двухолмии, – слуховом центре среднего мозга. Отсюда нервные импульсы поступают во внутренне коленчатое тело таламуса, отростки клеток которого направляются к слуховой коре. Слуховая кора находится в верхней части височной доли и включает 41-е и 42-е поля (по Бродману).

Помимо восходящего (афферентного) слухового пути имеется и нисходящий центробежный, или эфферентный, путь, предназначенный для регуляции сенсорного потока

.Принципы переработки слуховой информации и основы психоакустики

Основными параметрами звука являются его интенсивность (или уровень звукового давления), частота, продолжительность и пространственная локализация источника звука. Какие механизмы лежат в основе восприятия каждого из этих параметров?

Интенсивность звука на уровне рецепторов кодируется амплитудой рецепторного потенциала: чем громче звук, тем больше амплитуда. Но здесь, как и в зрительной системе имеет место не линейная, а логарифмическая зависимость. В отличие же от зрительной системы в слуховой системе используется и другой способ – кодирование числом возбужденных рецепторов (благодаря разному уровню порога у разных волосковых клеток).

В центральных отделах слуховой системы при увеличении интенсивности, как правило, увеличивается частота нервных импульсов. Однако для центральных нейронов наиболее значимым является не абсолютный уровень интенсивности, а характер ее изменения во времени (амплитудно-временная модуляция).

Частота звуковых колебаний. Рецепторы на базальной мембране расположены в строго определенном порядке: на той части, которая расположена ближе к овальному окну улитки, рецепторы реагируют на высокие частоты, а расположенные на участке мембраны ближе к верхушке улитке, реагируют на низкие частоты. Таким образом, частота звука кодируется местоположением рецептора на базальной мембране. Такой способ кодирования сохраняется и в вышележащих структурах, поскольку они являются своеобразной «картой» основной мембраны и взаиморасположение нервных элементов здесь точно соответствует таковому на базальной мембране. Такой принцип получил название топического. В то же время нужно заметить, что на высоких уровнях сенсорной системы нейроны реагируют уже не на чистый тон (частоту), а на его изменение во времени, т.е. на более сложные сигналы, имеющие, как правило, то или иное биологическое значение.

Длительность звука кодируется длительностью разряда тонических нейронов, которые способны возбуждаться в течение всего времени действия раздражителя.

Пространственная локализация звука обеспечивается преимущественно за счет двух разных механизмов. Их включение зависит от частоты звука или его длины волны. При низкочастотных сигналах (примерно до 1,5 кГц) длина волны оказывается меньше межушного расстояния, равного в среднем у человека 21 см. В этом случае локализация источника осуществляется благодаря разному времени прихода звуковой волны на каждое ухо в зависимости от азимута. При частотах больше 3 кГц длина волны заведомо меньше межушного расстояния. Такие волны не могут обогнуть голову, они многократно отражаются от окружающих предметов и головы, теряя при этом энергию звуковых колебаний. В этом случае локализация осуществляется в основном за счет межушных различий по интенсивности. В области частот от 1,5 Гц до 3 кГц происходит смена временного механизма локализации на механизм оценки интенсивности, а область перехода оказывается неблагоприятной для определения местонахождения источника звука.

При определении местонахождения источника звука важно оценить его удаленность. Существенную роль в решении этой задачи играет интенсивность сигнала: чем больше расстояние от наблюдателя, тем меньше воспринимаемая интенсивность. При больших расстояниях (более 15 м) мы учитываем спектральный состав дошедшего до нас звука: звуки высокой частоты затухают быстрее, т.е. «пробегают» меньшее расстояние, звуки низкой частоты, напротив, затухают медленнее и распространяются дальше. Именно поэтому звуки, издаваемые удаленным источником, кажутся нам более низкими. Одним из факторов, существенно облегчающих оценку удаленности, является реверберация звукового сигнала от отражающих поверхностей, т.е. восприятие отраженного звука.

Слуховая система способна определять не только местоположение неподвижного, но и движущегося источника звука. Физиологической основой оценки локализации источника звука является активность так называемых нейронов-детекторов движения, расположенных в верхнеоливарном комплексе, задних холмах, внутреннем коленчатом теле и слуховой коре. Но ведущая роль здесь принадлежит верхним оливам и задним холмам.

Вопросы и задания для самоконтроля

1. Рассмотрите строение органа слуха. Опишите функции наружного уха.

2. Какова роль среднего уха в передаче звуковых колебаний?

3. Рассмотрите строение улитки и органа Корти.

4. Что представляют собой слуховые рецепторы и что является непосредственной причиной их возбуждения?

5. Как происходит преобразование звуковых колебаний в нервные импульсы?

6. Охарактеризуйте центральные отделы слухового анализатора.

7. Oпишите механизмы кодирования интенсивности звука на разных уровнях слуховой системы?

8. Каким образом кодируется частота звука?

9. Какие механизмы пространственной локализации звука вы знаете?

10. В каком диапазоне частот воспринимает звуки ухо человека? Почему самые низкие пороги по интенсивности у человека лежат в области 1–2 кГц?

Звуковых сигналов (звуковых излучений) внешней среды (главным образом, колебания воздуха с разной частотой и силой), в том числе речевых сигналов. Эта функция реализуется с учас­тием - важнейшего компонента , который прошел сложный путь эво­люции.

Слуховая сенсорная система состоит из следующих разделов:

  • периферический отдел, который представляет собой сложный специализированный орган, состоящий из наружного, среднего и внутреннего уха;
  • проводниковый отдел - первый нейрон проводникового отдела, находящийся в спиральном узле улитки, получает от рецепторов внутреннего уха, отсюда информация поступает по его волокнам, т. е. по слуховому нерву (входящему в 8 пар черепно-мозговых нервов) ко второму нейрону в продолговатом мозге и после перекреста часть волокон идет к третьему нейрону в заднем двухолмии , а часть к ядрам - внутреннему коленчатому телу;
  • корковый отдел - представлен четвертым нейроном, который находится в первичном (проекционном) слуховом поле и области коры и обеспечивает возникновение ощущения, а более сложная обработка звуковой информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны, где интегрируются с другими формами информации

Слух является органом чувств человека, который способен воспринимать и различать звуковые волны, состоящие из чередующихся уплотнений и разрежений воздуха с частотой от 16 до 20000 Гц. Частота в 1 Гц (герц) равен 1 колебанию за 1 сек.). Инфразвуки (частота менее 20 Гц) и ультразвуки (частота более 20000 Гц) орган слуха человека не способен воспринимать.

Слуховой анализатор человека состоит из трех частей:

Рецепторного аппарата, содержащегося во внутреннем ухе;

Нервных проводящих путей (восьмой пары черепно-мозговых нервов);

Центра слуха, который расположен в височных долях коры больших полушарий.

Слуховые рецепторы (фонорецепторы, или Кортиев орган) содержатся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания, прежде чем дойти до слуховых рецепторов, проходят через систему звукопроводящих и звукоусилительных приспособлений органа слуха которым с ухо.

Ухо в свою очередь состоит из 3-х частей: внешнего, .

Наружное ухо служит для улавливания звуков и состоит из ушной раковины и из наружного слухового прохода. Ушная раковина образована эластичным хрящом, снаружи покрыта кожей, а внизу дополнена складкой, которая заполнена жировой тканью и называется мочка.

Наружный слуховой проход имеет длину до 2,5 см, выслан кожей с тонкими волосами и видоизмененными потовыми железами, которые вырабатывают ушную серу, состоящий из жировых клеток и выполняет функцию защиты полости уха от пыли и воды. Заканчивается наружный слуховой проход барабанной перепонкой, которая способна воспринимать звуковые волны.

состоит из барабанной полости и слуховой (евстахиевой) трубы . На границе между наружным и средним ухом находится барабанная перепонка, которая снаружи покрыта эпителием, а изнутри слизистой оболочкой. Звуковые колебания, подходящие к барабанной перепонке, заставляют ее колебаться с той же самой частотой. С внутренней стороны перепонки находится барабанная полость, внутри которой расположены соединенные между собой слуховые косточки: молоточек (прирастает к барабанной перепонке), наковальня и стремечко (закрывает овальное окно преддверия внутреннего уха). Через систему слуховых косточек колебания барабанной перепонки передаются во внутреннее ухо. Слуховые косточки размещены так, что образуют рычаги, уменьшающие размах звуковых колебаний, но способствуют их усилению.

Парные евстахиевы трубы соединяют полости внутреннего левого и правого уха с носоглоткой, что способствует уравновешиванию атмосферного и звукового (при открытом рте) давления снаружи и изнутри барабанной перепонки.

Внутреннее ухо расположено в полости пирамиды височной кости и делится на костный и перепончатый лабиринт. Первый представляет собой костные полости и состоит из преддверия, трех полукружных каналов (местоположение вестибулярного аппарата органа равновесия, о котором будет речь идти дальше) и завитка внутреннего уха. Перепончатый лабиринт образован соединительной тканью и представляет собой сложную систему канальцев, содержащиеся в полостях костных лабиринтов. Все полости внутреннего уха заполнены жидкостью, которая в середине перепончатого лабиринта называется эндолимфа, а вне его — перилимфа. В преддверии есть два перепончатых тела: круглый и овальный мешочки. От овального мешочка (пестики) пятью отверстиями начинаются перепончатые лабиринты трех полукружных каналов, образуя вестибулярный аппарат, а с круглым мешочком связан перепончатый улитковый ход.

Завиток внутреннего уха межкостных лабиринт улитки длиной до 35 мм, что продольными базальной и присинковой (Рейснера) мембранами делится на вестибулярные или преддверия лестницы (начинаются от овального окна преддверия), барабанные лестницы (заканчиваются круглым окном, или вторичной барабанной перепонкой пригинка, то делает возможным колебания перилимфе) и средние ступени или перепончатый улитковый ход из соединительной ткани. Полости вестибулярных и барабанных лестницы на вершине улитки (что маг 2,5 оборота вокруг своей оси) соединены между собой тонким каналом (гечикотремою) и заполнены, как указывалось, перилимфой, а полость перепончатого улиткового хода заполнена эндолимфой. В середине перепончатого улиткового хода, содержится звукосприймаючий аппарат под названием спирального, или кортиева органа (орган Корти). Этот орган имеет основную (базальную) мембрану, состоящую примерно из 24 тыс. фиброзных волоконец. На основной мембране (Пластинке), вдоль нее расположен ряд опорных и 4 ряда волосковых (чувствительных) клетки, которые и являются слуховыми рецепторами. Второй структурной частью кортиевого органа является покровная, или волокнистая пластинка, нависающей над волосковых клеток и которую поддерживают клетки-столбы, или палочки Корти. Специфической особенностью волосковых клеток является наличие на вершине каждой из них до 150 волосков (микро-ворсинок) . Выделяют один ряд (3,5 тыс.) внутренних и 3 ряда (до 20 тыс.) внешних волосковых клеток, которые отличаются по уровню чувствительности (для возбуждения внутренних клеток требуется больше энергии, так как их волоски почти не контактируют с покровной пластинкой). Волоски внешних волосковых клеток омываются эндолимфой и непосредственно соприкасаются и частично погружены в вещество покровной пластинки. Основы волосковых клеток охватываются нервными отростками завитковом ветви слухового нерва. В продолговатом мозге (в зоне ядра VIII пары черепно-мозговых нервов) содержится второй нейрон слухового тракта. Далее этот путь идет в нижних бугорков чотиригорбикового тела (крыши) среднего мозга и, частично перекрещиваясь на уровне медиальных коленчатых тел таламуса, направляется в центры первичной слуховой коры (первичных слуховых полей), содержащихся в области сильвиевой борозды верхней части левой и правой височных долей коры головного мозга. Ассоциативные слуховые поля, различают тональность, тембр, интонации и другие оттенки звуков, а также сравнивают текущую информацию с той, что есть в памяти человека (обеспечивают «упоминание» звуковых образов) примыкают к первичным и охватывают значительную площадь.

Для органа слуха адекватным раздражителем являются звуковые волны, исходящие от вибрации упругих тел. Звуковые колебания в воздухе, воде и других средах подразделяются на периодические (которые называются тона и бывают высокими и низкими) и непериодические (шумы) Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенная частота (количество) колебаний за 1 сек. Длина звуковой волны определяется путем деления пути, проходимого звук за I сек на количество полных колебаний, осуществляемых тело, которое звучит, за то же время. Как, указывалось, человеческое ухо способно воспринимать звуковые колебания в пределах 16-20000 Гц, сила которых выражается в децибелах (дБ). Сила звука зависит от размаха (амплитуды) колебаний воздушных частиц и характеризуется тембром (окраской). Наибольшую возбудимость ухо имеет к звукам с частотой колебаний от 1000 до 4000 Гц. Ниже и выше этого показателя возбудимость уха снижается.

В современной физиологии принято резонансное теория слуха , которую в свое время предложил К. Л. Гельмгольц (1863). Воздушные звуковые волны, попадая в наружный слуховой проход, вызывают колебания барабанной перепонки, что дальше передается системе слуховых косточек, которые механически усиливают эти звуковые колебания барабанной перепонки в 35-40 раз и через стремечко и овальное окно преддверия передают их перилимфе, содержащийся в полости вестибулярной и барабанной ступенек завитка. Колебания перилимфе в свою очередь обусловливают синхронные колебания эндолимфы, содержащийся в полости улиткового хода. Это приводит соответствующее колебания базальной (основной) мембраны, волокна которого имеют разную длину, настроенные на разные тона и фактически представляют собой набор резонаторов, вибрирующие в унисон различным звуковым колебаниям. Кратчайшие волны воспринимаются у основания основной мембраны, а самые длинные — у верхушки.

Во время колебания соответствующих резонирующих участков основной мембраны колеблются и расположенные на ней базальные и чувствительные волосковые клетки. Конечные микроворсинки волосковых клеток деформируются от покровной пластинки, что и ведет к возникновению у этих клетках возбуждение слухового ощущения и дальнейшее проведение нервных импульсов по волокнам улиткового нерва в центральную нервную систему. Поскольку полной изоляции фиброзных волоконец основной мембраны нет, то одновременно начинают колебаться волоски и соседних клеток, что создает обертоны (звуковые ощущения, вызванные числом колебаний, которые в 2, 4, 8 и т. д. раз превышают число колебаний основного тона). Этот эффект обусловливает объемность и полифонию звуковых ощущений.

При длительном воздействии сильных звуков возбудимость звукового анализатора снижается, а при длительном пребывании в тишине — растет, что отражает адаптацию слуха. Наибольшая адаптация наблюдается в зоне более высоких звуков.

Чрезмерный и продолжительный шум ведет не только к потере слуха, но и может вызвать у людей психические нарушения. Различают специфическую и неспецифическую действие шума на организм человека. Специфическое действие проявляется в нарушениях слуха различной степени, а неспецифическая — в различных , расстройствах вегетативной реактивности, функционального состояния сердечно-сосудистой системы и пищеварительного тракта, эндокринных расстройствах и т.д.. У лиц молодого и среднего возраста при уровне шума 90 дБ, что продолжается в течение часа, снижается возбудимость клеток коры головного мозга, нарушается координация движений, острота зрения, устойчивость ясного видения, удлиняется латентный период зрительной и слухо-моторной реакции. По такой же продолжительности работы в условиях воздействия шума на уровне 95-96 дБ, наблюдается еще более резкие нарушения мозговой пробковой динамики, развивается запредельное торможение, усиливаются расстройства вегетативных функций, значительно ухудшаются показатели мышечной работоспособности (выносливости, утомляемости) и показатели работы. Длительное пребывание в условиях воздействия шума, уровень которого доходит 120 дБ, дополнительно к указанному вызывает нарушения в виде неврастенических проявлений: появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы. При таких условиях также происходят значительные изменения в состоянии сердечно-сосудистой системы: нарушается тонус сосудов, ритм сердечных сокращений, возрастает артериальное давление.

Шум особенно негативно влияет на детей и подростков. Ухудшение функционального состояния слухового и других анализаторов наблюдается у детей уже под влиянием «школьного» шума, уровень интенсивности которого в основных помещениях школы колеблется от 40 до 5О дБ. В классе уровень интенсивности шума в среднем составляет 50-80 дБ, а во время перерывов и в спортивных залах и мастерских может достигать 95-100 дБ. Важное значение в уменьшении «школьного» шума имеет гигиенически правильное расположение учебных помещений в здании школы, а также использование звукоизолирующих материалов при отделке помещений, где генерируется значительный шум.

Улитковый орган функционирует со дня рождения ребенка но у новорожденных наблюдается относительная глухота , связанная с особенностями строения их уши: барабанная перегинка более толстая, чем у взрослых, и расположена почти горизонтально. Полость среднего уха у новорожденных заполненная амниотической жидкостью, что затрудняет колебания слуховых косточек. В течение ‘первые 1,5-2 месяцев жизни ребенка эта жидкость постепенно рассасывается, и вместо нее из носоглотки через слуховые (Евстахисви) трубы проникает воздух. Слуховая труба у детей шире и короче (2-2,5 см), чем у взрослых (3,5-4 см), что создает благоприятные условия для попадания микробов, слизи и жидкости во время срыгивания, рвота, насморка в полость среднего уха, что может обусловливать воспаление среднего уха (отит).

Становится в конце 2-го в начале 3-го месяца. На втором месяце жизни ребенок уже становится способным дифференцировать различные тона звуков, в 3-4 месяца начинает различать высоту звука в пределах от 1 до 4 октав, а в 4-5 месяцев звуки становятся условно-рефлекторными раздражителями. Дети 5-6 месяцев приобретают способность более активно реагировать на звуки родного языка, тогда как ответы на не специфические звуки постепенно исчезают. В возрасте 1-2 лет дети способны дифференцировать почти все звуки.

У взрослого человека порог чувствительности равен 10-12 дБ, у детей 6-9 лет 17-24 дБ, в 10-12 лет — 14-19 дБ. Наибольшая острота слуха достигается у детей среднего и старшего школьного возраста. Низкие тона дети воспринимают лучше.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека