Невропатия. Причины, симптомы, признаки, диагностика и лечение патологии

Аксональный тип поражения нейронов

Поражение осевого цилиндра нервного волокна вызывает аксональный тип поражения нерва. Этот тип поражения встречается при токсических, дисметаболических невропатиях, включая алкогольную этиологию, узелковом периартериите, уремии, порфирии, диабете, злокачественных опухолях. Если поражение миелиновой оболочки сказывается на снижении или блокировании проведения импульсов по нерву, например, на проведении сигналов произвольной двигательной команды от коры головного мозга к мышцам, то при аксональном поражении нарушается трофика аксона и аксональный транспорт, что ведет к нарушению возбудимости аксона и, соответственно, невозможности его активации в зоне поражения и дистальнее нее. Нарушение возбудимости аксона приводит к неспособности проводить по нему возбуждение. Сохранение нормальных величин скорости проведения импульса по нервам при аксональном типе поражения связано с проводимостью оставшихся непораженных волокон. Тотальное же аксональное поражение всех нервных волокон приведет к полному отсутствию ответа (полная утрата электровозбудимости нерва) и невозможности проверить скорость проведения. Аксональное поражение влечет за собой нарушение аксонального транспорта и вторичного трофического и информационного влияния на мышцу. В денервированной мышце при аксональном поражении возникают явления денервации. При острой денервации в первые 10-14 дней изменения в мышце отсутствуют, так как аксональный ток использует оставшиеся ресурсы. Далее на первом этапе денервации мышца, теряя организующий нервный контроль, пытается использовать гуморальные факторы регуляции, в связи с чем повышается ее чувствительность к внешним гуморальным воздействиям. Снижение трансмембранного потенциала мышцы и появление возможности быстрого достижения критического уровня деполяризации приводит к появлению спонтанной активности в виде потенциалов фибрилляций и положительных острых волн. Потенциалы фибрилляций возникают на первой стадии денервации и отражают дистрофические процессы в мышечных волокнах. При продолжающемся состоянии денервации частота потенциалов фибрилляций возрастает, и, при гибели мышечных клеток, появляются положительные острые волны. В оценке аксонального поражения весьма важным является определение трех характеристик: степени выраженности, обратимости и распространенность вдоль аксона нарушенной возбудимости . Оценка всех трех параметров возбудимости позволяет судить о выраженности, распространенности и возможности регресса поражения.

Степень выраженности нарушения возбудимости аксона определялась раньше методом классической электродиагностики. Минимальная интенсивность внешнего электрического стимула, способная активировать аксон (генерировать потенциал действия) характеризует его уровень возбудимости. Интенсивность электрического стимула определяется 2-мя параметрами: величиной тока и длительностью его воздействия, т.е. длительностью раздражающего импульса. В норме при умеренной силе тока нерв чувствителен к импульсам малой длительности (до 0.01-0.1 мс), мышца чувствительна только к току большой длительности (20-30 мс). Весьма важно, что раздражение мышцы в двигательной точке не является прямым раздражением мышцы, а опосредуется через терминали аксона и фактически является тестом возбудимости аксона, а не мышцы. Зависимость возбудимости аксона от величины тока и длительности импульса носит название «Сила-длительность» (рис. 13).

Рис. 13. Кривая «сила-длительность» - зависимость возбудимости нерва от

величины тока и длительности импульса (По Л.Р.Зенкову, М.А.Ронкину, 1982).

1 – норма,

2 – частичная денервация (кривая с изломом),

3 – полная денервация,

Х 1 , Х 2 , Х 3 , – хроноксии,

Р 1 , Р 2 , Р 3 , – реобазы.

Метод классической электродиагностики , используемый ранее для диагностики денервации мышц, основан на определении возбудимости низкопороговых (низкомиелинизированных) аксонов, т.е. минимальной степени активации мышцы при приложении к ней импульсного тока. Контроль минимальной активации мышцы осуществлялся визуально, приложение тока – в двигательной точке мышцы. Сила воздействующего тока составляет от 0 до 100 мА, длительность импульса – от 0.05 мс до 300 мс, импульсный ток длительностью 300 мс приравнивается к постоянному. Минимальная сила тока при максимальной длительности (300 мс), приложенная в двигательной точке с катода, вызывающая минимально видимое сокращение мышцы, называется реобазой . При аксональном поражении (денервации) реобаза понижается, т.е. необходима меньшая сила постоянного тока для минимального сокращения мышцы, так как легче достижим критический уровень деполяризации. Наиболее информативным показателем поражения аксона (денервации) является возбудимость его на импульсный ток малой длительности. В связи с этим был введен показатель хронаксии - минимальная длительность импульса тока величиной в две реобазы, необходимая для минимально видимого сокращения мышцы. При аксональном поражении (денервации) показатель хронаксии возрастает. Сопоставляя показатели реобазы и хронаксии с кривой «сила-длительность», можно заметить, что реобаза и хронаксия являются точками кривой. Таким образом, реобаза и хронаксия являются ориентировочными показателями в оценке аксонального поражения. В настоящее время оценка кривой «сила-длительность» не проводится по ряду причин:

* метод основан на субъективном критерии активации мышцы (визуальный);

* значительная трудоемкость исследования;

* неоднозначность трактовок результатов, так как при частичном сохранении непораженных нервных волокон в нерве кривая «сила-длительность» будет представлять сумму возбудимости пораженных и непораженных волокон. Возбудимость непораженных волокон будет формировать левую часть кривой (на импульсы малой длительности), а возбудимость пораженных волокон - правую часть кривой (на импульсы большой длительности);

* достаточная инерционность в изменении кривой при оценке процесса реиннервации по сравнению с игольчатой ЭМГ;

* отсутствие современных приборов для проведения исследования. Используемый ранее прибор УЭИ-1 основательно устарел морально и физически, так как выпуск его прекратился уже более 15 лет назад.

В стимуляционной ЭМГ при исследовании М-ответа чаще используют стимулы 0.1 мс, максимальная же длительность импульса, генерируемая стимулятором в ЭМГ установке составляет 1.0 мс. При регистрации М-ответа в режиме супрамаксимальной стимуляции активируются все аксоны, иннервирующие мышцу. При поражении всех аксонов М-ответ отсутствует. При поражении части аксонов нерва регистрируется М-ответ пониженной амплитуды за счет того, что пораженные аксоны снижают или теряют свою возбудимость. Стимуляционная ЭМГ диагностика аксонального частичного поражения имеет преимущества перед классической электродиагностикой, так как позволяет учитывать вклад в М-ответ не только низкопороговых аксонов (двигательных единиц), но и высокопороговых высокомиелинизированных волокон. Классическая электродиагностика позволяет оценивать возбудимость только низкопороговых низкомиелинизированных волокон. Принимая во внимание тот факт, что аксоны высокомиелинизированных волокон поражаются при утрате связи с телом нейрона раньше немиелинизированных (низкопороговых) (Е.И.Зайцев, 1981), можно утверждать, что метод оценки параметров М-ответа является более чувствительным, чем классическая электродиагностика.



Обратимость нарушения возбудимости аксона является малоизученной областью, несмотря на большую значимость ее в клинике. При травмах периферических нервов, полиневропатиях, мононевропатиях, полиомиелитическом синдроме часто регистрируется так называемый аксональный тип поражения, т.е. падение амплитуды дистального М-ответа при относительно сохранной скорости проведения импульса по нерву и форме М-волны. Такое снижение амплитуды М-ответа сочетается с понижением или потерей возбудимости части аксонов. Опыт работы в клинике нейроинфекций института детских инфекций показывает, что нарушение возбудимости аксонов в острый период поражения в ряде случаев является необратимым и приводит к гибели аксона с дальнейшей компенсаторной реиннервации. В других случаях нарушение возбудимости является обратимым, гибели аксона не происходит, и нарушенные функции быстро восстанавливаются. В неврологии термин «аксональное поражение» используется как синоним необратимости и выраженности поражения аксона, что связано с частой констатацией этого вида поражения на достаточно поздних сроках от начала заболевания (поражения) – 1-2 месяца, когда период обратимости нарушения возбудимости аксона заканчивается. Анализ данных больных в динамике с невропатией лицевого нерва, острой воспалительной полинейропатией, экспериментальные и клинические данные литературы позволяют говорить о следующей динамике нарушений возбудимости аксонов. Поражение аксона вызывает нарушение в первую очередь быстрого аксонального транспорта, что приводит через 5-6 дней к частичному снижению возбудимости части аксонов нерва к импульсному току малой длительности (0.1 мс) с сохранной чувствительностью к импульсам относительно большой длительности (0.5 мс). При стимуляции импульсами 0.5 мс активируются все аксоны нерва, и амплитуда М-ответа соответствует нормативным значениям. Эти изменения обратимы при отсутствии дальнейшего неблагоприятного воздействия. При продолжающемся и усиливающемся воздействии повреждающего фактора возбудимость аксонов снижается в большей степени, и он становится нечувствительным к импульсам длительностью 0.5 мс. Пролонгация повреждающего фактора свыше 3-4 недель приводит к необратимым последствиям - дегенерации аксона и развитию так называемого аксонального поражения. Таким образом, обратимую стадию аксонального поражения (до 3 недель) можно называть функциональным аксональным поражением , а необратимую (свыше 3 недель) – структурным аксональным поражением . Однако обратимость нарушений в острой стадии поражения зависит не только от длительности и выраженности, но и от быстроты развития поражений. Чем быстрее развивается поражение, тем слабее компенсаторно-приспособительные процессы. С учетом этих особенностей предложенное разделение обратимости аксонального поражения даже при использовании ЭНМГ достаточно условно.

Распространенность нарушения возбудимости аксона по длиннику нерва необходимо учитывать при воспалительных, дизметаболических, токсических невропатиях. Дистальный тип поражения аксона чаще выявляется в нервах с наибольшей длиной нервного волокна, что получило название дистальной невропатии. Повреждающие факторы, воздействующие на тело нейрона, приводят к ухудшению аксонального транспорта, которое в первую очередь сказывается на дистальных участках аксона (P.S.Spencer, H.H.Schaumburg, 1976). Клинически и электрофизиологически в этих случаях выявляется дистальная дегенерация аксона (структурное аксональное поражение) с признаками денервации мышц. В острой стадии поражения у больных с воспалительной невропатией также выявляется дистальный тип нарушения возбудимости аксона. Однако он может выявляться только электрофизиологически, быть обратимым и не достигать клинически значимого уровня (функциональное аксональное поражение). Дистальный тип поражения аксона чаще регистрируется в нижних конечностях. В верхних конечностях при воспалительных невропатиях страдает чаще проксимальный участок нервного волокна и поражение носит демиелинизирующий характер.

Аксональный и демиелинизирующий типы поражения изолированно практически не встречаются. Чаще поражение нерва носит смешанный характер с преобладанием одного из видов поражения. Так, например, при диабетической и алкогольной полиневропатии могут встречаться варианты поражения как с аксональным, так и с демиелинизирующим типом нарушений.

Поражение n. medianus на любом его участке, приводящее к болям и отечности кисти, расстройству чувствительности ее ладонной поверхности и первых 3,5 пальцев, нарушению сгибания этих пальцев и противопоставления большого пальца. Диагностика проводится неврологом по результатам неврологического осмотра и электронейромиографии; дополнительно при помощи рентгенографии, УЗИ и томографии исследуют костно-мышечные структуры. В лечение включают обезболивающие, противовоспалительные, нейрометаболические, сосудистые фармпрепараты, ЛФК, физиолечение, массаж. По показаниям проводятся хирургические вмешательства.

Общие сведения

Невропатия срединного нерва встречается достаточно часто. Основной контингент заболевших - лица молодого и среднего возраста. Наиболее распространенные места поражения срединного нерва соответствуют зонам его наибольшей уязвимости - анатомическим туннелям, в которых возможно сдавление (компрессия) ствола нерва с развитием т. н. туннельного синдрома. Самым часто встречающимся туннельным синдромом n. medianus является синдром запястного канала - сдавление нерва при его переходе на кисть. Средняя заболеваемость в популяции составляет 2-3%.

Вторым по распространенности местом поражения срединного нерва выступает его участок в верхней части предплечья, идущий между мышечными пучками круглого пронатора. Такая невропатия носит название «синдром круглого пронатора». В нижней трети плеча n. medianus может быть сдавлен аномальным отростком плечевой кости или связкой Струзера. Его поражение в этом месте носит название синдром ленты Струзера, или синдром супракондилярного отростка плеча. В литературе также можно встретить синонимичное название - синдром Кулона-Лорда-Бедосье, включающее имена соавторов, впервые описавших этот синдром в 1963 г.

Анатомия срединного нерва

N. medianus формируется при соединении пучков плечевого сплетения, которые, в свою очередь, начинаются от спинномозговых корешков С5–Th1. После прохождения подмышечной зоны идет рядом с плечевой артерией вдоль медиального края плечевой кости. В нижней трети плеча уходит глубже артерии и проходит под связкой Струзера, при выходе на предплечье идет в толще круглого пронатора. Затем проходит между мышцами-сгибателями пальцев. На плече срединный нерв не дает ветвей, к локтевому суставу от него отходят сенсорные ветви. На предплечье n. medianus иннервирует практически все мышцы передней группы.

С предплечья на кисть n. medianus переходит через карпальный (запястный канал). На кисти он иннервирует мышцы противопоставляющую и отводящую большой палец, частично мышцу, сгибающую большой палец, червеобразные мышцы. Сенсорные ветви n. medianus иннервируют лучезапястный сустав, кожу ладонной поверхности радиальной половины кисти и первых 3,5 пальцев.

Причины невропатии срединного нерва

Невропатия срединного нерва может развиться вследствие травмы нерва: его ушиба, частичного разрыва волокон при резанных, рваных, колотых, огнестрельных ранах или повреждении отломками костей при переломах плеча и предплечья, внутрисуставных переломах в локтевом или лучезапястном суставах. Причиной поражения n. medianus могут быть вывихи или воспалительные изменения (артроз , артрит , бурсит) указанных суставов. Компрессия срединного нерва в любом его отрезке возможна при развитии опухолей (липом , остеом , гигром , гемангиом) или формировании посттравматических гематом . Невропатия может развиваться вследствие эндокринной дисфункции (при сахарном диабете , акромегалии , гипотиреозе), при заболеваниях, влекущих за собой изменения в связках, сухожилиях и костных тканях (подагре , ревматизме).

Развитие туннельного синдрома обусловлено компрессией ствола срединного нерва в анатомическом туннеле и нарушением его кровоснабжения вследствие сопутствующего сдавления питающих нерв сосудов. В связи с этим туннельный синдром также носит название компрессионно-ишемического. Наиболее часто невропатия срединного нерва такого генеза развивается в связи с профессиональной деятельностью. Например, синдромом запястного канала страдают маляры, штукатуры, плотники, упаковщики; синдром круглого пронатора наблюдается у гитаристов, флейтистов, пианистов, у кормящих женщин, которые длительно держат спящего ребенка на руке в положении, когда его голова находится на предплечье матери. Причиной туннельного синдрома может выступать изменение анатомических структур, образующих туннель, что отмечается при подвывихах, повреждении сухожилий , деформирующем остеоартрозе , ревматическом заболевании околосуставных тканей . В редких случаях (менее 1% во всей популяции) компрессия обусловлена наличием аномального отростка плечевой кости.

Симптомы невропатии срединного нерва

Невропатия срединного нерва характеризуется выраженным болевым синдромом. Боль захватывает медиальную поверхность предплечья, кисть и 1-3-й пальцы. Часто она имеет жгучий каузалгический характер. Как правило, боли сопровождаются интенсивными вегетативно-трофическими нарушениями, что проявляется отечностью, жаром и покраснением или похолоданием и бледностью запястья, радиальной половины ладони и 1-3-го пальцев.

Наиболее заметными симптомами двигательных нарушений являются невозможность собрать пальцы в кулак, противопоставить большой палец, согнуть 1-й и 2-й пальцы кисти. Затруднено сгибание 3-го пальца. При сгибании кисти наблюдается ее отклонение в локтевую сторону. Патогномоничным симптомом выступает атрофия мышц тенора. Большой палец не противопоставляется, а становиться в один ряд с остальными и рука приобретает схожесть с обезьяньей лапой.

Сенсорные нарушения проявляются онемением и гипестезией в зоне иннервации срединного нерва, т. е. кожи лучевой половины ладони, ладонной поверхности и тыла концевых фаланг 3,5 пальцев. Если нерв поражен выше запястного канала, то чувствительность ладони обычно сохранена, т. к. ее иннервация осуществляется ветвью, отходящей от срединного нерва до его входа в канал.

Диагностика невропатии срединного нерва

В классическом варианте невропатия срединного нерва может быть диагностирована неврологом в ходе тщательного неврологического осмотра. Для выявления двигательной недостаточность пациента просят выполнить ряд тестов: сжать все пальцы в кулак (1-й и 2-й пальцы не сгибаются); поскрести по поверхности стола ногтем указательного пальца; растягивать лист бумаги, взяв его лишь первыми двумя пальцами каждой руки; вращать большими пальцами; соединить кончики большого пальца и мизинца.

При туннельных синдромах определяется симптом Тиннеля - болезненность по ходу нерва при постукивании в месте компрессии. С его помощью можно диагностировать место поражения n. medianus. При синдроме круглого пронатора симптом Тиннеля определяется при постукивании в районе табакерки пронатора (верхняя треть внутренней поверхности предплечья), при синдроме запястного канала - при постукивании по радиальному краю внутренней поверхности запястья. При синдроме супракондилярного отростка боль возникает, когда пациент одновременно со сгибанием пальцев разгибает и пронирует предплечье.

Уточнить топику поражения и отдифференцировать невропатию n. medianus от плечевого плексита , вертеброгенных синдромов (радикулита , грыжи диска, спондилоартроза , остеохондроза , шейного спондилеза), полиневропатии помогает электронейромиография . С целью оценки состояния костных структур и суставов проводится рентгенография костей , МРТ, УЗИ или КТ суставов. При синдроме супракондилярного отростка при рентгенографии плечевой кости выявляется «шпора», или костный отросток. В зависимости от этиологии невропатии в диагностике принимают участие

Моторный ответ (М-ответ) – суммарный синхронный электрический потенциал мышцы, возникающий при одиночном электрическом раздражении двигательного или смешанного нерва.

Для гарантированной активизации всех функционирующих ДЕ исследуемой мышцы используется стандартизированная методика супрамаксимальной стимуляции нерва – повышение силы раздражения после достижения максимального М-ответа еще на 30 – 50%. Данная методика является базисной при регистрации и оценке М-ответа, определение скорости невральной проводимости возбуждения по двигательным волокнам.

Субмаксимальная стимуляция нерва вызывает М-ответ другой формы с меньшей амплитудой и длительностью. Величина пороговой стимуляции варьируется в небольших пределах в ависимости от характера наложения электродов, индивидуальных особенностей электрического сопротивления кожи, достаточной влажности марлевых подэлектродных прокладок.

Анализируются следующие параметры М-ответа: латентность, амплитуда, форма, длительность и площадь потенциала (см. рисунок ).

Латентный период М-ответа : временной интервал между электрической стимуляцией нерва одиночным импульсом и началом М-ответ. Латентный период М-ответа определяется максимальной проводимостью возбуждения (распространяющийся потенциал действия) по нервным волокнам. Распространение возбуждения по волокну обеспечивает последовательное сочетание следующих процессов: деполяризация мембраны – выход натрия в волокно – деполяризация соседнего участка мембраны – вход в этом участке натрия и т.д.

Амплитуда М-ответа зависит от количества и синхронности вызванной активации двигательных единиц мышцы. Гибель части ДЕ, возникающая при развитии денервационного синдрома, приводит к снижению амплитуды М-ответа. Основное проявление денервационного синдрома мышцы – дегенерация концевой пластинки – зоны мышечного волокна, где сосредоточен весь холинергический аппарат того волокна. При этом появляются новые ацетилхолиновые рецепторы на всем протяжении мышечного волокна («растекание рецепторов») и в связи с этим повышается общая чувствительность к ацетилхолину всего волокна.

Депрессия вызванной активации ДЕ (функциональная асинхронность) при патологическом замедлении проводимости возбуждения по нервным волокнам также может приводить к снижению амплитуды М-ответа, однако в том случае площадь мышечного ответа не уменьшается и соответствует нормативным показателям.

Форма М-ответа отражает участие в мышечном ответе не только высокопроводящих, но и медленнопроводящих волокон. Электростимуляция, в отличие от асинхронного режима активации мышцы при произвольном движении, вызывает сравнительно синхронную активацию ДЕ с незначительной депрессией.

Первоначальное отклонение кривой М-ответа от нулевой линии при регистрации вызванного потенциала обусловлено невральной проводимостью по миелинизированным нервным волокнам, а конечный комплекс М-ответа – проведением импульсов по низкопроводящим (безмиелиновым) волокнам. При некоторых формах патологии в периферических нервах могут формироваться волокна с замедленной проводимостью, способные играть роль дополнительного источника синхронизации.

Для качественной оценки формы М-ответа различают фазы, псевдофазы и гребневидную зубчатость. При этом следует учитывать, что форма ответа зависит от места расположения отводящего активного электрода. Первично-негативная фаза М-ответа обусловлена установкой активного электрода в двигательной точке мышцы, где расположены концевые пластинки, являющиеся генератором развития негативного потенциала. Последующая позитивная фаза М-ответа обусловлена перемещением возникшего негативного потенциала от активного электрода к референтному. Первичный небольшой позитивный пик перед негативной фазой М-ответа обусловлен смещением активного электрода с двигательной точки в сторону сухожилия мышцы.

Псевдофазы (турны) М-ответа возникают вследствие запоздалой активации отдельных групп мышечных волокон. Псевдополифазная форма М-ответа регистрируется в норме при исследовании мышц, имеющих две головки и более (в этом случае форма и амплитуда псевдофаз постоянны и не зависят от удаленности точки стимуляции).

При патологии нейромоторного аппарата появляются дополнительные фазы (более трех) и псевдофазы (более двух) М-ответа, что отражает асинхронность активации мышечных волокон за счет нарушения невральной проводимости импульсов по отдельным аксонам. Сохранение формы полифазного или псевдополифазного М-ответа при стимуляции нерва на разных уровнях обусловлено нарушением невральной проводимости в дистальных участках аксонов.

Удлинение фазы и псевдофазы М-ответа при увеличении расстояния между стимулирующим и отводящим электродом свидетельствует о нарушении проводимости нервных волокон равномерно на всем их протяжении.

Регистрация дополнительной фазы или псевдополифазы обусловлена наличием достаточно большой группы ДЕ, которые активируются асинхронно по отношению к остальным двигательным единицам. Появление М-ответа с гребневидной зубчатостью обусловлено различной проводимостью по небольшим группам нервных волокон, что ведет к появлению незначительных псевдофаз на всем протяжении М-ответа. Равномерное снижение невральной проводимости преимущественно по медленно проводящим нервным волокнам приводит к формированию М-ответа увеличенной длительности с уменьшением амплитуды, но без изменения площади М-ответа.

Длительность М-ответа : время с момента отклонения кривой от нулевой линии до возврата к нулевой линии. Данный показатель формы М-ответа обусловлен неодновременной активацией двигательных единиц, что косвенно отражает весь диапазон невральной проводимости по конкретному нерву. Поэтому увеличение длительности М-ответа при нормальной скорости невральной проводимости свидетельствует о поражении медленнопроводящих волокон, а снижение скорости невральной проводимости при сохранности длительности М-ответа – быстропроводящих волокон.

Методика регистрации М-ответа

Для регистрации М-ответа необходимо правильно выбрать исследуемые мышцы, подобрать в соответствии с целями обследования отводящие электроды и точки отведения, определить точки и параметры стимуляции, а также условия регистрации.

Поскольку регистрация М-ответа проводится для анализа его параметров и определения скорости невральной проводимости (на основе оценки разности латентных периодов М-ответа с разных точек стимуляции), как правило, выбираются наиболее дистально расположенные мышцы, иннервируемые исследуемым нервом. Но при полиневропатиях необходимо исследовать не только дистальные, но и более проксимально расположенные мышцы.

Вызванные потенциалы с поверхностно расположенных мышц отводятся накожными электродами. Стимуляция пораженного нерва часто активирует близлежащие мышцы за счет затекания ститмуляционного тока на соседние интактные нервы из-за высокой интенсивности стимуляции. В этих случаях целесообразно использовать в качестве отводящих монополярные игольчатые электроды. Игольчатые электроды используют также для регистрации вызванной активности глубоко расположенных мышц. Однако использование игольчатых электродов в клинической практике ограничено из-за невозможности регистрировать потенциал всей мышцы.

Отводящий электрод в зависимости от типа (накожный или игольчатый) должен располагаться в двигательной точке мышцы, что позволяет зарегистрировать первично-негативную фазу М-ответа (критерий правильности нахождения отводящего электрода). Референтный электрод целесообразно располагать на сухожилии мышцы.

Выбор точек стимуляции нерва осуществляют перемещением стимуляционного электрода как вдоль, так и поперек нерва до появления максимальной амплитуды М-ответа при умеренной постоянной силе стимуляции. Катод считают активным электродом, так как нерв активируется под ним в большей степени. Анод целесообразно располагать проксимальнее катода, так как под анодом возбудимость нервных волокон снижается. Интенсивность стимуляции нерва для получения репрезентативных данных должна превышать максимальную на 30 – 50%. Максимальной же считается такая интенсивность стимуляции, при которой возбуждаются 100% нервных волокон, а дальнейшее увеличение интенсивности не вызывает прироста амплитуды М-ответа. Супрамаксимальная интенсивность стимуляции обеспечивает большую надежность активации всех нервных волокон. При различных поражениях нервных волокон чувствительность их току малой длительности снижается, поэтому для регистрации максимального М-ответа необходимо увеличивать не только силу тока, но и длительность раздражающего стимула.

Исследование следует проводить в отапливаемом помещении, так как низкая температура кожного покрова в месте отведения М-ответа (ниже 34°С) приводит к искажению параметров.

Параметры М-ответа в норме и при патологии

Основным патологическим паттерном М-ответа является снижение амплитуды, что обусловлено тремя различными причинами:
1. гибелью части периферических мотонейронов и связанных с ними двигательных единиц;
2. снижением возбудимости мотонейронов и/или аксонов;
3. нарушением невральной проводимости и соответствующим увеличением длительности М-ответа, что приводит к снижению амплитуды.

Снижение возбудимости мотонейронов и аксонов обусловлено нарушением их микроструктуры или обменных процессов; оно может быть обратимым или прогрессировать в зависимости от интенсивности и длительности воздействия повреждающих факторов. Нарушение возбудимости аксонов проявляется в первую очередь и бывает более выраженным в дистальных отделах нервов, потому стимуляция в проксимальной точке нерва вызывает М-ответ большей амплитуды, чем в дистальной точке. Поэтом при полиневропатиях необходима стимуляция импульсами большей длительности (0,5 – 1,0 мс).

Амплитуда М-ответа понижается при удалении точки стимуляции от мышцы, что связано с увеличением времени активации ДЕ. В норме при удалении точки проксимальной стимуляции на середину конечности это понижение не превышает 20% от амплитуды дистального М-ответа. Развитие частичного блока невральной проводимости возбуждения вследствие патологического фокального изменения мембраны нервного волокна приводит к значительному снижению амплитуды (более 20%) проксимального М-ответа по сравнению с дистальным.

Выделяют полный, частичный и возможный частичный блок проведения. При полном блоке проведения возбуждения по периферическим нервам М-ответ с проксимальной точки не вызывается. При частичном блоке проведения проксимальный М-ответ составляет менее 80% от дистального, а длительность проксимального ответа не более чем на 15% превышает длительность дистального М-ответа. Возможный частичный блок поведения проявляется снижением амплитуды проксимального М-ответа менее 80% от дистального с длительностью более 15%.

Патологические паттерны длительности М-ответа зависят о характера поражения периферического мотонейрона. Поражения приводящие к нарушению возбудимости мотонейронов, ведут к уменьшению длительности М-ответа. Поражения периферической нервной системы, характеризующиеся нарушением аксональной проводимости, приводят к повышению длительности моторного вызванного потенциала.

Латентность М-ответа измеряется также при чувствительности 200 – 500 мкВ/дел. и скорости развертки 1 – 2 мс/дел. Для клинических исследований используется терминальная латентность, т.е. латентность М-ответа, полученного при стимуляции нерва в дистальной точке. Латентности М-ответов, вызванных стимуляцией проксимальных точек периферических нервов, используются для расчета скоростей невральной проводимости возбуждения. Сравнительный анализ абсолютных значений терминальной латентности при повторных исследованиях осуществляется путем стандартизации регистрации М-ответа, что позволяет сохранить постоянное расстояние между отводящим и стимулирующим электродом.

Для этого используют два подхода. В первом случае, вене зависимости от особенностей хода нервных волокон, точку стимуляции удаляют от отводящего электрода, обычно на 6 – 8 см. Второй подход основан на стандартизации расположения точек стимуляции относительно анатомических образований соответствующего сегмента конечности. Так, при исследовании срединного нерва дистальная точка стимуляции по Kimura (1989) локализуется на запястье между сухожилиями лучевого сгибателя запястья (m. flexor carpi radialis) и длинной ладонной мышцы (m. palmaris longus) на 3 см проксимальнее дистальной складки запястья.

Расстояние между отводящим и стимулирующим электродами используется также для расчета показателей резидуальной (остаточной) латентности по формуле:

РЛ х ТЛ (мс) – S (мм) / СПИ макс. (мм/мс),

где РЛ – резидуальная латентность, ТЛ – терминальная латентность, S – расстояние между катодом стимулирующего электрода и активным отводящим электродом, СПИ – скорость проведения импульса на предшествующем дистальном участке нерва.

Резидуальная латентность условно включает время синаптической задержки (около 1 мс), время проведения возбуждения по немиелинизированным терминалям аксона, где СПИ значительно снижена, время проведения возбуждения по мембране мышечного волокна (1 – 5 м/с). Резидуальная латентность, в отличие от терминальной, не зависит от длины сегмента конечности и соответственно от роста испытуемого. В норме резидуальная латентность нейромоторного аппарата не превышает 2,5 мс.

Патологические паттерны М-ответа

Поскольку вызванные потенциалы мышц регистрируются в пределах нейромоторного аппарата, при надсегментарных поражениях нервной системы любого происхождения параметры М-ответа остаются в нормальных границах, пока не сформируются вторичные дегенеративно-дистрофические изменения периферического мотонейрона на разных уровнях (тело клетки, аксон, терминали). Поражение тел мотонейронов при переднероговых патологических процессах и аксонов при заболеваниях и травмах периферических нервов приводит к снижению амплитуды и длительности М-ответа с характерным нарушением его формы.

Нарушения аксональной проводимости возбуждения в дистальных отделах периферических нервов, возникающее при инфекционно-аллергических и метаболических полиневропатиях, проявляется повышением терминальной и резидуальной латентности, длительности дистального М-ответа, уменьшением амплитуды М-ответа за счет временной дисперсии прохождения импульсов по всем нервным волокнам, входящим в состав нервного ствола.

Снижение аксональной проводимости возбуждения преимущественно в проксимальных отделах периферических нервов конечностей приводит к уменьшению амплитуды М-ответа при проксимальной стимуляции по сравнению с дистальной стимуляцией.

таблица : патологические параметры М-ответа


параметры М-ответа тип патологии:
передние рога + аксональный тип поражения нервов
тип патологии:
понижение возбудимости аксонов
тип патологии:
демиелинизация дистальных отделов нервов
тип патологии:
демиелинизация проксимальных отделов нервов
амплитуда дистального ответа N или N
терминальная латентность N N N
длительность дистального ответа N или N N
фазность дистального ответа N N норма или N
амплитуда проксимального ответа N N или
латентность проксимального ответа N N
длительность проксимального ответа N или N
фазность проксимального ответа N N N или

примечание: N – норма, - снижение, - повышение.

Аксональные поражения возникают при вертеброгенных радикулопатиях, травматических невропатиях и плексопатиях, инфекционно-аллергических и метаболических полиневропатиях. Понижение возбудимости аксонов может наблюдаться при патологии тел мотонейронов и аксонов, например, при миелополирадикулоневритах.

Демиелинизация нервных волокон как в проксимальных, так и в дистальных отделах периферических нервов возникает при различных демиелинизирующих заболеваниях нервной системы. Острые, подострые и хронические воспалительные демиелинизирующие полиневропатии сопровождаются формированием многочисленных блоков невральной проводимости и проявляются значительным снижением амплитуды проксимального М-ответа, увеличением латентности, длительности и фазности М-ответа.

Определение скорости невральной проводимости возбуждения по моторным и сенсорным волокнам

Определение скорости невральной проводимости возбуждения, или СПИ, осуществляется отдельно для двигательных, чувствительных, вегетативных волокон на основе показателей латентности двух М-ответов или двух вызванных потенциалов нервов: расстояние между двумя точками стимуляции нерва делится на разность латентностей соответствующих потенциалов.

расчет СПИ проводится по формуле:

V = S / (T2 – T1) = S / (t2 + tc + tm) = S / (t2 + tc + tm – t1 + tc + tm) = S / (t2 – t1) [м/с],

где S – расстояние между стимулирующими электродами; T2 – латентный период М-ответа при стимуляции в проксимальной точке; T1 – латентный период М-ответа при стимуляции в дистальной точке; t2 – время прохождения импульса по нервному волокну от проксимальной точки стимуляции до нервно-мышечного синапса; t1 - время прохождения импульса по нервному волокну от дистальной точки стимуляции до нервно-мышечного синапса; tc – время синаптической задержки; tm – время электрической активации мышцы.

Использование двух точек стимуляции нерва позволяет вычислить СПИ только по длинным нервам, проводимость по коротким нервным стволам оценивают по терминальной латентности с соблюдением постоянства расстояния между стимулирующим и отводящим электродами (см. рисунок ).

Методика измерения скорости проведения импульса по моторным волокнам нервов

Методика базируется на регистрации М-ответа. Для вычисления СПИ важно точно измерить латентность М-ответов и расстояние между точками стимуляции, так как даже незначительные погрешности в измерении могут привести к значительному искажению СПИ. Для измерения латентности регистрация М-ответов должна проводиться на чувствительности 0,2 – 0,5 мВ/дел. (на высокой чувствительности это отклонение заметно раньше).

Стимулирующий электрод необходимо располагать вдоль нерва так, что бы катод был ближе к отводящему электроду. Расстояние между стимулирующим и отводящим электродами следует измерять от катода до активного отводящего электрода. В связи с этим важно учитывать полярность пластин стимулирующего электрода и, в случае необходимости, корректировать ее переключателем полярности на приборе.

Стимуляция нерва в дистальной точке моет приводить к деформации нулевой линии артефактом раздражения, что часто затрудняет определение истинного начала М-ответа и соответственно искажает величину латентного периода.

Использование монополярных игольчатых электродов для стимуляции нервного ствола и регистрации М-ответа ограничено ввиду трудности достижения идентичной формы М-ответа при стимуляции нерва на разных уровнях (стимуляция игольчатым электродом может активировать только часть нервных волокон, прилежащих к игле).

Определение СПИ по сенсорным волокнам периферических нервов осуществляется по вышеприведенной формуле. Исследование можно проводить путем электростимуляции в двух точках нервного ствола или даже одной точки; в этом случае СПИ по сенсорному нерву определяется путем деления расстояния между точкой стимуляции и точкой отведения потенциала на латентность сенсорного потенциала (см. рисунок ). Латентный период вызванного потенциала сенсорного нервного волокна определяется только временем прохождения импульса по волокну. Амплитуда вызванного потенциала сенсорного нервного волокна на три порядка меньше, чем амплитуда М-ответа, и составляет 10 – 60 мкВ, причем амплитуда сенсорного потенциала, в противоположность М-ответу, значительно уменьшается при увеличении расстояния от точки стимуляции до точки отведения, что связано с так называемым эффектом нейтрализации фаз (phase cancellation).

Сенсорные волокна различаются по строению, а, следовательно, и по СПИ. Наибольшую скорость невральной проводимости возбуждения (70 – 120 м/с) имеют толстые миелинизированные волокна, проводящие импульсы от нервно-мышечных веретен; безмякотные (болевые, температурные) волокна проводят импульсы со скоростью 0,2 – 2 м/с. Поэтому миелинопатии чувствительных нервных волокон приводят к снижению СПИ, поражение тела или осевого цилндра аксона унеиполярного чувствительного нейрона приводит к сижению амплитуды сенсорного потенциала. Хотя в ряде случаев наблюдается расхождение клинического симптомокомплекса (сенсорный дефицит) и данных ЭНМГ (показатели СПИ и амплитуда сенсорного ответа могут быть в норме), что связано с поражением преганглионарной части аксона псевдоуниполярного нейрона, то есть заднего корешка спинного мозга между спинным мозгом и межпозвонковым ганглием. В данном случае сохранность тела нейрона и периферического аксона, формирующего периферический нерв, обеспечивает нормальные показатели СПИ и величины сенсорного ответа.

Методика измерения скорости проведения импульса по сенсорным волокнам нервов

Регистрация сенсорных вызванных потенциалов осуществляется на высокой чувствительности (2 – 20 мкВ\дел.) в связи с низкой амплитудой ответов (1 – 60 мкВ) с использованием развертки большой скорости (1 – 2 мс/дел.) Часто при низкоамплитудных ответах обосновано применение режима усреднения (8 – 10 усреднений) для выделения сигнала из шума.

При измерении сенсорной СПИ по смешанным нервам используют либо изолированную стимуляцию пальцев кисти и стопы кольцевыми электродами в режиме антидромной регистрации, либо регистрацию вызванных потенциалов кольцевыми электродами с пальцев в режиме ортодромной регистрации. При антидромной регистрации правильность установления отводящих электродов целесообразно проверять путем стимуляции нерва в этих точках и корректировать их местоположение по амплитуде М-ответа.

Сила тока стимулирующего импульса при регистрации сенсорного потенциала, как правило, составляет 10 – 20 мА, то есть значительно меньше, чем при исследовании моторной СПИ. Повышение силы тока часто приводит к появлению высокоамплитудного М-ответа, который деформирует сенсорный вызванный потенциал. Активный отводящий электрод целесообразно ориентировать в сторону стимулирующего, что проявляется первично негативным пиком (в ряде случаев перед негативным пиком наблюдается небольшой позитивный пик).

Амплитуда сенсорного потенциала измеряется от первично позитивного пика или нулевой линии (если отсутствует первично позитивный пик) до негативного пика. Латентность сенсорного потенциала измеряется от артефакта до первичного позитивного пика или до начала отклонения от нулевой линии (если нет первично позитивного пика). Так называемый сенсорный потенциал отличается сравнительно низкой амплитудой, для окончательного суждения о его снижении или отсутствии на пораженной конечности необходимо исследовать симметричный нерв.

Таким образом , измерение СПИ по моторным волокнам основано на регистрации центробежных сигналов, а по сенсорным волокнам – на основе регистрации центробежных и центростремительных (антидромная стимуляция) импульсов, причем показатели СПИ по сенсорным волокнам не зависят от метода регистрации, но антидромная методика симуляции переносится легче и поэтому предпочтительнее в клинической практике.

Источник : руководство для врачей "Заболевания и травмы периферической нервной системы (обобщение клинического и экспериментального опыта)" М.М. Одинак, С.А. Живолупов; Санкт-Петербург, изд. "СпецЛит", 2009.

Cтраница 2


Это приводит к многочисленным вариантам периферических невропатий, основу которых составляют набухание аксонов и дегенеративные изменения миели-новых оболочек, вплоть до полного разрушения их. Аксональная дегенерация характеризуется большей выраженностью в дисталь-ных отделах, с преимущественным повреждением чувствительных волокон крупного калибра.  

Имеются основания считать, что анализаторно-координа-ционный механизм представлен не только в стволовой части головного мозга, но и в спинном мозгу. Здесь в качестве аналога данного механизма можно рассматривать слой переключательных нейронов, сконцентрированных в желатинозном веществе спинного мозга (рис. 17), которое располагается у места входа в спинной мозг чувствительных волокон задних корешков. Желатинозное вещество спинного мозга непосредственно продолжается в желатинозное вещество продолговатого мозга, собранное по ходу корешков чувствительных ядер некоторых черепномозговых нервов.  

Распад миелина ведет к снижению скорости проведения импульса по нерву. Поражение двигательных и чувствительных волокон вначале проявляется непостоянными ощущениями покалывания и онемения, а по мере прогрессирования заболевания - снижением и извращением чувствительности, слабостью и атрофией мышц.  

Нервное волокно, или аксон, - очень длинная тонкая трубка, которая вырастает из тела клетки головного или спинного мозга и достигает какой-либо отдаленной точки, например, в мышце или коже. Диаметр волокон варьирует от 83 стотысячных до 83 сотых миллиметра. Диаметр большей части двигательных и чувствительных волокон у человека составляет около 25 тысячных миллиметра. В конечностях некоторых крупных животных волокна могут иметь свыше метра в длину. Электротехника эти цифры, конечно, не удивят. Известно, что длина электрических проводов нередко во много миллионов раз превышает их толщину. Но вдумайтесь, что это означает для крошечной клетки, которая должна не только вырастить этот длиннейший отросток, но и постоянно о нем заботиться, постоянно его опекать.  

Полезным приспособительным результатом этой системы является поддержание кровяного давления на таком уровне, который обеспечивает нормальную жизнедеятельность органов и тканей. Любые смещения оптимального уровня кровяного давления (при мышечной нагрузке, эмоциях) приводят к раздражению специальных барорецепторов, которые в большом количестве расположены внутри сосудистой стенки. Нервная сигнализация, возникающая при повышении кровяного давления в этих специализированных рецепторах, по чувствительным волокнам депрессорных нервов достигает сосудодвигательного центра продолговатого мозга. Повышение кровяного давления резко увеличивает афферентную сигнализацию, поступающую к этому центру.  

Волокна периферических двигательных нервов начинаются в двигательных нейронах, расположенных в передней части спинного мозга. Двигательные аксоны идут на периферию, к иннервируемым ими мышцам. Тела чувствительных клеток находятся в ганглиях задних корешков или задних отделах спинного мозга. Импульсы с периферии воспринимаются дистальными рецепторами и идут к центру, к телам нейронов, откуда по проводящим путям спинного мозга информация передается в ствол мозга и большие полушария. Некоторые чувствительные волокна непосредственно связаны с двигательными волокнами на уровне спинного мозга, обеспечивая рефлекторную деятельность и быструю двигательную реакцию на вредоносные воздействия. Эти сенсомоторные связи существуют на всех уровнях, черепно-мозговые нервы - эквиваленты периферических, но начинающихся не в спинном мозге, а в стволе. Чувствительные и двигательные волокна объединяются в пучках, называемых периферическими нервами.  

Подтвердить нарушение функций периферических нервов, определить тип и тяжесть невропатии помогает электрофизиологическое исследование. Снижение скоростей проведения по двигательным и чувствительным волокнам, как правило, является следствием демиелинизации. Нормальные скорости проведения при наличии мышечных атрофии свидетельствуют в пользу аксональной невропатии. Исключением являются некоторые случаи аксональной невропатии с прогрессирующим распадом двигательных и чувствительных волокон: максимальные скорости проведения могут снижаться за счет выпадения волокон большого диаметра, проведение по которым особенно быстрое. При аксонопатиях на ранних стадиях восстановления появляются регенерирующие волокна, проведение по которым замедлено, особенно в дистальных участках волокна. При электрофизиологическом исследовании больных с токсическими невропатиями обязательно измерение скоростей проведения по двигательным и чувствительным нервам верхних и нижних конечностей. Сравнительное исследование проведения по дистальным и проксимальным участкам нерва помогает в диагностике ди-стальной токсической аксонопатии, а также в определении места блокирования проведения при демиелинизации.  

При поедании с кормом дозы 25 мг / кг ежедневно в течение 26 недель животные (крысы) становились возбужденными с момента появления синего окрашивания. При дозе 9 мг / кг в день обнаруживается только синее окрашивание. Патогистологиче-ски: липопигментные гранулы в клетках и нейронах, накапливающиеся со временем пропорционально дозе. Развивается симметричная демиелинизация аксонов и нервных волокон в центральной и периферической нервной системах, особенно по кортиковисцеральному тракту, но также в стволе мозга, в чувствительных волокнах и ганглиях позвоночника. При дозе 25 мг / кг, демиелинизация начинается на 14 неделе. Со временем - образуется, однако, тонкий слой миелина, что, возможно, объясняет относительно медленное развитие и стабильную картину поздней стадии поражения.  


Скорость проведения возбуждения по нервным волокнам может быть определена у человека сравнительно несложным путем. Для определения скорости проведения по двигательным волокнам используется электрическая стимуляция нерва через кожу в тех местах, где он расположен неглубоко. Используя электромиографическую методику, записывают электрический ответ мышцы на это раздражение. Латентный период ответа в основном зависит от скорости проведения по нерву. Измерив его, а также расстояние между стимулирующими и отводящими электродами, можно рассчитать скорость проведения. Более точно ее можно определить по разности латентного ответа при раздражении нерва в двух точках. Для определения скорости проведения по чувствительным волокнам наносят кожное электрическое раздражение, а ответ отводится от нерва.  

Стимуляционная ЭМГ включает в себя различные методики исследования периферических нервов, вегетативной нервной системы и нервно-мышечной передачи:

  • СРВ по моторным волокнам;
  • СРВ по чувствительным волокнам;
  • F-волну;
  • Н -рефлекс;
  • мигательный рефлекс;
  • бульбокавернозный рефлекс;
  • вызванный кожно-симпатический потенциал (ВКСП) ;
  • декремент-тест.

Стимуляционные методы исследования про водящей функции моторных волокон, сенсорных волокон и ВКСП позволяют выявить патологию каждого из типов нервных волокон в нерве и определить локализацию поражения (дистальный тип поражения нервов характерен для полиневропатий, локальное нарушение проводящей функции - для туннельных синдромов и т.д.).

Варианты реакции периферического нерва на повреждение довольно ограничены.

Любой патологический фактор, вызывающий нарушение функции нерва, в конечном счёте приводит к повреждению аксонов, или миелиновой оболочки, либо обоих этих образований.

Цели исследования: определение функционального состояния и степени поражения моторных, сенсорных и вегетативных структур нервов; локальных нарушений функции миелинизированных нервов, а также восстановления двигательных функций; диагностика и дифференциальная диагностика поражений сенсомоторных образований на сегментарном, надсегментарном, периферическом и нервномышечном уровне; выявление и оценка степени нарушения нервно-мышечной передачи при миастении и миастенических синдромах; оценка перспективности различных методов лечения и результатов применения определённых лекарственных препаратов, а также степени реабилитации больных и восстановления функции поражённых двигательных и чувствительных нервов.

ПОКАЗАНИЯ

Подозрение на заболевания, связанные с нарушением функции двигательных и чувствительных волокон периферических нервов или нервно-мышечной передачи:

  • различные полиневропатии;
  • мононевропатии;
  • моторные, сенсорные и сенсомоторные невропатии;
  • мультифокальная моторная невропатия;
  • тоннельные синдромы;
  • травматические поражения нервов;
  • невральные амиотрофии, включая наследственные формы;
  • поражения корешков спинного мозга, шейно-плечевого и пояснично-крестцового сплетения;
  • эндокринные нарушения (особенно гипотиреоз, сахарный диабет 2 типа) ;
  • половая дисфункция, сфинктерные расстройства;
  • миастения и миастенические синдромы;
  • ботулизм.

ПРОТИВОПОКАЗАНИЯ

Каких-либо особых противопоказаний (в том числе наличие имплантатов, кардиостимуляторов, эпилепсии) к проведению стимуляционной ЭМГ нет. При необходимости исследование можно проводить у больных в коматозном состоянии.

ПОДГОТОВКА К ИССЛЕДОВАНИЮ

Специальной подготовки не требуется. Перед началом исследования больной снимает часы, браслеты. Обычно пациент находится в положении полусидя в специальном кресле, мышцы должны быть максимально расслаблены. Исследуемая конечность иммобилизуется, чтобы исключить искажение формы потенциалов.

Конечность при проведении исследования должна быть тёплой (температура кожи 26-32 ОС) , так как при снижении температуры кожи на 1 ос происходит снижение СРВ на 1,1-2,1 м/с. Если конечность холодная, перед обследованием её хорошо прогревают специальной лампой или любым источником тепла.

МЕТОДИКА И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

В основе стимуляционной ЭМГ лежит регистрация суммарного ответа мышцы (М-ответа) или нерва на стимуляцию импульсом электрического тока. Исследуют про водящую функцию моторных, сенсорных и вегетативных аксонов периферических нервов или функциональное состояние нервно-мышечной передачи.

Нарушение функции аксона (аксональный процесс) ведёт к развитию в мышце денервационно-реиннервационного процесса (ДРП) , степень выраженности которого определяют с помощью игольчатой ЭМГ. Стимуляционная ЭМГ выявляет снижение амплитуды М -ответа.

Нарушение функции миелиновой оболочки (демиелинизирующий процесс) проявляется снижением СРВ по нерву, повышением порога вызывания М -ответа и увеличением резидуальной латентности.

Следует учитывать, что первично аксональный процесс часто вызывает вторичную демиелинизацию, а при демиелинизирующем процессе на определённом этапе возникает вторичное поражение аксона. Задача ЭМГ - определить тип поражения нерва: аксональный, демиелинизирующий или смешанный (аксональнодемиелинизирующий).

Стимуляцию и регистрацию ответа мышцы проводят с помощью поверхностных электродов. В качестве отводящих электродов используют стандартные накожные хлорсеребряные (AgCl) дисковые или чашечковые электроды, которые крепятся с помощью лейкопластыря. Для уменьшения импеданса используют электропроводные гель или пасту, кожу тщательно протирают этиловым спиртом.

М-ответ

М -ответ - суммарный потенциал действия, возникающий в мышце при электрическом раздражении её двигательного нерва. Максимальную амплитуду и площадь М-ответ имеет в зоне распределения концевых пластинок (в двигательной точке) . Двигательной точкой называют проекцию на кожу зоны концевых пластинок нерва. Двигательная точка обычно располагается на самом выпуклом участке (брюшке) мышцы.

При исследовании М-ответа используют биполярный способ отведения: один электрод является активным, второй - референтным. Активный регистрирующий электрод располагают в области двигательной точки мышцы, иннервируемой исследуемым нервом; референтный электрод - в области сухожилия данной мышцы или в месте при крепления сухожилия к костному выступу (рис. 8-1).

Рис 8-1 . Исследование проводящей функции локтевого нерва. Наложение электродов: активный отводящий электрод располагается в двигательной точке мышцы, отводящей мизинец; референтный - на проксимальной фаланге V пальца; стимулирующий - в дистальной точке стимуляции на запястье; заземляющий - чуть выше запястья.

При исследовании проводящей функции нервов используют стимулы супрамаксимальной интенсивности. Обычно М-ответ с нервов рук начинают регистрировать при величине стимула 6-8 мА, с нервов ног - 10-15 мА. По мере увеличения интенсивности стимула амплитуда М -ответа увеличивается за счёт включения в М -ответ новых ДЕ.

Плавное повышение амплитуды М -ответа связано с различной возбудимостью нервных волокон: сначала возбуждаются низкопороговые быстропроводящие толстые волокна, затем тонкие, медленнопроводящие волокна. Когда в М -ответ включаются все мышечные волокна исследуемой мышцы, при дальнейшем увеличении интенсивности стимула амплитуда М -ответа перестаёт увеличиваться.

Для достоверности исследования амплитуду стимула увеличивают ещё на 20-30%.

Такая величина стимула и называется супрамаксимальной.

Стимуляцию проводят в нескольких точках по ходу нерва (рис. 8-2). Желательно, чтобы расстояние между точками стимуляции было не менее 10 см. Регистрируют М-ответ в каждой точке стимуляции. Разность латентности М-ответов и расстояние между точками стимуляции позволяют вычислить СРВ по нерву.

Рис. 8-2. Схема исследования проводящей функции локтевого нерва. Схематически изображены точки расположения отводящих электродов и точки стимуляции локтевого нерва. В дистальной точке стимуляции М-ответ имеет самую короткую концевую латентность. По разнице латентностей между дистальной и более проксимальной точками стимуляции определяют СРВ.

При исследовании про водящей функции моторных нервов анализируют сле- дующие параметры:

  • амплитуду М -ответа;
  • форму, площадь, длительность негативной фазы М -ответа;
  • наличие блоков проведения, декремент амплитуды и площади М -ответа;
  • порог вызывания М -ответа;
  • СРВ по моторным (двигательным) волокнам, латентность М-ответа;
  • резидуальную латентность.

Основными диагностически значимыми параметрами считают амплитуду М -ответа и СРВ. Амплитуда, площадь, форма и длительность М -ответа отражают количество и синхронность сокращения мышечных волокон в ответ на стимуляцию нерва.

Амплитуда М-ответа

Амплитуду М -ответа оценивают по негативной фазе, так как её форма более постоянна, и измеряют в милливольтах (мВ). Снижение амплитуды М-ответа - электрофизиологическое отражение уменьшения количества сокращающихся мышечных волокон в мышце.

Причины снижения амплитуды М -ответа:

Нарушение возбудимости нервных волокон, когда часть нервных волокон не генерирует импульс в ответ на стимуляцию электрическим током (аксональный тип поражения нервов - аксональные полиневропатии) ;

Демиелинизация нервных волокон, когда мышечные волокна не отвечают на нервный импульс, что при водит К снижению амплитуды М -ответа, однако трофическая функция нерва остаётся сохранной;

Различные миопатии (ПМД, полимиозит и др.) . М -ответ отсутствует при атрофии мышцы, разрыве нерва или его полной деге· нерации.

Для неврального уровня поражения характерны повышение порога вызывания М -ответа и нарушение СРВ, повышение резидуальной латентности, "рассыпанные " F-волны.

Для нейронального уровня поражения (БАС, спинальные амиотрофии, опухоль спинного мозга, миелопатия и т.п.), когда уменьшается количество мотонейронов и, соответственно, аксонов и мышечных волокон, характерны нормальный порог вызывания М-ответа, нормальная СРВ, "гигантские", крупные и повторные F-волны и полное их выпадение.

Для мышечного уровня поражения характерны нормальные СРВ и порог вызывания М-ответа, отсутствие F-волн или наличие низкоамплитудных F-волн.

Данные стимуляционной ЭМГ не позволяют однозначно оценить уровень поражения периферического нейромоторного аппарата - для этого необходима игольчатая ЭМГ.

Форма, площадь и длительность М-ответа

В норме М-ответ представляет собой негативно-позитивное колебание сигнала. Длительность М -ответа измеряют по длительности негативной фазы, площадь

М-ответа также измеряют по площади негативной фазы. Самостоятельного диагностического значения показатели площади и длительности М -ответа не имеют, но в совокупности с анализом его амплитуды и формы можно судить о процессах формирования М -ответа.

При демиелинизации нервных волокон происходит десинхронизация М -ответа с увеличением его длительности и снижением амплитуды, причём в проксимальных точках десинхронизация увеличивается.

Блок проведения возбуждения

Блоком проведения возбуждения называют декремент амплитуды М -ответа при стимуляции в двух соседних точках более 25% (рассчитывают как отношение амплитуды А1:А2, выраженной в про центах, где А1 - амплитуда М-ответа в одной точке стимуляции, А2 - амплитуда М -ответа в следующей, более проксимальной точке стимуляции). При этом увеличение длительности негативной фазы М-ответа не должно превышать 15%.

В основе патогенеза блока про ведения возбуждения лежит стойкий локальный очаг демиелинизации (не более 1 см) , вызывающий нарушение про ведения импульса. Классическим примером блоков про ведения возбуждения являются туннельные синдромы.

Известны два заболевания со множественными стойкими блоками про ведения возбуждения - моторно-сенсорная мультифокальная полиневропатия (СамнераЛьюиса) и мультифокальная моторная невропатия с блоками проведения возбуждения.

Правильная диагностика мультифокальной моторной невропатии крайне важна, так как заболевание клинически имитирует БАС, что часто приводит к серьёзным диагностическим ошибкам.

Адекватным методом, позволяющим выявить блоки проведения возбуждения при мультифокальной моторной невропатии, является метод пошагового исследования нерва - "инчинг" , заключающийся в стимуляции нерва в нескольких точках с шагом 1-2 см. Расположение блоков про ведения возбуждения при мультифокальной моторной невропатии не должно совпадать с местами сдавления нервов при типичных туннельных синдромах.

Порог вызывания М-ответа

Порогом вызывания М -ответа называют интенсивность стимула, при которой появляется минимальный М-ответ. Обычно М-ответ с нервов рук начинает регистрироваться при амплитуде стимула 15 мА и длительности 200 мкс, с ног - 20 мА и 200 мкс соответственно.

Для демиелинизирующих полиневропатий, особенно для наследственных форм, при которых начальный М -ответ может появляться при интенсивности стимула 100 мА и 200 мкс, характерно повышение порога вызывания М -ответов. Низкие пороги стимуляции наблюдают у детей, у худых пациентов (3-4 мА). Изменения порогов вызывания М -ответов не должны рассматриваться как самостоятельный диагностический критерий - оценивать их необходимо в совокупности с другими изменениями.

Скорость распространения возбуждения по моторным волокнам и латентность М-ответа

СРВ определяют как расстояние, которое проходит импульс по нервному волокну за единицу времени, и выражают в метрах в секунду (м/с) . Время между подачей электрического стимула и началом М -ответа называется латентностью М-ответа.

СРВ снижается при демиелинизации (например, при демиелинизирующих полиневропатиях) , так как на участках разрушения миелиновой оболочки импульс распространяется не сальтаторно, а последовательно, как в безмиелиновых волокнах, что вызывает увеличение латентности М -ответа.

Латентность М -ответа зависит от расстояния между стимулирующим и отводящим электродом, поэтому при стимуляции в стандартных точках латентность зависит от роста пациента. Вычисление СРВ позволяет избежать зависимости результатов исследования от роста пациента.

СРВ на участке нерва вычисляют путём деления расстояния между точками стимуляции на разность латентностей М-ответов в этих точках: V = (D 2 - D 1)/ (L 2 - L 1), где V - скорость проведения по двигательным волокнам; D 2 - дистанция для второй точки стимуляции (расстояние между катодом стимулирующего электрода и активным отводящим электродом) ; D 1 - дистанция для второй точки стимуляции (расстояние между катодом стимулирующего электрода и активным отводящим электродом) ; D 2 - D 1 отражает расстояние между точками стимуляции; L 1 - латентность в первой точке стимуляции; L 2 - латентность во второй точке стимуляции.

Снижение СРВ является маркёром процесса полной или сегментарной демиелинизации нервных волокон при невритах, полиневропатиях, таких как острая и хроническая демиелинизирующие полиневропатии, наследственные полиневропатии (болезнь Шарко-Мари-Тус, кроме её аксональных форм), диабетическая полиневропатия, компрессия нерва (туннельные синдромы, травмы) . Определение СРВ позволяет выяснить, на каком участке нерва (дистальном, среднем или проксимальном) имеют место патологические изменения.

Резидуальная латентность

Резидуальной латентностью называют рассчитываемое время прохождения импульса по терминалям аксонов. На дистальном отрезке аксоны двигательных волокон ветвятся на терминали. Так как терминал и не имеют миелиновой оболочки, СРВ по ним значительно ниже, чем по миелинизированным волокнам. Время между стимулом и началом М-ответа при стимуляции в дистальной точке складывается из времени прохождения по миелинизированным волокнам и времени прохождения по терминалям аксона.

Чтобы вычислить время прохождения импульса по терминалям, нужно из дистальной латентности в первой точке стимуляции вычесть время прохождения импульса по миелинизированной части. Это время можно рассчитать, приняв допущение, что СРВ на дистальном участке приблизительно равна СРВ на сегменте между первой и второй точками стимуляции.

Формула расчёта резидуальной латентности: R = L - (D:V l-2), где R - резидуальная латентность; L - дистальная латентность (время от стимула до начала М-ответа при стимуляции в дистальной точке); D - дистанция (расстояние между активным отводящим электродом и катодом стимулирующего электрода) ; V l-2 - СРВ на сегменте между первой и второй точками стимуляции.

Изолированное увеличение резидуальной латентности на одном из нервов считают признаком туннельных синдромов. Наиболее частый туннельный синдром для срединного нерва - запястный туннельный синдром; для локтевого - синдром канала Гийона; для большеберцового - тарзальный туннельный синдром; для малоберцового - сдавление на уровне тыла стопы.

Увеличение резидуальных латентностей на всех исследуемых нервах характерно для невропатий демиелинизирующего типа.

Критерии нормальных значений

В клинической практике удобно использовать нижние границы нормы для амплитуды М -ответа и СРВ и верхние границы нормы для резидуальной латентности и порога вызывания М-ответа (табл. 8-1).

Таблица 8- 1 . Нормальные значения пара метров исследования проводящей функции моторных нервов

В норме амплитуда М -ответа несколько выше в дистальных точках стимуляции, в проксимальных точках М -ответ несколько растягивается и десинхронизируется, что приводит к не которому увеличению его длительности и снижению амплитуды (не более чем на 15%). СРВ по нервам немного выше в проксимальных точках стимуляци

Снижение СРВ, амплитуды и десинхронизация (увеличение длительности) М -ответа свидетельствуют о поражении нерва. Исследование СРВ по двигательным волокнам позволяет подтвердить или опровергнуть диагноз и провести дифференциальную диагностику при таких заболеваниях, как туннельные синдромы, аксональные и демиелинизирующие полиневропатии, мононевропатии, наследственные полиневропатии.

Электромиографические критерии поражения нерва демиелинuзирующего характера

Классические примеры демиелинизирующих невропатий - острая и хроническая воспалительные демиелинизирующие полиневропатии (ХВДП) , диспротеинемические невропатии, наследственная моторно-сенсорная невропатия (НМСН) 1 типа.

Основные критерии демиелинизирующих полиневропатий:

  • увеличение длительности и полифазия М -ответа при нормальной амплитуде
  • снижение СРВ по моторным и сенсорным аксонам периферических нервов;
  • "рассыпной" характер F-волн;
  • наличие блоков проведения возбуждения.

Электромиоzрафи"lеские критерии поражения нерва аксональноzо характера Классическими при мерами аксональных невропатий считают большинство токсических (в том числе и лекарственных) невропатий. НМСН 11 типа (аксональный тип болезни Шарко-Мари-Тус) .

Основные критерии аксональных полиневропатий:

  • снижение амплитуды М -ответа;
  • нормальные значения СРВ по моторным и сенсорным аксонам периферических нервов;

При сочетании демиелинизирующих и аксональных признаков констатируют аксонально-демиелинизирующий тип поражения. Наиболее резкое снижение СРВ по периферическим нервам наблюдают при наследственных полиневропатиях.

При синдроме Русси-Леви СРВ может снижаться до 7-10 м/с. при болезни Шарко-Мари-Тус - до 15-20 м/с. При приобретённых полиневропатиях степень снижения СРВ различна в зависимости от характера заболевания и степени патологии нервов. Наиболее выраженное снижение скоростей (до 40 м/с на нервах верхних конечностей и до 30 м/с на нервах нижних конечностей) наблюдают при демиелинизирующих полиневропатиях. при которых процессы демиелинизации нервного волокна превалируют над поражением аксона: при хронической демиелинизирующей и острой демиелинизирующей полиневропатии (СГБ. синдром Миллера-Фишера).

Для преимущественно аксональных полиневропатий (например. токсических: уремической. алкогольной. диабетической. лекарственной и др.) характерна нормальная или незначительно сниженная СРВ при резко выраженном снижении амплитуды М -ответа. Чтобы установить диагноз полиневропатии. необходимо исследовать не менее трёх нервов. однако на практике нередко приходится исследовать большее количество (шесть и более) нервов.

Увеличение длительности М -ответа служит дополнительным доказательством демиелинизирующих процессов в исследуемом нерве. Наличие блоков про ведения возбуждения характерно для туннельных синдромов. а также для мультифокальной моторной невропатии с блоками про ведения возбуждения.

Изолированное поражение одного нерва позволяет думать о мононевропатии. в том числе о туннельном синдроме. При радикулопатиях в начальных стадиях проводящая функция моторных нервов часто остаётся сохранной. При отсутствии адекватного лечения в течение 2-3 мес постепенно снижается амплитуда М -ответа. может повыситься порог его вызывания при сохранной СРВ.

Снижение амплитуды М-ответа при прочих абсолютно нормальных показателях требует расширить диагностический поиск и рассмотреть возможность мышечного заболевания или заболевания мотонейронов спинного мозга. что можно подтвердить с помощью игольчатой ЭМГ.

Исследование проводящей функции сенсорных нервов

СРВ п о сенсорным волокнам определяют с помощью регистрации потенциала действия афферентного (чувствительного) нерва в ответ на его чрескожную электрическую стимуляцию. Методики регистрации СРВ по сенсорным и двигательным волокнам имеют много общего. в то же время между ними существует важное патофизиологическое различие: при исследовании моторных волокон регистрируют рефлекторный ответ мышцы. а при исследовании сенсорных волокон - потенциал возбуждения чувствительного нерва.

Существуют два способа про ведения исследования: ортодромный. при котором стимулируют дистальные отделы нерва. а сигналы регистрируют в проксимальных точках. и антидромный. при котором регистрацию про водят дистальнее точки стимуляции. В клинической практике чаще используется антидромный способ как более простой. хотя и менее точный.

Методика

Положение больного, температурный режим, используемые электроды аналогичны таковым при исследовании функции моторных волокон. Можно использовать и специальные пальцевые электроды для исследования сенсорных волокон. При регистрации с нервов рук активный электрод накладывают на проксимальную фалангу II или III (для срединного нерва) либо V пальца (для локтевого нерва), референтный электрод располагается на дистальной фаланге того же пальца (рис. 8-3) .

Положение заземляющего и стимулирующего электродов аналогично таковому при исследовании моторных волокон. При регистрации сенсорного ответа икроножного нерва активный электрод располагают на 2 см ниже и на 1 см кзади от латеральной лодыжки, референтный электрод - на 3-5 см дистальнее, стимулирующий электрод - по ходу икроножного нерва на заднелатеральной поверхности голени. При правильном расположении стимулирующего электрода больной ощущает иррадиацию электрического импульса по латеральной поверхности стопы.

Заземляющий электрод располагается на голени дистальнее стимулирующего. Сенсорный ответ значительно ниже по амплитуде (для локтевого нерва - 6-30 мкВ, в то время как моторный ответ - 6-16 мВ) . Порог возбуждения толстых чувствительных волокон ниже, чем более тонких моторных, поэтому используют стимулы субпороговой (по отношению к моторным волокнам) интенсивности.

Наиболее часто исследуют срединный, локтевой, икроножный, реже - лучевой нерв.

Наиболее значимые для клинической практики параметры:

  • амплитуда сенсорного ответа;
  • СРВ по сенсорным волокнам, латентность.

Амплитуда сенсорного ответа

Амплитуду сенсорного ответа измеряют по методу "пик-пик" (максимум негативной - минимум позитивной фазы). Нарушение функции аксона характеризуется снижением амплитуды сенсорного ответа либо его полным выпадением.

Скорость распространения возбуждения и латентность

Как и при исследовании моторных волокон, латентность измеряют от артефакта стимула до начала ответа. СРВ рассчитывают так же, как и при исследовании моторных волокон. Снижение СРВ указывает на демиелинизацию.

Нормальные значения

В клинической практике удобно анализировать результаты относительно нижней границы нормальных значений (табл. 8-2).

Таблица 8-2. Нижние границы нормальных значений амплитуды и СРВ сенсорного ответа

Клиническая значимость анализируемых показателей

Как и при исследовании моторных волокон, снижение СРВ характерно для демиелинизирующих, а снижение амплитуды - для аксональных процессов. При выраженной гипестезии сенсорный ответ иногда зарегистрировать не удаётся.

Сенсорные нарушения выявляют при туннельных синдромах, моно- и полиневропатиях, радикулопатиях и др. Например, для запястного туннельного синдрома характерным считают изолированное снижение дистальной СРВ по срединному сенсорному нерву при нормальной скорости на уровне предплечья и по локтевому нерву. При этом в начальных стадиях СРВ снижается, но амплитуда остаётся в пределах нормы. При отсутствии адекватного лечения амплитуда сенсорного ответа также начинает снижаться. Для сдавления локтевого нерва в канале Гийона характерно изолированное снижение дистальной скорости по сенсорным волокнам локтевого нерва. Генерализованное снижение СРВ по сенсорным нервам характерно для сенсорной полиневропатии. Часто оно сочетается со снижением амплитуды сенсорного ответа. Равномерное уменьшение СРВ ниже 30 м/с характерно для наследственных полиневропатий.

Наличие анестезии/гипестезии при нормальной про водящей функции сенсорных волокон позволяет заподозрить более высокий уровень поражения (корешковый или центральный генез) . В этом случае уточнить уровень сенсорных нарушений можно с помощью соматосенсорных вызванных потенциалов (ССВП).

Исследование F-волны

F-волна (F-ответ) - суммарный потенциал действия ДЕ мышцы, возникающий при электрическом раздражении смешанного нерва. Наиболее часто F-волны анализируют при исследовании срединного, локтевого, малоберцового, большеберцового нервов.

Методика

Во многом техника регистрации аналогична таковой при исследовании проводящей функции моторных волокон. В процессе исследования моторных волокон после регистрации М -ответа в дистальной точке стимуляции исследователь переключается в приложение регистрации F-волны, при тех же параметрах стимула записывает F-волны, после чего продолжает исследование моторных волокон в остальных точках стимуляции.

F-волна имеет небольшую амплитуду (обычно до 500 мкВ). При стимуляции периферического нерва в дистальной точке на экране монитора появляется М-ответ с латентностью 3-7 мс, F-отвеr имеет латентность около 26-30 мс для нервов рук и около 48-55 мс для нервов ног (рис. 8-4) . Стандартное исследование включает в себя регистрацию 20 F-волн.

Диагностически значимые показатели F-волны:

  • латентность (минимальная, максимальная и средняя);
  • диапазон скоростей распространения F-волн;
  • феномен "рассыпанных" F-волн;
  • амплитуда F-волны (минимальная и максимальная) ;
  • отношение средней амплитуды F -волны к амплитуде М-ответа, феномен "гигантских F-волн" ;
  • блоки (про цент выпадения) F-волн, то есть количество стимулов, оставшихся без F-ответа;
  • повторные F-волны.

Латентность, диапазон скоростей распространения F-волн, "рассыпанные " F-волны

Латентность измеряют от артефакта стимула до начала F-волны. поскольку латентность зависит от длины конечности, удобно пользоваться диапазоном скоростей распространения F-волн. Расширение диапазона скоростей в сторону низких величин указывает на замедление проведения по отдельным нервным волокнам, что может являться ранним признаком демиелинизирующего процесса.

При этом часть F-волн может иметь нормальную латентность.

Расчёт СРВ по F-волне: V = 2 х D: (LF - LM - 1 мс), где V - СРВ, определённая с помощью F-волны; D - дистанция, измеряемая от точки под катодом стимулирующего электрода до остистого отростка соответствующего позвонка; LF - латентность F-волны; LM - латентность М-ответа; 1 мс - время центральной задержки импульса.

При выраженном демиелинизирующем процессе часто выявляют феномен "рассыпанных" F-волн (рис. 8-5), а в самых поздних стадиях возможно полное их выпадение. Причиной "рассыпанных" F-волн считают наличие множественных очагов демиелинизации по ходу нерва, которые могут стать своего рода "отражателями" импульса.

Доходя до очага демиелинизации, импульс не распространяется дальше антидромно, а отражается и ортодромно распространяется к мышце, вызывая сокращение мышечных волокон. Феномен "рассыпанных" F-волн является маркёром невритического уровня поражения и практически не встречается при нейрональных или первично-мышечных заболеваниях.

Рис. 8-4. Регистрация F-волны с локтевого нерва здорового человека. М-ответ зарегистрирован при усилении 2 мВ/Д, его амплитуда - 1 0,2 мВ, латентность - 2,0 мс; F-волны зарегистрированы при усилении 500 мкВ/д, средняя латентность составляет 29,5 мс (28, 1 -32,0 мс), амплитуда - 297 мкВ (67-729 мкВ), СРВ, определённая методом F-волн, - 46,9 м/с, диапазон скоростей - 42,8-49,4 м/с.


Рис. 8-5. Феномен "рассыпанных" F-волн. Исследование проводящей функции малоберцоваго нерва у больного 54 года с диабетической полиневропатией. Разрешение области М-ответа - 1 мВ/Д, области F-волн - 500 мкВ/д, развёртка - 1 0 мс/д. Определить диапазон СРВ в данном случае не представляется возможным.

Амплитуда F-волн, феномен "гигантских" F-волн

В норме амплитуда F-волны составляет менее 5% амплитуды М-ответа в данной мышце. Обычно амплитуда F-волны не превышает 500 мкВ. Амплитуду F-волн измеряют "от пика до пика" . При реиннервации F-волны укрупняются. Диагностически значимым считают отношение средней амплитуды F-волны к амплитуде М-ответа. Повышение амплитуды F-волны более чем на 5% амплитуды М-ответа (крупные F-волны) указывает на процесс реиннервации в мышце.

Диагностическую значимость имеет также появление так называемых гигантских F-волн амплитудой более 1000 мкВ, отражающих степень выраженной реиннервации в мышце. "Гигантские" F-волны чаще всего наблюдают при заболеваниях мотонейронов спинного мозга (рис. 8-6), хотя они могут появляться и при невральной патологии, протекающей с выраженной реиннервациеЙ.

Выпадение F-волн

Выпадением F-волны называют её отсутствие на линии регистрации. Причиной выпадения F-волны может быть поражение как нерва, так и мотонеЙрона. В норме допустимо выпадение 5-10% F-волн. Полное выпадение F-волн свидетельствует о наличии выраженной патологии (в частности, оно возможно в поздних стадиях заболеваний при выраженных мышечных атрофиях) .

Рис. 8-6. "Гигантские" F-волны. Исследование локтевого нерва больного (48 лет) с БАС. Разрешение области М-ответа - 2 мВ/д, области F-волн - 500 мкВ/д, развёртка - 1 мс/д. Средняя амплитуда F-волн составляет 1 084 мкВ (43-2606 мкВ). Диапазон скоростей в норме (71 -77 м/с).

Повторные F-волны

В норме вероятность ответа одного и того же мотонейрона крайне мала. При уменьшении количества мотонейронов и изменении их возбудимости (одни мотонейроны становятся гипервозбудимыми, другие, наоборот, отвечают только на сильные раздражители) существует вероятность, что один и тот же нейрон будет отвечать многократно, поэтому появляются F-волны одинаковой латентности, формы и амплитуды, называемые повторными. Второй причиной появления повторных F-волн является повышение мышечного тонуса.

Нормальные значения

у здорового человека принято считать допустимым, если появляется до 10% выпадений, "гигантских" И повторных F-волн. При определении диапазона скоростей минимальная скорость не должна быть ниже 40 м/с для нервов рук и 30 м/с для нервов ног (табл. 8-3). "Рассыпанных" F-волн и полного выпадения F-волн в норме не наблюдают.

Таблица 8-3. Нормальные значения амплитуды и скорости распространения F-волн

Нормальные значения минимальных латентностей F-волн в зависимости от роста пред ставлены в табл. 8-4.

Таблица 8-4. Нормальные значения латентности F-волн, МС

Клиническая значимость

Расширение диапазона ерв, определяемой методом F-волн, и, соответственно, удлинение латентностей F-волн, феномен "рассыпанных" F-волн позволяют предположить наличие демиелинизирующего процесса.

При острой демиелинизирующей полиневропатии, как правило, обнаруживают лишь нарушение проведения F-волн, при хронической - F-волны могут отсутствовать (блоки F-волн). Частые повторные F-волны наблюдают при поражении мотонейронов спинного мозга. Особенно характерным для заболеваний мотонейронов является сочетание "гигантских" повторных F-волн и их выпадений.

Ещё один признак поражения мотонейронов - появление большого количества "гигантских" F-волн. Наличие крупных F-волн указывает на наличие реиннервационного процесс а в мышце.

Несмотря на высокую чувствительность F-волн, этот метод можно использовать только в качестве дополнительного (в совокупности с данными исследования про водящей функции периферических нервов и игольчатой ЭМГ) .

Исследование Н-рефлекса

Н-рефлекс (Н-ответ) - суммарный потенциал действия ДЕ мышцы, возникающий при слабом раздражении электрическим током афферентных нервных волокон, идущих из этой мышцы.

Возбуждение передаётся по афферентным волокнам нерва через задние корешки Спинного мозга на вставочный нейрон и на мотонейрон, а затем через передние корешки по эфферентным нервным волокнам на мышцу.

Анализируемые показатели Н-ответа : порог вызывания, форма, отношение амплитуды Н-рефлекса к М-ответу, латентный период или скорость его рефлекторного ответа.

Клиническая значимость . При поражении пирамидных нейронов порог вызывания Н-ответа снижается, а амплитуда рефлекторного ответа резко повышается.

Причиной отсутствия или снижения амплитуды Н -ответа могут быть патологические изменения в переднероговых структурах спинного мозга, афферентных или эфферентных нервных волокнах, задних или передних спинальных корешках нервов.

Исследование мигательного рефлекса

Мигательный (орбикулярный, тригеминофациальный) рефлекс - суммарный потенциал действия, возникающий в обследуемой мышце лица (например, т. orbicularis ocu li ) при электрическом раздражении афферентных нервных волокон одной из ветвей n. trigem eni - I , II или III. Как правило, регистрируют два вызванных рефлекторных ответа: первый - с латентным периодом около 12 мс (моносинаптический, аналог Н-рефлекса), второй - с латентным периодом около 34 мс (экстероцептивный, с полисинаптическим распространением возбуждения в ответ на раздражение).

При нормальной СРВ по лицевому нерву увеличение времени рефлекторного мигательного ответа по одной из ветвей нерва указывает на её поражение, а его увеличение по всем трём ветвям нерва свидетельствует о поражении его узла или ядра. С помощью исследования можно провести дифференциальную диагностику между повреждением лицевого нерва в костном канале (в этом случае рефлекторный мигательный ответ будет отсутствовать) и его поражением после выхода из шилососцевидного отверстия.

Исследование бульбокавернозного рефлекса

Бульбокавернозный рефлекс - суммарный потенциал действия, возникающий в обследуемой мышце промежности при электрическом раздражении афферентных нервных волокон n. pudendus.

Рефлекторная дуга бульбокавернозного рефлекса проходит через крестцовые сегменты спинного мозга на уровне S 1 -S 4 , афферентные и эфферентные волокна находятся в стволе полового нерва. При исследовании функции рефлекторной дуги можно получить представление о спинальном уровне иннервации сфинктеров, мышц промежности, а также выявить расстройства регуляции половой функции у мужчин. Исследование бульбокавернозного рефлекса применяют у больных, страдающих половой дисфункцией и тазовыми расстройствами.

Исследование вызванного кожного симпатического потенциала

Исследование ВКСП проводят с любого участка тела, на котором присутствуют потовые железы. Как правило, регистрацию ВКСП проводят с ладонной поверхности кисти, подошвенной поверхности стопы или урогенитальной области. В качестве раздражения используется электрический стимул. Оценивают СРВ по вегетативным волокнам и амплитуду ВКСП. Исследование ВКСП позволяет определить степень поражения вегетативных волокон. Анализируют миелинизированные и немиелинизированные вегетативные волокна.

Показания. Вегетативные расстройства, связанные с нарушением сердечного ритма, потоотделения, АД а также сфинктерные нарушения, расстройство эрекции и эякуляции.

Нормальные показатели ВКСП. Ладонная поверхность: латентность - 1,3- 1,65 мс; амплитуда - 228-900 мкВ; подошвенная поверхность - латентность 1,7-2,21 мс; амплитуда 60-800 мкВ.

Интерпретация результатов. СРВ и амплитуда ВКСП при поражении симпатических волокон снижены. При некоторых невропатиях формируются симптомы, связанные с поражением миелинизированных и немиелинизированных вегетативных волокон. В основе этих расстройств лежит поражение вегетативных ганглиев (например, при диабетической полиневропатии) , гибель немиелинизированных аксонов периферических нервов, а также волокон блуждающего нерва. Нарушения потоотделения, сердечного ритма, АД, мочеполовой системы - наиболее частые вегетативные расстройства при различных полиневропатиях.

Исследование нервно-мышечной передачи (декремент-тест)

Нарушения синаптической передачи могут быть обусловлены пресинаптическими и постсинаптическими процессами (повреждение механизмов синтеза медиатора и его выделения, нарушение его действия на постсинаптическую мембрану и т.п.). Декремент-тест - электрофизиологический метод, с помощью которого оценивают состояние нервно-мышечной передачи, основанный на том, что в ответ на ритмическую стимуляцию нерва выявляют феномен снижения амплитуды М-ответа (её декремента).

Исследование позволяет определить тип нарушения нервно-мышечной передачи, оценить тяжесть поражения и его обратимость в процессе фармакологических тестов [проба с неостигмина метилсульфатом (прозерином)] , а также эффективность лечения.

Показания : подозрение на миастению и миастенические синдромы.

Многообразие клинических форм миастении, её частая сочетаемость с тиреоидитом, опухолями, полимиозитом и другими аутоиммунными процессами, широкие вариации эффективности применения одних и тех же вмешательств у различных больных делают этот метод обследования чрезвычайно важным в системе функциональной диагностики.

Методика

Положение пациента, температурный режим и принципы наложения электродов аналогичны таковым при исследовании проводящей функции моторных нервов.

Исследование нервно-мышечной передачи проводят в клинически более слабой мышце, так как в интактной мышце нарушение нервно-мышечной передачи либо отсутствует, либо выражено минимально. При необходимости декремент-тест можно выполнить в различных мышцах верхних и нижних конечностей, лица и туловища, однако на практике исследование чаще всего про водится в дельтовидной мышце (стимуляция подмышечного нерва в точке Эрба). Если сила в дельтовидной мышце сохранна (5 баллов), но присутствует слабость мимической мускулатуры, необходимо тестировать круговую мышцу глаза. При необходимости декремент- тест выполняют в мышце, отводящей мизинец кисти, трёхглавой мышце плеча, двубрюшной мышце и др.

В начале исследования, чтобы установить оптимальные параметры стимуляции, стандартным способом регистрируют М -ответ выбранной мышцы. Затем проводят непрямую электрическую низкочастотную стимуляцию нерва, иннервирующего исследуемую мышцу, с частотой 3 Гц. Используют пять стимулов и в последующем оценивают наличие декремента амплитуды последнего М -ответа по отношению к первому.

После выполнения стандартного декремент-теста про водят пробы с оценкой постактивационного облегчения и постактивационного истощения.

Интерпретация результатов

При ЭМГ обследовании у здорового человека стимуляция частотой 3 Гц не выявляет декремента амплитуды (площади) М-ответа мышцы вследствие большого запаса надёжности нервно-мышечной передачи, то есть амплитуда суммарного потенциала остаётся стабильной в течение всего периода стимуляции.

Рис. 8-7. Декремент-тест: исследование нервно-мышечной передачи у больной (27 лет) с миастенией (генерализованная форма). Ритмическая стимуляция подмышечного нерва с частотой 3 Гц, регистрация с дельтовидной мышцы (сила мышцы 3 балла). Разрешение - 1 мВ/д, развёртка - 1 мс/д. Исходная амплитуда М-ответа 6 , 2 мВ (норма более 4,5 м В) .

Если уменьшается надёжность нервно-мышечной передачи, выключение мышечных волокон из суммарного М -ответа проявляется снижением амплитуды (площади) последующих М-ответов в серии импульсов по отношению к первому, то есть декрементом М-ответа (рис. 8-7) . Для миастении характерен декремент амплитуды М-ответа более 10% при его нормальной исходной амплитуде. Декремент обычно соответствует степени снижения мышечной силы: при силе 4 балла он составляет 15-20%, 3 балла - 50%, 1 балл - до 90%. Если при силе мышцы 2 балла декремент незначителен (12- 15%) , диагноз миастении нужно поставить под сомнение.

Для миастении также типична обратимость нарушений нервно-мышечной передачи: после введения неостигмина метилсульфата (прозерина) отмечают увеличение амплитуды М-ответа и/или уменьшение блока нервно-мышечной передачи.

Выраженное повышение амплитуды М -ответа в период постактивационного облегчения позволяет заподозрить пресинаптический уровень поражения, в данном случае про водят пробу с тетанизацией (стимуляция серией из 200 стимулов частотой 40-50 Гц) в мышце, отводящей мизинец кисти, которая выявляет инкремент амплитуды М-ответа. Инкремент амплитуды М-ответа более +30% патогномоничен для пресинаптического уровня поражения.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека