Sinus, cosinus, tangentă: ce este? Cum să găsiți sinus, cosinus și tangentă? Substituția trigonometrică universală, derivarea de formule, exemple.

Nu te voi convinge să nu scrii cheat sheets. Scrie! Inclusiv cheat sheets despre trigonometrie. Mai târziu intenționez să explic de ce sunt necesare foile de înșelăciune și cum sunt utile foile de înșelăciune. Și aici - informații despre cum să nu învățați, ci să vă amintiți câteva formule trigonometrice. Deci - trigonometrie fără o foaie de cheat! Folosim asocieri pentru memorare.

1. Formule de adunare:

cosinus întotdeauna „merg în perechi”: cosinus-cosinus, sinus-sinus. Și încă ceva: cosinusurile sunt „inadecvate”. Ei „totul este greșit”, așa că schimbă semnele: „-” în „+” și invers.

Sinusuri - "mix": sinus-cosinus, cosinus-sinus.

2. Formule de sumă și diferență:

cosinus întotdeauna „merg în perechi”. După ce adăugați două cosinus - „chile”, obținem o pereche de cosinus - „koloboks”. Și scăzând, cu siguranță nu vom primi koloboks. Primim câteva sinusuri. Tot cu un minus înainte.

Sinusuri - "mix" :

3. Formule pentru transformarea unui produs într-o sumă și o diferență.

Când primim o pereche de cosinus? La adăugarea cosinusurilor. De aceea

Când primim o pereche de sinusuri? La scăderea cosinusurilor. De aici:

„Amestecarea” se obține atât prin adăugarea, cât și prin scăderea sinusurilor. Ce este mai distractiv: adunarea sau scăderea? Așa e, pliază. Și pentru formulă luați adunarea:

În prima și a treia formulă între paranteze - suma. Din rearanjarea locurilor termenilor, suma nu se modifică. Ordinea este importantă doar pentru a doua formulă. Dar, pentru a nu ne confunda, pentru ușurință de reținut, în toate cele trei formule din primele paranteze luăm diferența

iar în al doilea rând, suma

Cearșafurile pentru pătuț în buzunar oferă liniște sufletească: dacă uiți formula, o poți șterge. Și dau încredere: dacă nu reușești să folosești foaia de cheat sheet, formulele pot fi reținute cu ușurință.

Date de referință privind funcțiile trigonometrice sinus (sin x) și cosinus (cos x). Definiție geometrică, proprietăți, grafice, formule. Tabel de sinusuri și cosinusuri, derivate, integrale, expansiuni în serie, secante, cosecante. Expresii prin variabile complexe. Legătura cu funcțiile hiperbolice.

Definiția geometrică a sinusului și cosinusului




|BD|- lungimea arcului de cerc centrat într-un punct A.
α este un unghi exprimat în radiani.

Definiție
Sinusul este o funcție trigonometrică în funcție de unghiul α dintre ipotenuză și catetul unui triunghi dreptunghic, egal cu raportul dintre lungimea catetului opus |BC| la lungimea ipotenuzei |AC|.

Cosinus (cos α) este o funcție trigonometrică în funcție de unghiul α dintre ipotenuză și catetul unui triunghi dreptunghic, egal cu raportul dintre lungimea catetei adiacente |AB| la lungimea ipotenuzei |AC|.

Denumiri acceptate

;
;
.

;
;
.

Graficul funcției sinus, y = sin x


Graficul funcției cosinus, y = cos x


Proprietățile sinusului și cosinusului

Periodicitate

Funcțiile y= sin xși y= cos x periodic cu punct 2 pi.

Paritate

Funcția sinus este impară. Funcția cosinus este pară.

Domeniul definirii si valorilor, extrema, crestere, scadere

Funcțiile sinus și cosinus sunt continue pe domeniul lor de definiție, adică pentru tot x (vezi dovada continuității). Principalele lor proprietăți sunt prezentate în tabel (n - întreg).

y= sin x y= cos x
Domeniul de aplicare și continuitatea - ∞ < x < + ∞ - ∞ < x < + ∞
Gama de valori -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Ascendent
Descendentă
Maxime, y= 1
Minima, y ​​= - 1
Zerouri, y= 0
Puncte de intersecție cu axa y, x = 0 y= 0 y= 1

Formule de bază

Suma pătratului sinusului și cosinusului

Formule sinus și cosinus pentru sumă și diferență



;
;

Formule pentru produsul sinusurilor și cosinusurilor

Formule de sumă și diferență

Exprimarea sinusului prin cosinus

;
;
;
.

Exprimarea cosinusului prin sinus

;
;
;
.

Exprimarea în termeni de tangentă

; .

Pentru , avem:
; .

La:
; .

Tabelul sinusurilor și cosinusurilor, tangentelor și cotangentelor

Acest tabel arată valorile sinusurilor și cosinusurilor pentru unele valori ale argumentului.

Expresii prin variabile complexe


;

Formula lui Euler

{ -∞ < x < +∞ }

Secant, cosecant

Funcții inverse

Funcțiile inverse sinusului și cosinusului sunt arcsinus și, respectiv, arccosinus.

Arcsin, arcsin

Arccosine, arccos

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți ai instituțiilor de învățământ superior, Lan, 2009.

- sigur vor fi sarcini în trigonometrie. Trigonometria este adesea antipatică pentru că trebuie să înghesuiți o cantitate imensă de formule dificile pline de sinusuri, cosinus, tangente și cotangente. Site-ul a oferit deja o dată sfaturi despre cum să vă amintiți o formulă uitată, folosind exemplul formulelor Euler și Peel.

Și în acest articol vom încerca să arătăm că este suficient să cunoaștem cu fermitate doar cinci dintre cele mai simple formule trigonometrice și să avem o idee generală despre restul și să le deducem pe parcurs. Este ca și în cazul ADN-ului: desenele complete ale unei ființe vii terminate nu sunt stocate în moleculă. Conține, mai degrabă, instrucțiuni de asamblare din aminoacizii disponibili. Deci in trigonometrie, cunoscand cateva principii generale, vom obtine toate formulele necesare dintr-un mic set dintre cele care trebuie retinute.

Ne vom baza pe următoarele formule:

Din formulele pentru sinusul și cosinusul sumelor, știind că funcția cosinus este pară și că funcția sinus este impară, înlocuind -b cu b, obținem formule pentru diferențe:

  1. Sinus al diferenței: păcat(a-b) = păcatAcos(-b)+cosApăcat(-b) = păcatAcosb-cosApăcatb
  2. diferența de cosinus: cos(a-b) = cosAcos(-b)-păcatApăcat(-b) = cosAcosb+păcatApăcatb

Punând a \u003d b în aceleași formule, obținem formulele pentru sinusul și cosinusul unghiurilor duble:

  1. Sinusul unui unghi dublu: păcat2a = păcat(a+a) = păcatAcosA+cosApăcatA = 2păcatAcosA
  2. Cosinusul unui unghi dublu: cos2a = cos(a+a) = cosAcosA-păcatApăcatA = cos2a-păcat2a

Formulele pentru alte unghiuri multiple se obțin în mod similar:

  1. Sinusul unui unghi triplu: păcat3a = păcat(2a+a) = păcat2acosA+cos2apăcatA = (2păcatAcosA)cosA+(cos2a-păcat2a)păcatA = 2păcatAcos2a+păcatAcos2a-păcat 3 a = 3 păcatAcos2a-păcat 3 a = 3 păcatA(1-păcat2a)-păcat 3 a = 3 păcatA-4păcat 3a
  2. Cosinusul unui unghi triplu: cos3a = cos(2a+a) = cos2acosA-păcat2apăcatA = (cos2a-păcat2a)cosA-(2păcatAcosA)păcatA = cos 3a- păcat2acosA-2păcat2acosA = cos 3a-3 păcat2acosA = cos 3 a-3(1- cos2a)cosA = 4cos 3a-3 cosA

Înainte de a trece mai departe, să luăm în considerare o problemă.
Dat: unghiul este acut.
Găsiți-i cosinusul dacă
Soluție dată de un elev:
pentru că , apoi păcatA= 3,a cosA = 4.
(Din umor matematic)

Deci, definiția tangentei conectează această funcție atât cu sinus, cât și cu cosinus. Dar puteți obține o formulă care oferă legătura tangentei doar cu cosinusul. Pentru a o deriva, luăm identitatea trigonometrică de bază: păcat 2 A+cos 2 A= 1 și împărțiți-l la cos 2 A. Primim:

Deci soluția la această problemă ar fi:

(Deoarece unghiul este acut, semnul + este luat la extragerea rădăcinii)

Formula pentru tangenta sumei este o alta care este greu de retinut. Să-l scoatem astfel:

ieșire imediată și

Din formula cosinus pentru un unghi dublu, puteți obține formulele sinus și cosinus pentru o jumătate de unghi. Pentru a face acest lucru, în partea stângă a formulei cosinus cu unghi dublu:
cos2 A = cos 2 A-păcat 2 A
adăugăm o unitate, iar în dreapta - o unitate trigonometrică, i.e. suma pătratelor sinusului și cosinusului.
cos2a+1 = cos2a-păcat2a+cos2a+păcat2a
2cos 2 A = cos2 A+1
exprimând cosA prin cos2 Ași efectuând o schimbare de variabile, obținem:

Semnul se ia în funcție de cadran.

În mod similar, scăzând unul din partea stângă a egalității și suma pătratelor sinusului și cosinusului din partea dreaptă, obținem:
cos2a-1 = cos2a-păcat2a-cos2a-păcat2a
2păcat 2 A = 1-cos2 A

Și, în sfârșit, pentru a converti suma funcțiilor trigonometrice într-un produs, folosim următorul truc. Să presupunem că trebuie să reprezentăm suma sinusurilor ca produs păcatA+păcatb. Să introducem variabilele x și y astfel încât a = x+y, b+x-y. Apoi
păcatA+păcatb = păcat(x+y)+ păcat(x-y) = păcat X cos y+ cos X păcat y+ păcat X cos y- cos X păcat y=2 păcat X cos y. Să exprimăm acum x și y în termenii a și b.

Deoarece a = x+y, b = x-y, atunci . De aceea

Vă puteți retrage imediat

  1. Formula de partiție produse de sinus și cosinusîn Cantitate: păcatAcosb = 0.5(păcat(a+b)+păcat(a-b))

Vă recomandăm să practicați și să obțineți formule pentru conversia produsului diferenței sinusurilor și suma și diferența cosinusurilor într-un produs, precum și pentru împărțirea produselor sinusurilor și cosinusurilor într-o sumă. După ce ați făcut aceste exerciții, veți stăpâni temeinic abilitatea de a deriva formule trigonometrice și nu vă veți pierde nici măcar în cel mai dificil control, olimpiada sau testare.

Formulele pentru suma și diferența sinusurilor și cosinusurilor pentru două unghiuri α și β vă permit să treceți de la suma unghiurilor indicate la produsul unghiurilor α + β 2 și α - β 2 . Remarcăm imediat că nu trebuie să confundați formulele pentru suma și diferența sinusurilor și cosinusurilor cu formulele pentru sinusuri și cosinusuri ale sumei și diferenței. Mai jos listăm aceste formule, dăm derivarea lor și arătăm exemple de aplicare pentru probleme specifice.

Yandex.RTB R-A-339285-1

Formule pentru suma și diferența de sinusuri și cosinusuri

Să scriem cum arată formulele de sumă și diferență pentru sinusuri și cosinusuri

Formule de sumă și diferență pentru sinusuri

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Formule de sumă și diferență pentru cosinus

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2, cos α - cos β = 2 sin α + β 2 β - α 2

Aceste formule sunt valabile pentru orice unghiuri α și β. Unghiurile α + β 2 și α - β 2 se numesc, respectiv, semisuma și jumătate diferența unghiurilor alfa și beta. Oferim o formulare pentru fiecare formulă.

Definițiile formulelor de sumă și diferență pentru sinusuri și cosinusuri

Suma sinusurilor a două unghiuri este egal cu dublul produsului dintre sinusul semisumei acestor unghiuri și cosinusul semidiferenței.

Diferența sinusurilor a două unghiuri este egal cu dublul produsului dintre sinusul semidiferenței acestor unghiuri și cosinusul semisumei.

Suma cosinusurilor a două unghiuri este egal cu dublul produsului dintre cosinusul semisumei și cosinusul semidiferenței acestor unghiuri.

Diferența cosinusurilor a două unghiuri este egal cu dublul produsului dintre sinusul semisumei și cosinusul semidiferenței acestor unghiuri, luate cu semn negativ.

Derivarea formulelor pentru suma și diferența sinusurilor și cosinusurilor

Pentru a obține formule pentru suma și diferența sinusului și cosinusului a două unghiuri, se folosesc formule de adunare. Le prezentăm mai jos

sin (α + β) = sin α cos β + cos α sin β sin (α - β) = sin α cos β - cos α sin β cos (α + β) = cos α cos β - sin α sin β cos ( α - β) = cos α cos β + sin α sin β

De asemenea, reprezentăm unghiurile în sine ca sumă a semisumelor și a semidiferențelor.

α \u003d α + β 2 + α - β 2 \u003d α 2 + β 2 + α 2 - β 2 β \u003d α + β 2 - α - β 2 \u003d α 2 + β 2 - α 2 + β 2

Se trece direct la derivarea formulelor de sumă și diferență pentru sin și cos.

Derivarea formulei pentru suma sinusurilor

În suma sin α + sin β, înlocuim α și β cu expresiile pentru aceste unghiuri date mai sus. obține

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Acum aplicăm formula de adunare la prima expresie și formula sinusului diferențelor de unghi la a doua (vezi formulele de mai sus)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Pașii pentru derivarea restului formulelor sunt similare.

Derivarea formulei pentru diferența de sinusuri

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Derivarea formulei pentru suma cosinusurilor

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Derivarea formulei diferenței cosinus

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Exemple de rezolvare a problemelor practice

Pentru început, vom verifica una dintre formule prin înlocuirea unor valori specifice unghiurilor în ea. Fie α = π 2 , β = π 6 . Să calculăm valoarea sumei sinusurilor acestor unghiuri. În primul rând, folosim tabelul cu valorile de bază ale funcțiilor trigonometrice, apoi aplicăm formula pentru suma sinusurilor.

Exemplul 1. Verificarea formulei pentru suma sinusurilor a două unghiuri

α \u003d π 2, β \u003d π 6 sin π 2 + sin π 6 \u003d 1 + 1 2 \u003d 3 2 sin π 2 + sin π 6 \u003d 2 sin π 2 + π 6 2 cos π 2 - π 6 2 \u003d 2 sin π 3 cos π 6 \u003d 2 3 2 3 2 \u003d 3 2

Să luăm acum în considerare cazul în care valorile unghiurilor diferă de valorile de bază prezentate în tabel. Fie α = 165°, β = 75°. Să calculăm valoarea diferenței dintre sinusurile acestor unghiuri.

Exemplul 2. Aplicarea formulei diferenței sinusurilor

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 sin 45 ° cos 120 ° = 2 2 2 - 1 2 = 2 2

Folosind formulele pentru suma și diferența sinusurilor și cosinusurilor, puteți trece de la suma sau diferența la produsul funcțiilor trigonometrice. Adesea, aceste formule sunt numite formule pentru trecerea de la sumă la produs. Formulele pentru suma și diferența sinusurilor și cosinusurilor sunt utilizate pe scară largă în rezolvarea ecuațiilor trigonometrice și în transformarea expresiilor trigonometrice.

Dacă observați o greșeală în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter


În acest articol, vom arunca o privire cuprinzătoare asupra . Identitățile trigonometrice de bază sunt egalități care stabilesc o relație între sinusul, cosinusul, tangenta și cotangenta unui unghi și vă permit să găsiți oricare dintre aceste funcții trigonometrice printr-un altul cunoscut.

Enumerăm imediat principalele identități trigonometrice, pe care le vom analiza în acest articol. Le notăm într-un tabel, iar mai jos dăm derivarea acestor formule și dăm explicațiile necesare.

Navigare în pagină.

Relația dintre sinus și cosinus unui unghi

Uneori vorbesc nu despre principalele identități trigonometrice enumerate în tabelul de mai sus, ci despre una singură identitate trigonometrică de bază drăguț . Explicația pentru acest fapt este destul de simplă: egalitățile sunt obținute din identitatea trigonometrică de bază după împărțirea ambelor părți la și, respectiv, și egalitățile și rezultă din definițiile sinusului, cosinusului, tangentei și cotangentei. Vom discuta acest lucru mai detaliat în paragrafele următoare.

Adică, egalitatea este de interes deosebit, căreia i s-a dat numele identității trigonometrice principale.

Înainte de a demonstra identitatea trigonometrică de bază, dăm formularea acesteia: suma pătratelor sinusului și cosinusului unui unghi este identic egală cu unu. Acum să demonstrăm.

Identitatea trigonometrică de bază este foarte des folosită în transformarea expresiilor trigonometrice. Acesta permite ca suma pătratelor sinusului și cosinusului unui unghi să fie înlocuită cu unul. Nu mai rar, identitatea trigonometrică de bază este folosită în ordine inversă: unitatea este înlocuită cu suma pătratelor sinusului și cosinusului oricărui unghi.

Tangenta si cotangenta prin sinus si cosinus

Identități care leagă tangenta și cotangenta cu sinusul și cosinusul unui unghi al formei și urmează imediat din definițiile sinusului, cosinusului, tangentei și cotangentei. Într-adevăr, prin definiție, sinusul este ordonata lui y, cosinusul este abscisa lui x, tangenta este raportul dintre ordonată și abscisa, adică , iar cotangenta este raportul dintre abscisă și ordonată, adică .

Datorită acestei evidenţe a identităţilor şi adesea definițiile tangentei și cotangentei sunt date nu prin raportul dintre abscisă și ordonată, ci prin raportul dintre sinus și cosinus. Deci tangenta unui unghi este raportul dintre sinus și cosinusul acestui unghi, iar cotangenta este raportul dintre cosinus și sinus.

Pentru a încheia această secțiune, trebuie remarcat faptul că identitățile și Ține loc pentru toate astfel de unghiuri pentru care funcțiile trigonometrice din ele au sens. Deci formula este valabilă pentru orice altceva decât (altfel numitorul va fi zero și nu am definit împărțirea cu zero), iar formula - for all , diferit de , unde z este oricare .

Relația dintre tangentă și cotangentă

O identitate trigonometrică și mai evidentă decât cele două anterioare este identitatea care leagă tangentei și cotangentei unui unghi al formei . Este clar că are loc pentru orice alte unghiuri decât , altfel nici tangenta, fie cotangenta nu sunt definite.

Dovada formulei foarte simplu. Prin definiție și de unde . Dovada ar fi putut fi realizată într-un mod ușor diferit. Din moment ce şi , apoi .

Deci, tangenta și cotangenta unui unghi, la care au sens, este.

CATEGORII

ARTICOLE POPULARE

2022 "kingad.ru" - examinarea cu ultrasunete a organelor umane