Основной механизм действия гормонов физиология. Механизмы действия гормонов

Различают три возможных варианта механизма действия гормо­нов.

Мембранный, или локальный, механизм - заключается в том, что гормон в месте связывания с клеточной мембраной изменяет ее проницаемость для метаболитов, например, глюкозы, аминокислот, неко­торых ионов. Поступление глюкозы, аминокислот оказывает, в свою оче­редь, влияние на биохимические процессы в клетке, а изменение распре­деления ионов по обе стороны мембраны влияет на электрический по­тенциал и функцию клеток. Мембранный тип действия гормонов редко встречается в изолированном виде. Например, инсулин обладает как мембранным (вызывает местные изменения транспорта ионов, глюкозы и аминокислот), так и мембранно-внутриклеточным типом действия.

Мембранно-внутриклеточный тип действия (или косвенный) характерен для гормонов, которые, не проникают в клетку и поэтому влияют на обмен веществ через внутриклеточный химический посредник, который и является полномочным представителем гормона внутри клет­ки. Гормон через мембранные рецепторы влияет на функцию сигнальных систем (обычно это ферменты), запускающих образование или поступле­ние внутриклеточных посредников. А последние, в свою очередь, влияют на активность и количество разных ферментов и тем самым изменяют обмен веществ в клетке.

Цитозольный механизм действия характерен для липофильных гормонов, способных проникать через липидный слой мембраны внутрь клетки, где они вступают в комплекс с цитозольными рецепторами. Этот комплекс регулирует количество ферментов в клетке, избира­тельно влияя на активность генов хромосом ядра, и тем самым изменяют обмен веществ и функции клетки. Подобный тип действия гормона назы­вается прямым, в отличие от мембранно-внутриклеточного, когда гормон регулирует обмен веществ лишь косвенно, через внутриклеточные по­средники.

Гормоны щитовидной и паращитовидных желез

Гормоны щитовидной железы

Щитовидная железа секретирует две группы гормонов с разным влиянием на обмен веществ. Первая группа - йодтиронины: тироксин и трийодтиронин. Эти гормоны регулируют энергетический обмен и влияют на деление и дифференцировку клеток, определяя развитие организма. Йодтиронины действуют на многие ткани организма, но в наибольшей степени на ткани печени, сердца, почек, скелетных мышц и в меньшей степени на жировую и нервную ткани.

При гиперфункции щитовидной железы (гипертиреозе) наблюда­ется избыточное образование йодтиронинов. Характерным признаком тиреотоксикоза является ускоренный распад углеводов и жиров (мобили­зуются из жировых депо). Быстрое сгорание жирных кислот, глицерина и продуктов гликолиза требует большого расхода кислорода. Митохондрии увеличиваются в размерах, набухают, меняется их форма. Поэтому ино­гда тиреотоксикоз называют «болезнью митохондрий». Внешне гипертериоз проявляется в виде следующих симптомов: увелечение основного обмена, повышение температуры тела (повышенная теплопродукция), похудание, выраженная тахикардия, повышенная нервная возбудимость, пучеглазие и др. Снимаются эти нарушения или хирургическим удалени­ем части щитовидной железы, или с помощью препаратов, угнетающих ее деятельность.

При гипофункции (гипотиреозе) щитовидной железы имеется недостаток йодтиронинов. Гипотериоз в раннем детском возрасте назы­вается кретинизмом или микседемой детей, а у взрослых - просто микседемой. Кретинизм характеризуется выражейной физической и умственной отсталостью. Это объясняется снижением действия йодтиронинов на де­ление клеток и их дифференцировку, что влечет за собой замедленный и неправильный рост костной ткани, нарушение дифференцировки нейро­нов. У взрослых микседема проявляется в снижении основного обмена и температуры тела, ухудшении памяти, нарушении кожных покровов (су­хость, шелушение) и др. В тканях организма снижен обмен углеводов и жиров и все энергетические процессы. Гипотериоз устраняется лечением препаратами йодтиронинов.

Ко второй группе относится кальциотонин (белок с молекулярной массой 30000), он регулирует фосфорно-кальциевый обмен, его действие рассмотренно ниже.

В результате взаимодействия с рецепторами в клетках – мишенях специфические гормональные эффекты могут опосредоваться тремя основными механизмами, а именно:

1) прямым влиянием на мембранные процессы;

2) системами внутриклеточных «вторых посредников»;

3) действием на ядро клетки.

Однако нужно иметь в виду, что один гормон может действовать несколькими разными механизмами. У ряда гормонов можно различить быстрое (метаболическое) и медленное (ростовое) воздействие. Например, инсулин вызывает в мышцах быстрые изменения в транспорте и метаболизме сахаров и аминокислот и отдаленные, медленные изменения синтеза и метаболизма протеинов.

У быстрого воздействия механизм заключается, скорее, в активации энзиматического аппарата клеточных мембран, медленные воздействия требуют взаимодействия ядерного генома.

2.2.1. Прямые мембранные эффекты

Гормоны могут оказывать непосредственное влияние на плазматические мембраны клеток:

а)изменять проницаемость мембран по отношению к ионам или транспорт тех или иных соединений (например, влияние инсулина на транспорт глюкозы и аминокислот через мембраны);

б) изменять структуру мембраны (например, открывать поры);

в) изменять активность переносчиков (например, путем изменеения их конформации и сродства к транспортируемым веществам);

г) стимулировать образование в мембране специфических «пор» или «каналов»;

д) активировать специфические мембранные «насосы», например, йодидный насос в клетках щитовидной железы.

2.2.2. Активация внутриклеточных вторых посредников

Биологический эффект гормонов, взаимодействующих с рецепторами, локализованными на плазматической мембране, осуществляется с помощью особых веществ - вторичных передатчиков или мессенджеров . В настоящее время известно, что роль мессенджеров могут выполнять, по крайней мере, следующие вещества: циклический аденозин-3′,5′-монофосфат (цАМФ) и циклический гуанозин-3′,5′-монофосфат (цГМФ), инозитолтрифосфат, диацилглицерин, ионы кальция, эйкозаноиды и какие-то другие факторы неизвестной природы.



Работа ц-АМФ как мессенджера .

Ц-АМФ образуется в клетке под влиянием фермента аденилатциклазы из молекул АТФ. Следовательно, основное действие гормона должно быть направлено на изменение активности аденилатциклазы. Аденилатциклаза состоит из трех компонентов: рецептора, регуляторного белка и каталитической субъединицы, которые в нестимулированном состоянии разобщены между собой. Рецептор расположен на внешней стороне мембраны. Регуляторная единица представлена g-белком и расположена на внутренней поверхности плазматической мембраны. В отсутствие гормона она связана с гуанозиндифосфатом (ГДФ). При воздействии гормона на рецепторную часть происходит связывание субъединицы с гуанозитрифосфатом и ее активирование. Роль гормона заключается в осуществлении замены комплекса g-белок – ГДФ на комплекс g-белок – ГТФ. В результате повышается содержание ц-АМФ. Образовавшийся ц-АМФ активизирует протеинкиназы. Каждая молекула протеинкиназы состоит из двух регуляторных и двух каталитических субъединиц. ЦАМФ вызывает диссоциацию субъединиц протеинкиназ, свободные каталитические субъединицы получают возможность фосфорилировать специфические белковые субстраты, тем самым реализовать внутриклеточные эффекты гормонов. (табл. 4).

Таблица 3

Гормоны, действие которых на ткани опосредуется цАМФ

Итак: гормон + рецептор ® активация аденилатциклазы ® активация протеинкиназы ® фосфорилирование белка → внутриклеточные эффекты гормона.

Циклический ГМФ (цГМФ)

ЦАМФ образуется вследствие активации мембранной каталитической единицы – гуанилциклазы. В отличие от аденилатциклазы, гуанилциклаза одновременно выполняет функции рецептора и каталитической единицы. Примеры гормонов, прямо взаимодействующих с мембранной гуанилциклазой и опосредующих свои эффекты через цГМФ, это предсердные натрийуретические пептиды и окись азота.

Фосфоинозитиды

При связывании гормона с мембранным рецептором может активироваться система вторых посредников, образующихся из мембранных фосфолипидов. Рецептор, в таких случаях, находится в комплексе с G-белком и при взаимодействии рецептора с гормоном активируется мембранный фермент (фосфолипаза С). Действуя на мембранные фосфолипиды, а именно на фосфатидилинозитол-4,5-бифосфат (ФИФ 2), этот фермент приводит к образованию инозитолтрифосфата (ИФ 3) и диацилглицерина (ДАГ) (рис. 5). Эти соединения выступают затем в роли вторых посредников, влияя на внутриклеточный уровень кальция.

Рис. 5. Пример активации гормоном мембранной фосфолипазы.

Связывание гормона с его мембранным рецептором может приводить к активации мембранной фосфолипазы С (ФЛС), под действием которой из фосфаимдилинозитолдифосфата (ФИФ 2) образуются инозитолтрифосфат (ИФ 3) и диацилглицерин (ДАГ). ИФ3 усиливает перемещенеие ионов кальция из внутриклеточных запасов в цитоплазму, а ДАГ активирует протеинкиназу С (ПКС).

Кальций, который мобилизован из запасов, чувствительных к ИФ 3 , стимулирует свое высвобождение из других (нечувствительных к ИФ 3) внутриклеточных запасов, в результате чего по цитоплазме быстро распространяется «волна» этого иона. Увеличение уровня кальция в цитоплазме означает появление еще одного внутриклеточного посредника, так как ионы кальция оказывают многочисленные влияния на метаболические процессы.

Из ИФ 3 образуются различные другие фосфорилированные формы инозитола, большинство из которых не обладает активностью, хотя некоторые из них могут усиливать внутриклеточные эффекты ИФ 3 .

Из ФИФ 2 образуется также диацилглицерин (ДАГ), который активирует мембранный фермент протеинкиназу С (ПКС). Этот фермент фосфорилирует внутриклеточные белки, способные затем влиять на разнообращные метаболические процессы (как в цитоплазме, так и в ядре), обусловливая проявление гормональных эффектов. Активация ПКС под действием ДАГ может также усиливать работу кальциевого насоса клеточной мембраны, что обеспечивает восстановление исходного уровня кальция в цитоплазме.

Мессенджер – ионы кальция.

Процесс активации протеинкиназ связан также со взаимодействием ионов кальция срегуляторным белком клетки – кальмодулином. Обычно кальмодулин находится в неактивном состоянии и потому не способен оказывать свое регулирующее воздействие на ферменты. В присутствии кальция происходит активация кальмодулина, в результате чего активируются протеинкиназы, в дальнейшем происходит фосфорилирование белков.

Роль гормона в данном случае заключается в изменении проницаемости мембраны клетки для ионов кальция или за счет освобождения свободных ионов кальция из внутриклеточных

депо (рис. 5).

Повышенный уровень внутриклеточного кальция устраняется путем стимуляции кальциевого насоса, который “перекачивает” свободніый кальций в межклеточную жидкость, снижает его уровень в клетке, в результате чего кальмодулин переходит в неактивную форму и в клетке восстанавливается состояние функционального покоя.

Итак: гормон + рецептор ®повышение уровня кальция в клетке ® активация кальмодулина ® активация протеинкиназы ® фосфорилирование белка- регулятора ® физиологический эффект.

Другие мессенджеры.

Медиаторами гормонального действия могут являться и арахидоновой кислоты. Взаимодействие гормона с рецептором способствует разрушению мембранных фосфолипидов и повышенному образованию арахидоновой кислоты и простагландинов, опосредующих гормональный эффект.

Синтез простагландинов проходит через образование нестабильных промежуточных продуктов – эндоперекисей, которые служат предшественниками других биологичпски активных соединений – тромбоксанов. Из эндоперекисей образуется и другие активные молекулы – простациклины.

Арахидоновая кислота является также предшественником другой группы активных соединений – лейкотриенов, которые синтезируются в лейкоцитах крови. В отличие от простагландинов и тромбоксанов, действующих главным образом как внутриклеточные посредники, лейкотриены и простациклин выделяются из клеток в кровь и могут считаться гормонами.

2.2.3. Действие на ядро клетки

Для большинства генов, регулируемых гормонами, характерно наличие последовательностей нуклеотидов, выполняющих роль гормонсвязывающих элементов. В результате связывания гормона на ДНК – мишени меняется процесс транскрипции и, в конечном счете, синтезируется молекула нужного белка. Также может осуществляться и репрессия транскрипции.

Существуют две стадии в процессе синтеза белка, на которые могут влиять гормоны:

Транскрипция кода с ДНК на РНК;

Трансляция кода мРНК при синтезе белка на рибосомах.

Тиреоидные, а также стероидные гормоны кортизол и эстрогены стимулируют синтез белка на стадии транскрипции. Другие гормоны, стимулирующие синтез белка в клетке,оказывают влияние на синтез белка на стадии трансляции.

4 основные системы регуляции метаболизма: Центральная нервная система (за счет передачи сигналов посредством нервных импульсов и нейромедиаторов); Эндокринная система (с помощью гормонов, которые синтезируются в железах и транспортируются к клеткам-мишеням (на рис. А); Паракринная и аутокринная системы (при участии сигнальных молекул, секретируемых из клеток в межклеточное пространство — эйкозаноидов, гистаминов, гормонов ЖКТ, цитокинов) (на рис. Б и В); Иммунная система (посредством специфических белков – антител, Т-рецепторов, белков комплекса гистосовместимости.) Все уровни регуляции интегрированы и действуют как единое целое.

Эндокринная система регулирует обмен веществ посредством гормонов. Гормоны (др. -греч. ὁρμάω - возбуждаю, побуждаю) — — биологически активные органические соединения, которые вырабатываются в незначительных количествах в железах внутренней секреции, осуществляют гуморальную регуляцию обмена веществ и имеют различную химическую структуру.

Классическим гормонам присущ ряд признаков: Дистантность действия – синтез в железах внутренней секреции, а регуляция отдаленных тканей Избирательность действия Строгая специфичность действия Кратковременность действия Действуют в очень низких концентрациях, под контролем ЦНС и регуляция их действия осуществляется в большинстве случаев по типу обратной связи Действуют опосредованно через белковые рецепторы и ферментативные системы

Организация нервно-гормональной регуляции Существует строгая иерархия или соподчиненность гормонов. Поддержание уровня гормонов в организме в большинстве случаев обеспечивает механизм отрицательной обратной связи.

Регуляция уровня гормонов в организме Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа. Они контролируются нервными влияниями или концентрацией определенных веществ в крови.

Классификация гормонов по биологическим функциям; по механизму действия; по химическому строению; различают 4 группы: 1. Белково-пептидные 2. Гормоны-производные аминокислот 3. Гормоны стероидной природы 4. Эйкозаноиды

1. Белково — пептидные гормоны Гормоны гипоталамуса; гормоны гипофиза; гормоны поджелудочной железы — инсулин, глюкагон; гормоны щитовидной и паращитовидной желез – соответственно кальцитонин и паратгормон. Вырабатываются в основном путем прицельного протеолиза. У гормонов короткое время жизни, имеют от 3 до 250 АМК остатков.

Главный анаболический гормон – инсулин, главный катаболический гормон — глюкагон

Некоторые представители белково — пептидных гормонов: тиролиберина (пироглу-гис-про- NN НН 22), инсулина и соматостатина.

2. Гормоны — производные аминокислот Являются производными аминокислоты — тирозина. К ним относятся гормоны щитовидной железы — трийодтиронин ((II 33) и тироксин (II 44), а а также — адреналин и норадреналин – катехоламины.

3. Гормоны стероидной природы Синтезируются из холестерина (на рис.) Гормоны коркового вещества надпочечников – кортикостероиды (кортизол, кортикостерон) Гормоны коркового вещества надпочечников – минералокортикоиды (андостерон) Половые гормоны: андрогены (19 «С») и эстрогены (18 «С»)

Эйкозаноиды Предшественником всех эйкозаноидов является арахидоновая кислота. Они делятся на 3 группы – простагландины, лейкотриены, тромбоксаны. Эйказоноиды — медиаторы (локальные гормоны) - широко распространенная группа сигнальных веществ, которые образуются почти во всех клетках организма и и имеют небольшую дальность действия. Этим они отличаются от классических гормонов, синтезирующихся в специальных клетках желез внутренней секреции. .

Характеристика разных групп эйказоноидов Простагландины (Pg)- синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют такие типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой систем, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов и условий. Они также влияют на температуру тела. Простациклины являются подвидом простагландинов (Pg I), но дополнительно обладают особой функцией- ингибируют агрегацию тромбоцитов и обусловливают вазодилатацию. Особенно активно синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. .

Тромбоксаны и лейкотриены Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение мелких сосудов. Лейкотриены (Lt) активно синтезируются в лейкоцитах, в клетках лёгких, селезёнки, мозга, сердца. Выделяют 6 типов лейкотриенов: A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления. Также вызывают сокращение мускулатуры бронхов в дозах в 100- 1000 раз меньших, чем гистамин.

Взаимодействие гормонов с рецепторами клеток-мишеней Для проявления биологической активности связывание гормонов с рецепторами должно приводить к образованию сигнала, который вызывает биологический ответ. Например: щитовидная железа – мишень для тиротропина, под действием которого увеличивается количество ацинарных клеток, повышается скорость синтеза тиреоидных гормонов. Клетки-мишени отличают соответсвующий гормон, благодаря наличию соответствующего рецептора.

Общая характеристика рецепторов Рецепторы могут находится: — на поверхности клеточной мембраны — внутри клетки – в цитозоле или в ядре. Рецепторы – это белки, могут состоять из нескольких доменов. Мембранные рецепторы имеют домен узнавания и связывания с гормоном, трансмембранный и цитоплазматический домены. Внутриклеточные (ядерные) – домены связывания с гормоном, с ДНК и с белками, регулирующие трансдукцию.

Основные этапы передачи гормонального сигнала: через мембранные (гидрофобные) и и внутриклеточн ые ые (гидрофильные) рецепторы. Это быстрый и медленный пути.

Гормональный сигнал меняет скорость метаболических процессов ответ путем: — изменение активности ферментов — изменение количества ферментов. По механизму действия различают гормоны: — взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, эйкозаноиды) и — взаимодействующие с внутриклеточными рецепторами (стероидные и тиреодные гормоны)

Передача гормонального сигнала через внутриклеточные рецепторы для стероидных гормонов (гормоны коры надпочечников и половые гормоны), тиреодных гормонов (Т 3 и Т 4). Медленный тип передачи.

Передача гормонального сигнала через мембранные рецепторы Передача информации от первичного посредника гормона осуществляется через рецептор. Этот сигнал рецепторы трансформируют в изменение концентрации вторичных посредников, получивших название вторичных мессенджеров. Сопряжение рецептора с эффекторной системой осуществляется через GG –белок. Общим механизмом, посредством которого реализуются биологические эффекты является процесс «фосфорилирования – дефосфорилирования ферментов» Существуют разные механизмы передачи гормонального сигналы через мембранные рецепторы – аденилатциклазная, гуанилатциклазная, инозитолфосфатная системы и другие.

Сигнал от гормона трансформируется в изменении концентрации вторичных посредников – ц. АМФ, ц. ГТФ, ИФ 3, ДАГ, СА 2+, NO.

Самая распространенная система передача гормонального сигнала через мембранные рецепторы – аденилатциклазная система. Комплекс гормон-рецептор связан с G – белком, который имеет 3 субъединицы (α , β и γ). В отсутствии гормона α — субъединица связана с ГТФ и аденилатциклазой. Комплекс гормон-рецептор приводит к отщеплению димера βγ от α ГТФ. Субъединица α ГТФ активирует аденилатциклазу, катализирующую образование циклической АМФ (ц. АМФ). ц. АМФ активирует протеинкиназу А(ПКА), фосфорилируюшую ферменты, которые меняют скорость метаболических процессов. Протеинкиназы различают А, В, С и др.

Адреналин и глюкагон через аденилатциклазную систему передачи гормонального сигнала активируют гормонзависимую ТАГ-липазу адипоцитов. Происходит при напряжении организма (голодании, длительной мышечной работе, охлаждении). Инсулин блокирует этот процесс. Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее. ТАГ-липаза отщепляет от от триацилглицеролов жирные кислоты с образованием глицерола. Жирные кислоты окисляются и обеспечивают организм энергией.

Передача сигнала с адренорецепторов. АС – аденилатциклаза, Pk. A – протеинкиназа А, Pk. C – протеинкиназа С, Фл. С – фосфолипаза С, Фл. А 2 – фосфолипаза А 2, Фл. D – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, Ах. К – арахидоновая кислота, PIP 2 – фосфатидилинозитол бифосфат, IP 3 – инозитол трифосфат, DAG – диацилглицерол, Pg – простагландины, LT – лейкотриены.

Адренорецепторы всех типов реализуют свое действие через Gs-белки. α- субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке ц. АМФ из АТФ и активацию ц. АМФ зависимой протеинкиназы А. ββ γ-субъединицы Gs-белка активируют Са 2+-каналы L-типа и макси-K+-каналы. Под влиянием ц. АМФ-зависимой протеинкиназы А происходит фосфорилирование киназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина. Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.

Американские ученые Роберт Лефковиц и Брайан Кобилка удостоились Нобелевской премии в 2012 г. за постижение механизмов взаимодействия рецепторов адреналина с G-белками. Взаимодействие бета-2 рецептора (обозначен синим цветом) c G- белками (обозначены зеленым цветом). Рецепторы, сопряженные с G-белками, очень красивые, если рассматривать архитектурные молекулярные ансамбли клетки как шедевры природы. Их называют «семиспиральными» , поскольку они, спирально упакованы в клеточной мембране на манер елочного серпантина и «пронизывают» ее семь раз, выставляя на поверхность «хвостик» , способный воспринять сигнал и передать конформационные изменения всей молекуле.

G-белки (англ. G proteins) - это семейство белков, относящихся к ГТФазам и функционирующих в качестве посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ (синий цвет) на ГТФ (зеленый цвет) как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки делятся на две основных группы - гетеротримерные («большие») и «малые» . Гетеротримерные G-белки - это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки - это белки из одной полипептидной цепи, они имеют молекулярную массу 20- 25 к. Да и относятся к суперсемейству Ras малых ГТФаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков. Обе группы G-белков участвуют во внутриклеточной сигнализации.

Циклический аденозинмонофосфат (циклический AMФ, ц. AMФ, c. AMP) - производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. .

Каждой из систем передачи гормонального сигнала соответствует определенный класс протеинкиназ Активность протеинкиназ типа А регулируется ц. АМФ, протеинкиназы G — ц. ГМФ. Са 2+ — кальмодулинзависимые протеинкиназы находятся под контролем концентрации СА 2+. Протеинкиназы типа С регулируются ДАГ. Повышение уровня какого-либо вторичного посредника приводит к активации определенного класса протеинкиназ. Иногда субъединица мембранного рецептора может обладать активностью фермента. Например: тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном.

Действие инсулина на клетки-мишени начинается после его связывания с мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью. Тирозинкиназа запускает процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс может вызывать активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование ц. АМФ. Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.

Другая система – гуанилатциклазная мессенджерская система. Цитоплазматический домен рецептора обладает активностью гуанилатциклазы (гемсодержащий фермент). Молекулы ц. ГТФ могут активировать ионные каналы или протеинкиназу GG , фосфорилирующую ферменты. ц. ГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.

Инозитолфосфатная система. Связывание гормона с рецептором, вызывает изменение конформациии рецептора. Происходит диссоциация G-G- белка и ГДФ заменяется на ГТФ. Отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С. Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозитол-4, 5 -бисфосфата (ФИФ 2) и образование инозитол-1, 4, 5 -трифосфат (ИФ 3) и диацилглицерол (ДАГ). ДАГ участвует в активации фермента протеинкиназы С (ПКС). Инозитол-1, 4, 5 -трифосфат (ИФ 3) связывается специфическими центрами Са 2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала — Са 2+ поступает в цитозоль. В отсутствие в цитозоле ИФ 3 канал закрыт.

Механизм действия гормонов

Как уже отмечалось выше, гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) от ЦНС к строго определенным и высокоспецифичным клеткам-мишеням соответствующих органов или тканей.

Узнающими центрами клеток-мишеней, с которыми связывается гормон, являются высокоспецифичные рецепторы . Роль таких рецепторов, как правило, выполняют гликопротеины, специфичность которых обусловлена природой углеводного компонента. Рецепторы большинства гормонов (белковых и производных аминокислот) находятся в плазматической мембране клеток.

Рассмотрим основные биохимические события, обеспечивающие перенос сигналов от ЦНС к органам и тканям.

Под влиянием раздражителей в ЦНС возникают сигналы – нервные импульсы, которые затем поступают в гипоталамус или через спинной мозг в мозговое вещество надпочечников.

В гипоталамусе синтезируются первые гормоны «дистанционного» действия, так называемые нейрогормоны или рилизинг-факторы (от англ. release – освобождать). Затем нейрогормоны достигают гипофиза , где регулируют (усиливают или тормозят) выделение тропных гормонов , которые, в свою очередь, контролируют процессы синтеза гормонов периферическими железами .

Мозговое вещество надпочечников под действием сигналов из ЦНС выделяет адреналин и ряд других гормональных веществ. Таким образом, гипоталамус и мозговое вещество надпочечников находятся под прямым контролем ЦНС, в то время как другие эндокринные железы связаны с ЦНС лишь косвенно – через гормоны гипоталамуса и гипофиза.

В результате такой передачи эндокринные железы организма синтезируют специфические гормоны, которые и оказывают регулирующее воздействие на различные органы и ткани организма.

Типы взаимодействий между железами внутренней секреции

Между железами внутренней секреции складываются сложные взаимодействия, среди которых можно выделить следующие основные типы:

1. Взаимодействия по принципу положительной прямой или отрицательной обратной связи . Например, тиреотропный гормон, вырабатываемый в гипофизе, стимулирует образование гормонов щитовидной железы (положительная прямая связь), однако повышение концентрации гормонов щитовидной железы выше нормы тормозит образование тиреотропного гормона гипофиза (отрицательная обратная связь).

2. Синергизм и антагонизм гормональных влияний . Как адреналин, синтезируемый надпочечниками, так и глюкагон, выделяемый поджелудочной желелезой, вызывают увеличение содержания глюкозы в крови за счет распада гликогена в печени (синергизм). Среди группы женских половых гормонов прогестерон – ослабляет, а эстрогены усиливают сократительные функции мускулатуры матки (антагонизм).

В настоящее время известно несколько механизмов действия гормонов, основными из них являются следующие:

1) мембранный ;

2) мембранно-внутриклеточный (косвенный);

3) цитозольный (прямой).

Кратко рассмотрим особенности каждого из перечисленных механизмов действия гормонов.

Мембранный механизм редко встречается в изолированном виде и заключается в том, что гормон за счет межмолекулярных взаимодействий с рецепторной белковой частью мембраны клетки и последующих ее конформационных перестроек изменяет (как правило, увеличивает) проницаемость мембраны для некоторых биочастиц (глюкозы, аминокислот, неорганических ионов и др.). В этом случае гормон выступает в качестве аллостерического эффектора транспортных систем клеточной мембраны. Затем поступившие в клетку вещества оказывают влияние на протекающие в ней биохимические процессы, наример, ионы изменяют электрический потенциал клеток.

Мембранно-внутриклеточный механизм действия характерен для пептидных гормонов и адреналина, которые не способны проникать в клетку и влияют на внутриклеточные процессы через химического посредника, роль которого в большинстве случаев выполняют циклические нуклеотиды – циклический 3",5"-АМФ (цАМФ), циклический 3",5"-ГМФ (цГМФ) и ионы Са 2+ .

Циклические нуклеотиды синтезируются гуанилатциклазой и кальций-зависимой аденилатциклазой, которые встроены в мембрану и состоят из трех взаимосвязанных фрагментов (рис.): наружного узнающего мембранного рецептора R, обладающего стереохимическим сродством к данному гормону; промежуточного N-белка, имеющего участок связывания и расщепления ГДФ; каталитической части С, представленной собственно аденилатциклазой, в активном центре которой может протекать следующая реакция:

АТФ = цАТФ + Н 4 Р 2 О 7

При взаимодействии гормона с рецептором изменяется конформация сопряженного N-белка и происходит замещение ГДФ, находящегося на неактивном белке, на ГТФ. Комплекс ГТФ–N-белок активирует аденилатциклазу и запускает синтез цАМФ из АТФ. Аденилатциклаза поддерживается в активном состоянии до тех пор, пока существует комплекс гормон-рецептор. Благодаря этому происходит многократное усиление сигнала: на одну молекулу гормона внутри клетки синтезируется 10–100 молекул цАМФ. Сходный механизм реализуется и через цГМФ.

Влияние циклических нуклеотидов на биохимические процессы прекращается под действием специальных ферментов – фосфодиэстераз, разрушающих как сами циклические нуклеотиды, так и соединения, образующиеся в результате их действия – фосфопротеины. Нециклические формы АМФ и ГМФ инактивируют данные процессы.

Цитозольный механизм действия характерен для гормонов, являющихся липофильными веществами, которые способны проникать внутрь клеток через липидный слой мембраны (стероидные гормоны, тироксин). Эти гормоны, проникая внутрь клетки, образуют молекулярные комплексы с белковыми цитоплазматическими рецепторами. Затем в составе комплексов со специальными транспортными белками гормон транспортируется в клеточное ядро, где вызывает изменение активности генов, регулируя процессы транскрипции или трансляции

Таким образом, в то время как пептидные гормоны влияют на постсинтетические события, стероидные гормоны оказывают воздействие на геном клетки.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое) , действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Синтез белковых гормонов, как и других белков, находится под генетическим контролем, и типичные клетки млекопитающих экспрессируют гены, которые кодируют от 5000 до 10 000 различных белков, а некоторые высокодифференцированные клетки – до 50 000 белков. Любой синтез белка начинается с транспозиции сегментов ДНК , затем транскрипции, посттранскрипционного процессинга, трансляции, посттрансляционного процессинга и модификации. Многие полипептидные гормоны синтезируются в форме больших предшественников - прогормонов (проинсулин, проглюкагон, проопиомеланокортин и др.). Конверсия прогормонов в гормоны осуществляется в аппарате Гольджи.

    Существуют два основных механизма действия гормонов на уровне клетки:
  1. Реализация эффекта с наружной поверхности клеточной мембраны.
  2. Реализация эффекта после проникновения гормона внутрь клетки.

1)Реализация эффекта с наружной поверхности клеточной мембраны

В этом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент - аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорнои кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов - циклического 3,5-аденозинмонофосфата (цАМФ). цАМФ активирует клеточный фермент протеинкиназу, реализующую действие гормона. Установлено, что гормоно-зависимая аденилатциклаза - это общий фермент, на который действуют различные гормоны, в то время как рецепторы гормонов множественны и специфичны для каждого гормона. Вторичными посредниками кроме цАМФ могут быть циклический 3,5-гуанозинмонофосфат (цГМФ), ионы кальция, инозитол-трифосфат. Так действуют пептидные, белковые гормоны, производные тирозина - катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными .

Плазматические рецепторы в зависимости от структуры подразделяются на:

  1. семи фрагментов (петель);
  2. рецепторы, трансмембранный сегмент которых состоит из одного фрагмента (петли или цепи);
  3. рецепторы, трансмембранный сегмент которых состоит из четырех фрагментов (петель).

К гормонам, рецептор которых состоит из семи трансмембранных фрагментов, относятся:
АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, простагландины, гастрин, холецистокинин, нейропептид Y, нейромедин К, вазопрессин, адреналин (a-1 и 2, b-1 и 2), ацетилхолин (М1, М2, М3 и М4), серотонин (1А, 1В, 1С, 2), дофамин (Д1 и Д2), ангиотензин, вещество К, вещество Р, или нейрокинин 1, 2 и 3 типа, тромбин, интерлейкин-8, глюкагон, кальцитонин, секретин, соматолиберин, ВИП, гипофизарный аденилатциклазактивирующий пептид, глютамат (MG1 – MG7), аденин.

Ко второй группе относятся гормоны, имеющие один трансмембранный фрагмент:
СТГ, пролактин, инсулин, соматомаммотропин, или плацентарный лактоген, ИФР-1, нервные факторы роста, или нейротрофины, фактор роста гепатоцитов, предсердный натрийуретический пептид типа А, В и С, онкостатин, эритропоэтин, цилиарный нейротрофический фактор, лейкемический ингибиторный фактор, фактор некроза опухолей (р75 и р55), нервный фактор роста, интерфероны (a, b и g), эпидермальный фактор роста, нейродифференцирующий фактор, факторы роста фибробластов, факторы роста тромбоцитов А и В, макрофагный колониестимулирующий фактор, активин, ингибин, интерлейкины-2, 3, 4, 5, 6 и 7, гранулоцито-макрофагный колониестимулирующий фактор, гранулоцитный колониестимулирующий фактор, липопротеин низкой плотности, трансферрин, ИФР-2, урокиназный плазминогенный активатор.

К гормонам третьей группы, рецептор которых имеет четыре трансмембранных фрагмента, относятся:
ацетилхолин (никотиновые мышечные и нервные), серотонин, глицин, g-аминомасляная кислота.

Cопряжение рецептора с эффекторными системами осуществляется через так называемый G-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мембраны. G-белок в активированной форме стимулирует через аденилатцик-лазу синтез циклического АМФ, который запускает каскадный механизм активирования внутриклеточных белков.

Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты «вторичных» мессенджеров внутри клетки, является процесс фосфорилирования – дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев – тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток.

Аденилатциклазная мессенджерная система

Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков:
1)рецептор гормона ;
2)фермент аденилатциклаза , выполняющая функцию синтеза циклического АМФ (цАМФ);
3)G-белок , осуществляющий связь между аденилатциклазой и рецептором;
4)цАМФ-зависимая протеинкиназа , катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность;
5)фосфодиэстераза , которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала

Показано, что связывание гормона с β-адренергическим рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что в свою очередь обеспечивает взаимодействие рецептора со вторым белком сигнального пути – ГТФ-связывающим.

ГТФ-связывающий белок – G-белок – представляет собой смесь 2 типов белков:
активного G s (от англ. stimulatory G)
ингибиторного G i
В составе каждого из них имеется три разные субъединицы (α-, β- и γ-), т.е. это гетеротримеры. Показано, что β-субъединицы G s и G i идентичны; в то же время α-субъединицы, являющиеся продуктами разных генов, оказались ответственными за проявление G-белком активаторной и ингибиторной активности. Гормонрецепторный комплекс сообщает G-белку способность не только легко обменивать эндогенный связанный ГДФ на ГТФ, но и переводить G s -белок в активированное состояние, при этом активный G-белок диссоциирует в присутствии ионов Mg 2+ на β-, γ-субъединицы и комплекс α-субъединицы G s в ГТФ-форме; этот активный комплекс затем перемещается к молекуле аденилатциклазы и активирует ее. Сам комплекс затем подвергается самоинактивации за счет энергии распада ГТФ и реассоциации β- и γ-субъединиц с образованием первоначальной ГДФ-формы G s .

Рец - рецептор; G - G-белок; АЦ -аденилатциклаза.

Представляет собой интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы и катализирует реакцию синтеза цАМФ из АТФ:

Каталитический компонент аденилатциклазы, выделенный из разных тканей животных, представлен одним полипептидом. В отсутствие G-белков он практически неактивен. Содержит две SH-группы, одна из которых вовлечена в сопряжение с G s -белком, а вторая необходима для проявления каталитической активности.Под действием фосфоди-эстеразы цАМФ гидролизуется с образованием неактивного 5"-АМФ.

Протеинкиназа – это внутриклеточный фермент, через который цАМФ реализует свой эффект. Протеинкиназа может существовать в 2 формах. В отсутствие цАМФ протеинкиназа представлена в виде тетрамерного комплекса, состоящего из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц; в этой форме фермент неактивен. В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну R 2 -субъединицу и две свободные каталитические субъединицы С; последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность.

Активность многих ферментов регулируется цАМФ-зависимым фосфорилированием, соответственно большинство гормонов белково-пептидной природы активирует этот процесс. Однако ряд гормонов оказывает тормозящий эффект на аденилатциклазу, соответственно снижая уровень цАМФ и фосфорилирование белков. В частности, гормон соматостатин, соединяясь со своим специфическим рецептором – ингибиторным G-белком (Gi , являющимся структурным гомологом Gs-белка), ингибирует аденилатциклазу и синтез цАМФ, т.е. вызывает эффект, прямо противоположный вызываемому адреналином и глюкагоном. В ряде органов простагландины (в частности, РGЕ 1) также оказывают ингибиторный эффект на аденилатциклазу, хотя в том же органе (в зависимости от типа клеток) и тот же PGE 1 может активировать синтез цАМФ.

Более подробно изучен механизм активирования и регуляции мышечной гликогенфосфорилазы, активирующей распад гликогена. Выделяют 2 формы:
каталитически активную – фосфорилаза а и
неактивную – фосфорилаза b .

Обе фосфорилазы построены из двух идентичных субъединиц, в каждой остаток серина в положении 14 подвергается процессу фосфорилирования–дефосфорилирования, соответственно активированию и инактивированию.

Под действием киназы фосфорилазы b, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы b подвергаются ковалентному фосфорилиро-ванию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние.

В мышечной ткани открыты 3 типа регуляции гликогенфосфорилазы.
Первый тип ковалентная регуляция , основанная на гормонзависимом фосфорилировании–дефосфорилировании субъединиц фосфорилазы.
Второй тип аллостерическая регуляция . Она основана на реакциях аденилирования–деаденилирования субъединиц гликогенфосфорилазы b (соответственно активирование–инактивирование). Направление реакций определяется отношением концентраций АМФ и АТФ, присоединяющихся не к активному центру, а к аллостерическому центру каждой субъединицы.

В работающей мышце накопление АМФ, обусловленное тратой АТФ, вызывает аденилирование и активирование фосфорилазы b. В покое, наоборот, высокие концентрации АТФ, вытесняя АМФ, приводят к аллостерическому ингибированию этого фермента путем деаденилирования.
Третий тип кальциевая регуляция , основанная на аллостерическом активировании киназы фосфорилазы b ионами Са 2+ , концентрация которых повышается при мышечном сокращении, способствуя тем самым образованию активной фосфорилазы а.

Гуанилатциклазная мессенджерная система

Довольно долгое время циклический гуанозинмонофосфат (цГМФ) рассматривался как антипод цАМФ. Ему приписывали функции, противоположные цАМФ. К настоящему времени получено много данных, что цГМФ принадлежит самостоятельная роль в регуляции функции клеток. В частности, в почках и кишечнике он контролирует ионный транспорт и обмен воды, в сердечной мышце служит сигналом релаксации и т.д.

Биосинтез цГМФ из ГТФ осуществляется под действием специфической гуанилатциклазы по аналогии с синтезом цАМФ:

Адреналинрецепторный комплекс: АЦ - аденилатциклаза, G - G-белок; С и R - соответственно каталитические и регуляторные субъединицы протеинкиназы; КФ - киназа фосфорилазы b; Ф - фосфорилаза; Глк-1-P - глюкозо-1-фосфат; Глк-6-P - глюкозо-6-фосфат; УДФ-Глк - уридиндифосфатглюкоза; ГС - гликогенсинтаза.

Известны четыре разные формы гуанилатциклазы, три из которых являются мембраносвязанными и одна – растворимая открыта в цитозоле.

Мембраносвязанные формы состоят из 3 участков :
рецепторного , локализованного на внешней поверхности плазматической мембраны;
внутримембранного домена и
каталитического компонента , одинакового у разных форм фермента.
Гуанилатциклаза открыта во многих органах (сердце, легкие, почки, надпочечники, эндотелий кишечника, сетчатка и др.), что свидетельствует о широком ее участии в регуляции внутриклеточного метаболизма, опосредованном через цГМФ. Мембраносвязанный фермент активируется через соответствующие рецепторы короткими внеклеточными пептидами, в частности гормоном предсердным натрийуретическим пептидом (АНФ), термостабильным токсином грамотрицательных бактерий и др. АНФ, как известно, синтезируется в предсердии в ответ на увеличение объема крови, поступает с кровью в почки, активирует гуанилатциклазу (соответственно повышает уровень цГМФ), способствуя экскреции Na и воды. Гладкие мышечные клетки сосудов также содержат аналогичную рецептор-гуанилатциклазную систему, посредством которой связанный с рецептором АНФ оказывает сосудорасширяющее действие, способствуя снижению кровяного давления. В эпителиальных клетках кишечника активатором рецептор–гуанилатциклазной системы может служить бактериальный эндотоксин, который приводит к замедлению всасывания воды в кишечнике и развитию диареи.

Растворимая форма гуанилатциклазы является гемсодержащим ферментом, состоящим из 2 субъединиц. В регуляции этой формы гуанилатциклазы принимают участие нитровазодилататоры, свободные радикалы – продукты перекисного окисления липидов. Одним из хорошо известных активаторов является эндотелиальный фактор (EDRF) , вызывающий релаксацию сосудов. Действующим компонентом, естественным лигандом, этого фактора служит оксид азота NO. Эта форма фермента активируется также некоторыми нитрозовазодилататорами (нитроглицерин, нитропруссид и др.), используемыми при болезнях сердца; при распаде этих препаратов также освобождается NO.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са 2+ -зависимой ферментной системы со смешанной функцией, названной NO-синтазой:

Оксид азота при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию цГМФ, который снижает силу сердечных сокращений путем стимулирования ионных насосов, функционирующих при низких концентрациях Са 2+ . Однако действие NO кратковременное, несколько секунд, локализованное – вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Получены доказательства, что большинство эффектов цГМФ опосредовано через цГМФ-зависимую протеинкиназу, названную протеинкина-зой G. Этот широко распространенный в эукариотических клетках фермент получен в чистом виде. Он состоит из 2 субъединиц – каталитического домена с последовательностью, аналогичной последовательности С-субъединицы протеинкиназы А (цАМФ-зависимой), и регуля-торного домена, сходного с R-субъединицей протеинкиназы А. Однако протеинкиназы А и G узнают разные последовательности белков, регулируя соответственно фосфорилирование ОН-группы серина и треонина разных внутриклеточных белков и оказывая тем самым разные биологические эффекты.

Уровень циклических нуклеотидов цАМФ и цГМФ в клетке контролируется соответствующими фосфодиэстеразами, катализирующими их гидролиз до 5"-нуклеотидмонофосфатов и различающимися по сродству к цАМФ и цГМФ. Выделены и охарактеризованы растворимая кальмоду-линзависимая фосфодиэстераза и мембраносвязанная изоформа, не регулируемая Са 2+ и кальмодулином.

Са 2+ -мессенджерная система

Ионам Са 2+ принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са 2+ является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са 2+ могут быть внутри- и внеклеточными. В норме концентрация Са 2+ в цитозоле не превышает 10 -7 М, и основными источниками его являются эндоплазматический ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са 2+ (до 10 –6 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций–мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са 2+ -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са 2+ -связывающий белок кальмодулин. При повышении концентрации Са 2+ в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов – мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы b, активируемой ионами Са 2+ , как и NO-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са 2+ -связывающих белков. При повышении концентрации кальция связывание Са 2+ с кальмодулином сопровождается конформационными его изменениями, и в этой Са 2+ -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название).

К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфолипазы С. В результате последовательных реакций образуются два потенциальных вторичных мессенджера – диацилглицерол и инозитол-1,4,5-трифосфат.

Биологические эффекты этих вторичных мессенджеров реализуются по-разному. Действие диацилглицерола, как и свободных ионов Са 2+ , опосредовано через мембраносвязанный Са-зависимый фермент протеинкиназу С , которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1,4,5-трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са 2+ в цитозоль.

Таким образом, представленные данные о вторичных мессенджерах свидетельствуют о том, что каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ, хотя нельзя исключить возможности существования тесной связи между этими системами. Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G – цГМФ; Са 2+ -кальмодулинзависимые протеинкиназы находятся под контролем внутриклеточной [Са 2+ ], а протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са 2+ и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мес-сенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки: ионных каналов, внутриклеточных структурных элементов и генетического аппарата.

2)Реализация эффекта после проникновения гормона внутрь клетки

Во этом случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связываются в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина - гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Известно, что эффект стероидных гормонов реализуется через генетический аппарат путем изменения экспрессии генов. Гормон после доставки с белками крови в клетку проникает (путем диффузии) через плазматическую мембрану и далее через ядерную мембрану и связывается с внутриядерным рецептором–белком. Комплекс стероид–белок затем связывается с регуляторной областью ДНК, с так называемыми гормончувствительными элементами, способствуя транскрипции соответствующих структурных генов, индукции синтеза белка de novo и изменению метаболизма клетки в ответ на гормональный сигнал.

Следует подчеркнуть, что главной и отличительной особенностью молекулярных механизмов действия двух основных классов гормонов является то, что действие пептидных гормонов реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, в то время как стероидные гормоны (а также тиреоидные гормоны, ретиноиды, витамин D3-гормоны) выступают в качестве регуляторов экспрессии генов.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека