3 вида кровеносных сосудов. Функции кровеносных сосудов – артерии, капилляры, вены

Кровь циркулирует по телу при помощи сложной системы кровеносных сосудов. Эта транспортная система доставляет кровь к каждой клетке организма, чтобы она «обменяла» кислород и питательные вещества на отходы жизнедеятельности и углекислый газ.

Немного цифр

В организме здорового взрослого человека более 95 тысяч километров кровеносных сосудов. Через них ежедневно перекачивается более семи тысяч литров крови.

Размер кровеносных сосудов варьируется от 25 мм (диаметр аорты) до восьми мкм (диаметр капилляров).

Какие бывают сосуды?

Все сосуды в человеческом организме можно условно разделить на артерии, вены и капилляры . Несмотря на разницу в размерах, все сосуды устроены примерно одинаково.

Изнутри их стенки выстланы плоскими клетками – эндотелием. За исключением капилляров, все сосуды содержат жесткие и эластичные волокна коллагена и гладкие мышечные волокна, которые могут сжиматься и расширяться в ответ на химические или нервные стимулы.

Артерии несут богатую кислородом кровь от сердца к тканям и органам. Эта кровь ярко-красного цвета , поэтому все артерии выглядят красными.

Кровь перемещается по артериям с большой силой, поэтому их стенки толстые и эластичные. Они состоят из большого количества коллагена, что позволяет им выдерживать давление крови. Наличие мышечных волокон помогает превратить прерывистую подачу крови от сердца в непрерывный поток в тканях.

По мере удаления от сердца артерии начинают ветвиться, и их просвет становится все тоньше и тоньше.

Самые тонкие сосуды, доставляющие кровь в каждый уголок организма – это капилляры . В отличие от артерий, их стенки очень тонкие, поэтому кислород и питательные вещества могут проникать через них в клетки тела. Этот же механизм позволяет отходам жизнедеятельности и углекислому газу попадать из клеток в кровоток.

Капилляры, по которым течет бедная кислородом кровь, собираются в более толстые сосуды – вены . Из-за отсутствия кислорода венозная кровь темнее , чем артериальная, а сами вены кажутся голубоватыми. По ним кровь поступает в сердце и оттуда – в легкие для обогащения кислородом.

Стенки вен тоньше, чем артериальные, поскольку венозная кровь не создает такого сильного давления, как артериальная.

Какие сосуды в теле человека самые крупные?

Две крупнейшие вены в организме человека – это нижняя полая и верхняя полая вены . Они приносят кровь в правое предсердие: верхняя полая вена – от верхней части тела, а нижняя полая вена – от нижней.

Аорта – крупнейшая артерия организма. Она выходит из левого желудочка сердца. Кровь в аорту попадает через аортальный канал. Аорта ветвится на крупные артерии, которые несут кровь по всему телу.

Что такое артериальное давление?

Артериальное давление – это сила, с которой кровь давит на стенки артерий. Она увеличивается, когда сердце сокращается и выталкивает кровь, и уменьшается, когда сердечная мышца расслабляется. Давление крови сильнее в артериях и слабее в венах.

Давление крови измеряют специальным прибором – тонометром . Показатели давления обычно записывают двумя цифрами. Так, нормальным давлением для взрослого человека считается показатель 120/80 .

Первое число – систолическое давление – это показатель давления во время сердечного сокращения. Второе – диастолическое давление – давление во время расслабления сердца.

Давление измеряется в артериях и выражается в миллиметрах ртутного столба. В капиллярах пульсация сердца становится незаметна и давление в них падает примерно до 30 мм рт. ст.

Показатель артериального давления может рассказать врачу о том, как работает сердце. Если одна или обе цифры выше нормы – это говорит о повышенном давлении . Если ниже – о пониженном.

Высокое артериальное давление свидетельствует о том, что сердце работает с избыточной нагрузкой: ему требуется больше усилий, чтобы протолкнуть кровь через сосуды.

Это также говорит о том, что у человека повышен риск сердечных заболеваний.

Эндотелиоциты, выстилающие стенки артерии изнутри, представляют собой удлиненные плоские клетки полигональной или округлой формы. Тонкая цитоплазма этих клеток распластана, а часть клетки, содержащая ядро, утолщена и выступает в просвет сосуда. Базальная поверхность эндотелиальных клеток образует множество разветвленных отростков, прони- кающих в субэндотелиальный слой. Цитоплазма богата микропиноцитозными пузырьками и бедна органеллами. В эндотелиоцитах имеются

Рис. 127. Схема строения стенки артерии (А) и вены (Б) мышечного типа

среднего калибра:

I - внутренняя оболочка: 1 - эндотелий; 2 - базальная мембрана; 3 - подэндотелиальный слой; 4 - внутренняя эластическая мембрана; II - средняя оболочка: 5 - миоциты; 6 - эластические волокна; 7 - коллагеновые волокна; III - наружная оболочка: 8 - наружная эластическая мембрана; 9 - волокнистая (рыхлая) соединительная ткань; 10 - кровеносные сосуды (по В.Г. Елисееву и др.)

специальные мембранные органеллы размерами 0,1-0,5 мкм, содержащие от 3 до 20 полых трубочек диаметром около 20 нм.

Эндотелиоциты соединены между собой комплексами межклеточных контактов, вблизи просвета преобладают нексусы. Тонкая базальная мембрана отделяет эндотелий от субэндотелиального слоя, состоящего из сети тонких эластических и коллагеновых микрофибрилл, фибробластоподобных клеток, которые вырабатывают межклеточное вещество. Кроме того, в интиме встречаются и макрофаги. Кнаружи расположена внутренняя эластическая мембрана (пластинка), состоящая из эластических волокон.

В зависимости от особенностей строения ее стенок выделяют артерии эластического типа (аорта, легочный и плечеголовной стволы), мышечного типа (большинство мелких и среднего диаметра артерий), а также смешанного, или мышечно-эластического типа (плечеголовной ствол, подключичные, общие сонные и общие подвздошные артерии).

Артерии эластического типа крупные, имеют широкий просвет. В их стенках, в средней оболочке, эластические волокна преобладают над гладкомышечными клетками. Средняя оболочка образована концентрическими слоями эластических волокон, между которыми залегают относительно короткие веретенообразные гладкомышечные клетки - миоциты. Очень тонкая наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани, содержащей множество расположенных продольно или спирально тонких пучков эластических и коллагеновых фибрилл. В наружной оболочке проходят кровеносные и лимфатические сосуды и нервы.

С точки зрения функциональной организации сосудистой системы артерии эластического типа относятся к амортизирующим сосудам. Поступившая из желудочков сердца под давлением кровь сначала немного растягивает эти сосуды (аорту, легочный ствол). После этого благодаря большому количеству эластических элементов стенки аорты, легочного ствола воз- вращаются в исходное положение. Эластичность стенок сосудов этого типа способствует плавному, а не толчкообразному течению крови под высоким давлением (до 130 мм рт.ст.) с большой скоростью (20 см/с).

Артерии смешанного (мышечно-эластического) типа имеют в стенках примерно равное количество как эластических, так и мышечных элементов. На границе между внутренней и средней оболочками у них четко видна внутренняя эластическая мембрана. В средней оболочке гладкие мышечные клетки и эластические волокна распределены равномерно, их ориентация спиральная, эластические мембраны окончатые. В средней оболочке

обнаруживаются коллагеновые волокна и фибробласты. Граница между средней и наружной оболочками выражена нечетко. Наружная оболочка состоит из переплетающихся пучков коллагеновых и эластических волокон, между которыми встречаются клетки соединительной ткани.

Артерии смешанного типа, занимающие среднее положение между артериями эластического и мышечного типов, могут изменять ширину просвета и в то же время способны противостоять высокому давлению крови благодаря эластическим структурам в стенках.

Артерии мышечного типа преобладают в организме человека, их диаметр колеблется от 0,3 до 5 мм. Строение стенок мышечных артерий существенно отличается от артерий эластического и смешанного типов. У мелких артерий (диаметром до 1 мм) интима представлена слоем эндотелиальных клеток, лежащих на тонкой базальной мембране, за кото- рой следует внутренняя эластическая мембрана. У более крупных артерий мышечного типа (коронарных, селезеночной, почечных и др.) между внутренней эластической мембраной и эндотелием расположены слой коллагеновых и ретикулярных фибрилл и фибробласты. Они синтезируют и выделяют эластин и другие компоненты межклеточного вещества. У всех артерий мышечного типа, кроме пупочной, имеется фенестрированная внутренняя эластическая мембрана, которая в световом микроскопе выглядит как волнистая ярко-розовая полоска.

Наиболее толстая средняя оболочка образована 10-40 слоями спирально ориентированных гладких миоцитов, соединенных друг с другом с помощью интердигитаций. У мелких артерий не более 3-5 слоев гладких миоцитов. Миоциты погружены в вырабатываемое ими основное вещество, в котором преобладает эластин. У артерий мышечного типа имеется фенестрированная наружная эластическая мембрана. У мелких артерий наружная эластическая мембрана отсутствует. У мелких артерий мышечного типа имеется тонкий слой переплетающихся эластических волокон, которые обеспечивают постоянное зияние артерий. Тонкая наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани. В ней проходят кровеносные и лимфатические сосуды, а также нервы.

Артерии мышечного типа регулируют региональное кровоснабжение (приток крови в сосуды микроциркуляторного русла), поддерживают артериальное давление.

По мере уменьшения диаметра артерии все их оболочки истончаются, уменьшается толщина подэндотелиального слоя и внутренней эластической мембраны. Постепенно убывает количество гладких миоцитов и эластических волокон в средней оболочке, исчезает наружная

эластическая мембрана. В наружной оболочке уменьшается количество эластических волокон.

Наиболее тонкие артерии мышечного типа - артериолы имеют диаметр менее 300 мкм. Между артериями и артериолами нет четкой границы. Стенки артериол состоят из эндотелия, лежащего на тонкой базальной мембране, за которой у крупных артериол следует тонкая внутренняя эластическая мембрана. У артериол, просвет которых более 50 мкм, внутренняя эластическая мембрана отделяет эндотелий от гладких миоцитов. У более мелких артериол такая мембрана отсутствует. Удлиненные эндотелиоциты ориентированы в продольном направлении и соединяются между собой комплексами межклеточных контактов (десмосомы и нексусы). О высокой функциональной активности эндотелиальных клеток свидетельствует огромное количество микропиноцитозных пузырьков.

Отростки, отходящие от основания эндотелиоцитов, прободают базальную и внутреннюю эластическую мембраны артериолы и образуют межклеточные соединения (нексусы) с гладкими миоцитами (миоэндотелиальные контакты). Один-два слоя гладких миоцитов в их средней оболочке расположены спирально по длинной оси артериолы.

Заостренные концы гладких миоцитов переходят в длинные ветвящиеся отростки. Каждый миоцит со всех сторон покрыт базальной пластинкой, кроме зон миоэндотелиальных контактов и соприкасающихся между собой цитолемм соседних миоцитов. Наружная оболочка артериол образована тонким слоем рыхлой соединительной ткани.

Дистальная часть сердечно-сосудистой системы - микроциркуляторное русло (рис. 128) включает артериолы, венулы, артериоло-венулярные анастомозы и кровеносные капилляры, где обеспечивается взаимодействие крови и тканей. Микроциркуляторное русло начинается самым мелким артериальным сосудом - прекапиллярной артериолой и заканчивается посткапиллярной венулой. Артериола (arteriola) диаметром 30-50 мкм имеют в стенках один слой миоцитов. От артериол отходят прекапилляры, устья которых окружены гладкомышечными прекапиллярными сфинктерами, регулирующими кровоток в истинных капиллярах. Прекапиллярные сфинктеры обычно образованы плотно прилегающими друг к другу несколькими миоцитами, окружающими устье капилляра в зоне его отхождения от артериолы. Прекапиллярные артериолы, сохра- няющие в стенках единичные гладкомышечные клетки, называют артериальными кровеносными капиллярами, или прекапиллярами. Следующие за ними «истинные» кровеносные капилляры мышечных клеток в стенках не имеют. Диаметр просвета кровеносных капилляров колеблется

от 3 до 11 мкм. Более узкие кровеносные капилляры диаметром 3-7 мкм имеются в мышцах, более широкие (до 11 мкм) в коже, слизистой оболочке внутренних органов.

В некоторых органах (печень, железы внутренней секреции, органы кроветворения и иммунной системы) широкие капилляры диаметром до 25-30 мкм получили название синусоидов.

За истинными кровеносными капиллярами следуют так называемые посткапиллярные венулы (посткапилляры), которые имеют диаметр от 8 до 30 мкм и длину 50-500 мкм. Венулы, в свою очередь, впадают в более крупные (диаметром 30-50 мкм) собирательные венулы (venulae), яв- ляющиеся начальным звеном венозной системы.

Стенки кровеносных капилляров (гемокапилляров) образованы одним слоем уплощенных эндотелиальных клеток - эндотелиоцитов, сплошной или прерывистой базальной мембраной и редкими перикапилляр- ными клетками - перицитами (клетки Руже) (рис. 129). Эндотелиальный слой капилляров имеет толщину от 0,2 до 2 мкм. Края смежных эндотелиоцитов образуют интердигитации, клетки соединены между собой нексусами и десмосомами. Между эндотелиоцитами имеются щели шириной от 3 до 15 нм, благодаря которым различные вещества проникают через стенки кровеносных капилляров. Эндотелиоциты лежат

Рис. 128. Схема строения микроциркуляторного русла: 1 - капиллярная сеть (капилляры); 2 - посткапилляр (посткапиллярная венула); 3 - артериоловенулярный анастомоз; 4 - венула; 5 - артериола; 6 - прекапилляр (прекапиллярная артериола). Красными стрелками показано поступление в ткани питательных веществ, синими - выведение из тканей продуктов

Рис. 129. Строение кровеносных капилляров трех типов:

1 - гемокапилляр с непрерывной эндотелиальной клеткой и базальной мембраной; II - гемокапилляр с фенестрированным эндотелием и непрерывной базальной мембраной; III - синусоидный гемокапилляр с щелевидными отверстиями в эндотелии и прерывистой базальной мембраной; 1 - эндотелиоцит;

2 - базальная мембрана; 3 - перицит; 4 - контакт перицита с эндотелиоцитом; 5 - окончание нервного волокна; 6 - адвентициальная клетка; 7 - фенестры;

8 - щели (поры) (по В.Г. Елисееву и др.)

на тонкой базальной мембране (базальном слое). Базальный слой состоит из переплетающихся фибрилл и аморфного вещества, в котором расположены перициты (клетки Руже).

Перициты представляют собой удлиненные многоотростчатые клет- ки, расположенные вдоль длинной оси капилляра. Перицит имеет крупное ядро и хорошо развитые органеллы: зернистую эндоплазматическую сеть, комплекс Гольджи, митохондрии, лизосомы, цитоплазматические филаменты, а также плотные тельца, прикрепленные к цитоплазматической поверхности цитолеммы. Отростки перицитов прободают базальный слой и подходят к эндотелиоцитам. В результате каждый эндотелиоцит контактирует с отростками перицитов. В свою очередь, к каждому перициту подходит окончание аксона симпатического нейрона, которое инвагинируется в его цитолемму, образуя синапсоподобную структуру для передачи нервных импульсов. Перицит передает эндотелиоциту импульс, благодаря которому эндотелиальные клетки или набухают, или теряют жидкость. Это приводит к периодическим изменениям ширины просвета капилляра.

Кровеносные капилляры в органах и тканях, соединяясь друг с другом, формируют сети. В почках капилляры образуют клубочки, в синовиальных ворсинках суставов, сосочках кожи - капиллярные петли.

В пределах микроциркуляторного русла встречаются сосуды прямого перехода крови из артериолы в венулу - артериоло-венулярные анастомозы (anastomosis arteriolovenularis). В стенках артериоло-венулярных анастомозов имеется хорошо выраженный слой гладкомышечных клеток, регулирующий ток крови непосредственно из артериолы в венулу, минуя капилляры.

Кровеносные капилляры являются обменными сосудами, в которых осуществляются диффузия и фильтрация. Общая площадь поперечного сечения капилляров большого круга кровообращения достигает 11 000 см2. Общее число капилляров в организме человека около 40 млрд. Плотность расположения капилляров зависит от функции и строения ткани или органа. Так, например, в скелетных мышцах плотность капилляров составляет от 300 до 1000 в 1 мм3 мышечной ткани. В головном мозге, печени, почках, миокарде плотность капилляров достигает 2500-3000, а в жировой, костной, волокнистой соединительной тканях она минимальна - 150 в 1 мм3. Из просвета капилляров различные питательные вещества, кислород транспортируются в перикапиллярное пространство, толщина которого различная. Так, широкие перикапиллярные пространства наблюдаются в соединительной ткани. Это пространство значительно

уже в легких и печени и наиболее узкое в нервной и мышечной тканях. В перикапиллярном пространстве расположена рыхлая сеть тонких коллагеновых и ретикулярных фибрилл, среди которых находятся единичные фибробласты.

Транспорт веществ через стенки гемокапилляров осуществляется не- сколькими путями. Наиболее интенсивно происходит диффузия. С помощью микропиноцитозных пузырьков через капиллярные стенки в обоих направлениях переносятся метаболиты, крупные молекулы белков. Через фенестры и межклеточные щели диаметром 2-5 нм, расположенные между нексусами, переносятся низкомолекулярные соединения и вода. Широкие щели синусоидных капилляров способны пропускать не только жидкость, но и различные высокомолекулярные соединения и мелкие частицы. Базальный слой является преградой для транспортировки высокомолекулярных соединений и форменных элементов крови.

У кровеносных капилляров эндокринных желез, мочевой системы, сосудистых сплетений мозга, ресничного тела глаза, венозных капилляров кожи и кишечника эндотелий фенестрирован, имеет отверстия - поры. Округлые поры (фенестры) диаметром около 70 нм, располагающиеся регулярно (примерно 30 на 1 мкм2), закрыты тонкой однослойной диафрагмой. В клубочковых капиллярах почки диафрагма отсутствует.

Строение посткапиллярных венул на значительном протяжении сходно со строением стенок капилляров. У них лишь большее количество перицитов и шире просвет. В стенках мелких венул появляются гладкомышечные клетки и соединительнотканные волокна наружной оболочки. В стенках более крупных венул уже имеются 1-2 слоя удлиненных и уплощенных гладкомышечных клеток - миоцитов, и достаточно хорошо выраженная адвентиция. Эластическая мембрана у вен отсутствует.

Посткапиллярные венулы, как и капилляры, участвуют в обмене жидкости, ионов и метаболитов. При патологических процессах (вос- паление, аллергия) благодаря раскрытию межклеточных контактов они становятся проницаемыми для плазмы и форменных элементов крови. Этой способностью не обладают собирательные венулы.

Обычно к капиллярной сети подходит артериальный сосуд - артериола, а выходит из нее венула. В некоторых органах (почка, печень) имеется отступление от этого правила. Так, к сосудистому клубочку почечного тельца подходит артериола (приносящий сосуд), которая разветвляется на капилляры. Из сосудистого клубочка также выходит артериола (выносящий сосуд), а не венула. Капиллярную сеть, вставленную между двумя однотипными сосудами (артериями), называют «чудесной сетью».

Общее число вен превышает число артерий, а общая величина (объем) венозного русла больше артериального. Названия глубоких вен аналогичны названиям артерий, к которым вены прилежат (локтевая артерия - локтевая вена, большеберцовая артерия - большеберцовая вена). Такие глубокие вены бывают парными.

Большинство вен, расположенных в полостях тела, одиночные. Непарными глубокими венами являются внутренняя яремная, подключичная, подвздошные (общая, наружная, внутренняя), бедренная и некото- рые другие. Поверхностные вены соединяются с глубокими венами с помощью так называемых прободающих вен, которые выполняют роль анастомозов. Соседние вены также соединены между собой многочисленными анастомозами, образующими в совокупности венозные сплетения (plexus venosus), которые хорошо выражены на поверхности или в стенках некоторых внутренних органов (мочевого пузыря, прямой кишки).

Наиболее крупные вены большого круга кровообращения - верхняя и нижняя полые вены. В систему нижней полой вены входит также воротная вена с ее притоками.

Окольный (обходной) ток крови осуществляется по коллатеральным венам (venae collaterales), по которым венозная кровь оттекает в обход основного пути. Анастомозы между притоками одной крупной (магистральной) вены называют внутрисистемными венозными анастомозами. Между притоками различных крупных вен (верхняя и нижняя полые вены, воротная вена) имеются межсистемные венозные анастомозы, являющиеся коллатеральными путями оттока венозной крови в обход основных вен. Венозные анастомозы встречаются чаще и развиты лучше, чем артериальные анастомозы.

Строение стенок вен принципиально сходно со строением стенок артерий. Стенка вены также состоит из трех оболочек (см. рис. 61). Различают два типа вен: безмышечные и мышечные. К венам безмышечного типа относятся вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки и плаценты. В стенках этих вен нет мышечной оболочки. Безмышечные вены сращены с волокнистыми структурами органов и поэтому не спадаются. В таких венах снаружи к эндотелию прилежит базальная мембрана, за которой располагается тонкий слой рыхлой волокнистой соединительной ткани, срастающейся с тканями, в которых эти вены располагаются.

Вены мышечного типа подразделяются на вены со слабым, средним и сильным развитием мышечных элементов. Вены со слабым развитием мышечных элементов (диаметр до 1-2 мм) расположены, в основном,

в верхней части туловища, на шее и лице. Мелкие вены по строению весьма напоминают наиболее широкие мышечные венулы. По мере увеличения диаметра в стенках вен появляется два циркулярных слоя миоцитов. К венам среднего калибра относятся поверхностные (подкожные) вены, а также вены внутренних органов. Их внутренняя оболочка содержит слой плос- ких округлых или полигональных эндотелиальных клеток, соединенных между собой нексусами. Эндотелий лежит на тонкой базальной мембране, отделяющей его от субэндотелиальной соединительной ткани. Внутренняя эластическая мембрана у этих вен отсутствует. Тонкая средняя оболочка образована 2-3 слоями уплощенных мелких циркулярно расположенных гладкомышечных клеток - миоцитов, разделенных пучками коллагеновых и эластических волокон. Наружная оболочка образована рыхлой соединительной тканью, в которой проходят нервные волокна, мелкие кровенос- ные сосуды («сосуды сосудов») и лимфатические сосуды.

У крупных вен со слабым развитием мышечных элементов базальная мембрана эндотелия выражена слабо. В средней оболочке циркулярно располагается небольшое количество миоцитов, которые имеют множество миоэндотелиальных контактов. Наружная оболочка таких вен толстая, состоит из рыхлой соединительной ткани, в которой расположено много безмиелиновых нервных волокон, образующих нервные сплетения, проходят сосуды сосудов и лимфатические сосуды.

В венах со средним развитием мышечных элементов (плечевая и др.) эндотелий, не отличающийся от описанного выше, отделен базальной мембраной от субэндотелиального слоя. Интима формирует клапаны. Внутренняя эластическая мембрана отсутствует. Средняя оболочка го- раздо тоньше, чем у соответствующей артерии, состоит из циркулярно расположенных пучков гладкомышечных клеток, разделенных волокнистой соединительной тканью. Наружная эластическая мембрана отсутствует. Наружная оболочка (адвентиция) развита хорошо, в ней проходят сосуды сосудов и нервы.

Вены с сильным развитием мышечных элементов - крупные вены нижней половины туловища и ног. Они имеют пучки гладких мышечных клеток не только в средней, но и в наружной оболочке. В средней оболочке вены с сильным развитием мышечных элементов имеется несколько слоев циркулярно расположенных гладких миоцитов. Эндотелий лежит на базальной мембране, под которой располагается субэндотелиальный слой, образованный рыхлой волокнистой соединительной тканью. Внутренняя эластическая мембрана не сформирована.

Внутренняя оболочка большинства средних и некоторых крупных вен формирует клапаны (рис. 130). Однако имеются вены, в которых клапаны

Рис. 130. Венозные клапаны. Вена разрезана вдоль и развернута: 1 - просвет вены; 2 - створки венозных клапанов

отсутствуют, например полые, плечеголовные, общие и внутренние подвздошные вены, вены сердца, легких, надпочечников, головного мозга и его оболочек, паренхиматозных органов, костного мозга.

Клапаны - это тонкие складки внутренней оболочки, состоящие из тонкого слоя волокнистой соединительной ткани, покрытого с обеих сторон эндотелием. Клапаны пропускают кровь лишь в направлении к сердцу, препятствуют обратному току крови в венах и предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови.

Венозные сосуды (синусы), в которые оттекает кровь от головного мозга, располага-

ются в толще (расширениях) твердой мозговой оболочки. Эти венозные синусы имеют неспадающиеся стенки, обеспечивающие беспрепятственный ток крови из полости черепа во внечерепные вены (внутренние яремные).

Вены, в первую очередь вены печени, подсосочковые венозные сплетения кожи и чревной области, являются емкостными сосудами и поэтому способны депонировать большое количество крови.

Важную роль в осуществлении функции сердечно-сосудистой системы играют шунтирующие сосуды - артериоло-венулярные анастомозы (anastomosis arteriovenularis). При их открытии уменьшается или даже прекращается кровоток через капилляры данной микроциркуляторной еди- ницы или области, кровь идет в обход капиллярного русла. Различают истинные артериоло-венулярные анастомозы, или шунты, которые сбрасывают артериальную кровь в вены, и атипичные анастомозы, или полушунты, по которым течет смешанная кровь (рис. 131). Типичные артериоло-венулярные анастомозы имеются в коже подушечек пальцев кисти и стопы, ногтевого ложа, губ и носа. Они также образуют основную часть каротидного, аортального и копчикового телец. Эти короткие, чаще извилистые сосуды.

Рис. 131. Артериоло-венулярные анастомозы (АВА): I - АВА без специального запирательного устройства: 1 - артериола; 2 - венула; 3 - анастомоз; 4 - гладкие миоциты анастомоза; II - АВА со специальным устройством: А - анастомоз типа замыкающей артерии; Б - простой анастомоз эпителиоидного типа; В - сложный анастомоз эпителиоидного типа (клубочковый); 1 - эндотелий; 2 - продольно расположенные пучки гладких миоцитов; 3 - внутренняя эластическая мембрана; 4 - артериола; 5 - венула; 6 - анастомоз; 7 - эпителиоидные клетки анастомоза; 8 - капилляры в соединительнотканной оболочке; III - атипичный анастомоз: 1 - артериола; 2 - короткий гемокапилляр; 3 - венула (по Ю.И. Афанасьеву)

Кровоснабжение сосудов. Кровеносные сосуды кровоснабжаются системой «сосудов сосудов» (vasa vasorum), которые являются ветвями артерий, расположенных в прилежащей соединительной ткани. Кровеносные капилляры имеются лишь в наружной оболочке артерий. Питание и газообмен внутренней и средней оболочек осуществляется путем диффузии из крови, протекающей в просвете артерии. Отток венозной крови от соответствующих отделов артериальной стенки происходит через вены, также относящихся к системе сосудов. Сосуды сосудов в стенках вен кровоснабжают все их оболочки, а капилляры открываются в саму вену.

Вегетативные нервы, сопровождающие сосуды, иннервируют их стенки (артерий и вен). Это преимущественно симпатические адренергические нервы, вызывающие сокращение гладких миоцитов.

Кровеносные сосуды по функции и строению разделяются на проводящие и питающие. Проводящие - артерии - arteria - проводят кровь от сердца, вены - vena (phlebos) - к сердцу и питающие, трофические, - капилляры - микроскопические сосуды, расположены в тканях органа. Основная функция сосудистого русла двоякая: проведение крови (по артериям и венам), а также (Обеспечение обмена веществ между кровью и тканями (звенья микроциркуляторного русла) и перереспределение крови. Строение стенки сосудов крайне разнообразно и обусловлено их функциональным назначением. Артерии (аег - воздух, tereo - содержу) - сосуды, по которым кровь выносится из сердца. На трупе они пусты, отчего Гиппократ считал их воздухоносными трубками. Эти сосуды не только транспортируют кровь, но и помогают сердцу в ее продвижении к органам.

Артерии в зависимости от калибра подразделяются на крупные, средние и мелкие. Стенки артерий (рис. 293) состоят из трех оболочек. Внутренняя оболочка - tunica intima образована эндотелием, базальной мембраной и подэндотелиальным слоем. Эта оболочка" является общей для всех сосудов и сердца. Она отделяется от средней оболочки внутренней эластической мембраной. Средняя оболочка - tunica media образована мышечными клетками, ориентированными в разных направлениях, а также эластическими и коллагеновыми волокнами. От наружной оболочки ее отделяют наружная эластическая мембрана. Наружная оболочка - адвентиция - tunica adventitia образована рыхлой соединительной тканью. Она фиксирует артерию в определенном положении и ограничивает ее растяжение. Содержит сосуды, питающие стенку артерии, - сосуды сосудов - vasa vasorum и нервы - nervi vasorum.

Рис. 293. Строение стенки сосуда (по Н. Gray, 1967)

Чувствительная иннервация сосудов - ангиоиннервация осуществляется чувствительными нервными волокнами, являющимися отростками клеток спинальных или черепно-мозговых узлов. Это - волокна, покрытые миелиновой оболочкой. Двигательная - эффекторная иннервация обеспечивается от центров симпатической нервной системы, "расположенных в боковых рогах грудопоясничного отдела спинного мозга. Путь симпатической иннервации складывается из двух нейронов, лежащих в спинном мозге и симпатических ганглиях. Их эфферентные волокна оканчиваются на гладкой мускулатуре сосудов, через них регулируется движение сосудистой стенки - сосудистый тонус.

В некоторых сосудах имеются специальные рефлексогенные зоны, например у начала внутренней сонной артерии, в дуге аорты и др. Из них импульсы передаются рефлекторным путем на сердце и периферические сосуды через центральную нервную систему. Мнение о том, что чувствительная иннервация сконцентрирована только в рейлексогенных зонах возникновения рефлексов на кровообращение, в настоящее время признается ошибочным, так как чувствительные нервные аппараты распространены по всей сосудистой системе в виде различных ангиорецепторов, пластинчатых телец, кустиков или древовидных разветвлений нервных волокон.

Строение артерий изменяется в зависимости от их топографии. Ближайшие к сердцу артерии (аорта и ее крупные ветви) выполняют главным образом функцию проведения крови. В них на первый план выступает противодействие растяжению массой крови, которая выбрасывается под большим давлением сердечным толчком, поэтому в стенке этих сосудов относительно больше развиты структуры механического характера, т. е. эластические волокна и мембраны. Эластические элементы артериальной стенки образуют единый эластический каркас, работающий как пружина и обусловливающий эластичность артерий. Такие артерии называются артериями эластического типа. Они могут выдерживать высокое давление (до 200 мм Hg). В средних и мелких артериях, в которых инерция сердечного толчка ослабевает и требуется сокращение сосудистой стенки для дальнейшего продвижения крови, преобладают сократительные элементы. Оно обеспечивается сравнительно мощным развитием в сосудистой стенке гладкой мышечной ткани. Такие артерии Называются артериями мышечного типа. Артерии переходного типа характеризуются тем, что по мере удаления от сердца в них уменьшается количество эластических элементов и увеличивается количество мышечных. На этом основании различают эластическо-мышечный и мышечно-эластический типы артерий.

Диаметр артерий и толщина стенок зависят от функций органа. Так, у наиболее подвижных млекопитающих толщина стенки плечевой артерии равна V3-V4 диаметра ее просвета, у птиц даже целому диаметру, в то время как у менее подвижных она составляет лишь диаметра просвета сосуда (П. М. Мажуга, 1964). Практическое знание артериальных сосудов как своеобразного периферического «сердца» фомадно, нарушение его функций влечет за собой расстройство деятельности всей сосудистой системы. При нарушении структуры стенки (склерозе сосудов) исключаются возможности их полноценного сокращения и растяжения, что создает непосильные условия для работы сердца и приводит к его заболеванию. Так, стенозирование артерий сопровождается перемещением миоцитов из средней (мышечной) оболочки во внутреннюю (интиму), что приводит к утолщению интимы и сужению просвета сосуда (М. Д. Рихтер, 1990).

Стенки кровеносных сосудов обеспечивают: 1) скорость кровотока; 2) высоту кровяного давления; 3) емкость сосудистого русла. Все это обусловлено движением сосудистой стенки. Если она изменена патологически, то происходит, как правило, нарушение обменных процессов. Стенка сосуда очень чувствительна к гравитационным перегрузкам, изменениям атмосферного давления. Она - барометр организма.

Войдя в орган, артерии многократно ветвятся в артериолы; прекапилляры, переходящие в капилляры и далее в посткапилляры и венулы (рис. 294). Венулы, являющиеся последним звеном микроворкуляторного русла, сливаясь между собой и укрупняясь, образуют вены, выносящие кровь из органа.

Рис. 294. Схема строения и кровоснабжения дольки застенной слюнной железы (по Н. В. Зеленевскому)

Капилляры - vasa cnpillaria - мельчайшие сосуды, расположенные между артериолами и венулами и являющиеся путями трансорганной циркуляции крови. Они выполняют трофическую, обменную функции. Стенка капилляров состоит из одного слоя эндотелиальных клеток, периваскулярной оболочки с перицитами и нервными волокнами. Строение стенки тесно связано с обслуживанием обмена веществ в органе. Диаметр капилляров не-значительный и может колебаться в пределах от 4 до 50 мкм. Они отличаются прямолинейностью хода. Их число в каждом органе зависит от его функциональной нагрузки и интенсивности обмена веществ в нем. Например, у лошади на 1 мм2 насчитывается до 1350 капилляров, у собаки - до 2650. Особенно много капилляров в железах, сером веществе мозга, в легких, меньше всего в сухожилиях и связках. В филогенезе капилляры возникли в результате замены внесосудистой циркуляции внутрисосудистой.

В состоянии покоя органов функционируют далеко не все капилляры, только 10% от общего числа. Часть капилляров находится в резерве и включается в кровоток в случае функциональной необходимости. Капилляры распространены повсюду, где есть соединительная ткань. Они отсутствуют в эпителиальной ткани и в роговых ее производных, дентине и эмали зубов, роговице и хрусталике глаза, в суставном хряще. Широко анастомозируя между собой, капилляры образуют сети, переходящие в посткапилляр. Посткапилляр продолжается в венулу, сопровождающую артериолу. Венулы образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.

Вены - сосуды, по которым кровь течет к сердцу, стенки их устроены по тому же плану, что и стенки артерий, но они тоньше, в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерии на поперечном разрезе зияет.

Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров (кровеносных и лимфатических). Микроциркуляция - движение крови и лимфы по микроскопическим сосудам, расположенным в органах. Эта часть сосудистого русла располагается между артериями и венами. Через микроциркуляторное русло происходит фильтрация плазмы в ткани организма Оно подразделяется на звенья: притока и распределения (артериола и прекапилляр), обмена (капилляр), дренажно-депонирующее звено (посткапилляр и венула). В стенке артериолы различают ицтиму, медию и наружную соединительнотканную оболочку. Основным критерием, определяющим прекапилляр, является отсутствие в стенке эластических элементов. Им принадлежит важная роль в сопротивлении кровотоку. В месте ответвления артериол капилляр окружен гладкомышечными клетками, формирующими сфинктер. Посткапилляры построены аналогично прекапиллярам. Вместе с венулами они первыми включаются в дренаж тканей, удаляют ядовитые вещества, продукты метаболизма, регулируют равновесие между объемами артериальной и венозной крови. Посткапилляры, сливаясь, образуют собирательные венулы, в стенках которых уже появляются мышечные клетки (миоциты). Посткапиллярами и венулами заканчивается микроциркуляторное русло. Венулы переходят в вены.

Кроме названных сосудов, анатомами нашей страны Доказана принадлежность к микроциркуляторному руслу артериовенулярных анастомозов, представляющих пути укороченного тока крови из артериального в везнозное русло, минуя капилляр. Благодаря их наличию терминальный кровоток делится на два пути движения крови: транскапиллярный (через капилляры); юкстакапиллярный (через артериовенулярные анастомозы). Благодаря последнему происходят разгрузка капиллярного русла и ускорение транспорта крови в органе.

Микроциркуляторное русло представляет не механическую сумму различных сосудов, а сложный анатомо-физиологический комплекс, обеспечивающий основной процесс организма - обмен веществ! Строение микроциркуляторного русла различно в разных органах и зависит от их морфофункционального состояния. Так, в печени встречаются широкие капилляры - синусоиды, в которые поступает артериальная и венозная кровь, в почках - артериальные капиллярные клубочки, особые синусоиды - в костном мозгу.

Закономерности распределения сосудов в организме. Распределение сосудов в организме животных подчинено определенным закономерностям. Они были изложены основоположником функциональной анатомии П. Ф. Лесгафтом (1837-1909) в его книге «Основы теоретической анатомии».

1. Общий план расположения главных сосудистых стволов соответствует строению основных опорных скелетных частей организма: а) одноосевому расположению основного стержня тела (головы и туловища); б) двусторонней симметрии; в) сегментации. Продольными сосудами являются аорта и ее продолжение - срединная крестцовая и хвостовая артерии. Сегментарные сосуды присутствуют там, где выражена метамерия (скелет и мускулатура туловища): межреберные, поясничные, крестцовые артерии и вены. Наличие одноименных правых и левых артерий в области стенок туловища и конечностей является отражением двусторонней симметрии тела.

2 Сосуды идут, как правило, совместно с нервными стволами, образуя сосудисто-нервные пучки, заключенные в фасциальные влагалища.

3. Топография сосудов строго закономерна. Они проходят в области туловища, головы и конечностей магистралями, т. е. кратчайшим путем. В этой связи на туловище крупные сосуды следуют вентрально от позвоночного столба, на конечностях - на их медиальной поверхности, внутри угла сустава, как сторонах, наиболее защищенных и менее травмируемых. Название магистрали соответствует тому участку тела и конечности, по которому они следуют. Например, в области плеча проходят плечевая артерия и вена, в области бедра - соответственно бедренная артерия и вена и т. д.

4. Порядок отхождения сосудов к органам, их количество, диаметр тесно связаны с функциональной активностью органов и эмбриональной закладкой. Так, первыми от аорты отходят правая и левая венечные артерии, кровоснабжающие сердце, затем плечеголовной ствол, посылающий кройь к голове, холке, шее, грудным конечностям, последними сосудами, отходящими от аорты, являются парные подвздошные артерии, кровоснабжающие тазовые конечности и органы тазовой полости. К внутренним органам сосуды подходят со стороны, обращенной к источнику кровоснабжения, а в орган входят через его ворота.

5. Различают четыре типа ветвления артерий: рассыпной, магистральный, дихокомический и концевой, которые обусловлены развитием и функцией кровоснабжаемых органов. Рассыпной тип характеризуется делением нисходящего сосуда на несколько мелких ветвлений разного калибра (наподобие кроны дерева) - это сосуды внутренних органов. При магистральном типе имеется основная магистральная артерия и последовательно отходящие от нее ветви (париетальные и висцеральные сосуды аорты). При дихотомическом ветвлении один артериальный ствол делится вилкообразно на два одинаковых стволика, чем достигается равномерное кровоснабжение участка тела (деление легочного ствола). Концевой тип ветвления отличается отсутствием анастомозов между ветвями соседних артерий (в мозге, сердце, легких, печени), такие сосуды часто закупориваются тромбами (например при инсульте).

6. Помимо магистралей в организме есть сосуды, сопровождающие магистрали и обеспечивающие окольный ток крови в обход основного пути (боковые коллатеральные сосуды). При выключении основной магистрали благодаря наличию анастомозов за счет коллатерали может быть компенсировано кровоснабжение органа или участка тела. Большое количество коллатералей в области конечностей. Они представляют практический интерес при оперативных вмешательствах. К числу коллатералей относятся и обходные сети. Они находятся в области суставов и лежат на их разгибательной стороне. Значение обходных сетей заключается в том, что при сгибании суставов происходит сильное растяжение сосудов, что затрудняет ток крови в них. В качестве противодействующего механизма в таких участках и формируются сосудистые сети, получающие кровь из разных источников, в результате чего при любом положении сустава создаются благоприятные условия для тока крови, если не из одного, то из другого сосуда.

7. Боковые ветви магистралей образуют друг с другом соединения - анастомозы, которые являются важным компенсаторным приспособлением для выравнивания кровяного давления, регуляции и перераспределения тока крови и обеспечения кровоснабжения организма. Они присутствуют во всех участках и органах, отличающихся значительной подвижностью. Анастомозы бывают между крупными, средними и мелкими сосудами. Различают межсистемные артериальные анастомозы - соединения между ветвями разных артерий и внутрисистемные анастомозы - между ветвями одной артерии. В состав анастомозов входят также артериальные дуги, которые образуются между артериальными стволами, идущими к одному и тому же органу (например, концевая дуга, образованная у лошади внутри копытной кости между пальцевыми артериями, артериальные дуги между сосудами кишечника и др.), а также артериальные сети - сплетения концевых ветвей сосудов (дорсальная сеть запястья).

Имеют место также артериовенозные анастомозы (между артериями и венами), а также артериовенулярные (шунты). Они выступают в роли укороченного тока крови от артерий или артериол до вен или венул, минуя микроциркуляторное или капиллярное русло, т. е. участвуют в перераспределении, крови как в норме, так и при перегрузках организма.

8. Функциональная обусловленность архитектуры сосудистого русла, строение его стенок находятся в прямой зависимости от особенностей гемодинамики и связаны с экологической характеристикой животных.

Вопросы для самопроверки

1. Каковы значение и функции сердечно-сосудистой системы?

2. Каков анатомический состав сердечно-сосудистой системы?

3. Каковы закономерности распределения сосудов в организме?

4. Как называются сосуды, несущие кровь к сердцу и от сердца, и каковы отличительные особенности их строения?

5. Какие сосуды осуществляют обменную (трофическую) функцию и в чем особенности их строения в связи с этим? Что они формируют в органе?

6. Что такое анастомозы и коллатералли (особенности их строения, топографии и значение)?

7. Назовите круги кровообращения.

8. Как осуществляется иннервация стенки сосуда?

9. Назовите основные типы развития сосудистой системы в фило- и онтогенезе.

10. Каковы особенности кровообращения у плода?

– важнейших физиологических механизм, отвечающий за питание клеток тела и выведение из организма вредных веществ. Главным структурным компонентом являются сосуды. Существует несколько видов сосудов, отличающихся строением, функциями. Заболевания сосудов приводят к серьезным последствиям, негативно влияющим на весь организм.

Общие сведения

Кровеносный сосуд – это полые образования в форме трубки, пронизывающие ткани организма. По сосудам происходит транспортировка крови. У человека система кровообращения замкнутая, ввиду чего движение крови в сосудах происходит под высоким . Транспортировка по сосудам осуществляется за счет работы сердца, выполняющего насосную функцию.

Кровеносные сосуды способны меняться под действием определенных факторов. В зависимости от внешнего воздействия, они расширяются или суживаются. Процесс регулируется нервной системой. Способность к расширению и суживанию обеспечивает специфическое строение кровеносных сосудов человека.

Сосуды состоят из трех слоев:

  • Внешний. Наружная поверхность сосуда покрыта соединительной тканью. Ее функция заключается в защите от механического воздействия. Также задача внешнего слоя заключается в отделении сосуда от расположенных поблизости тканей.
  • Средний. Содержит мышечные волокна, характеризующиеся подвижностью и эластичностью. Они обеспечивают способность сосуда расширяться или суживаться. Кроме этого, функция мышечных волокон среднего слоя заключается в поддержании форму сосуда, за счет чего происходит полноценный беспрепятственный ток крови.
  • Внутренний. Слой представлен плоскими однослойными клетками – эндотелием. Ткань делает сосуды гладкими внутри, благодаря чему снижается сопротивляемость при движении крови.

Следует отметить, что стенки венозных сосудов значительно тоньше артерий. Это связано с незначительным количеством мышечных волокон. Движение венозной крови происходит под действием скелетных , в то время как артериальная передвигается за счет работы сердца.

В целом, кровеносный сосуд – главный структурный компонент сердечнососудистой системы, по которым происходит передвижение крови в ткани и органы.

Виды сосудов

Ранее классификация кровеносных сосудов человека включала в себя только 2 вида – артерии и вены. В настоящий момент выделяют 5 типов сосудов, отличающихся строением, размерами, функциональными задачами.

Виды кровеносных сосудов:

  • . Сосуды обеспечивают движение крови от сердца к тканям. Отличаются толстыми стенками с высоким содержанием мышечных волокон. Артерии постоянно суживаются и расширяются, в зависимости от уровня давления, предотвращая избыточное поступление крови в одни органы и дефицит в других.
  • Артериолы. Небольшие сосуды, представляющие собой конечные ветви артерий. Состоят преимущественно из мышечных тканей. Являются переходным звеном между артериями и капиллярами.
  • Капилляры. Мельчайшие сосуды, пронизывающие органы и ткани. Особенностью являются очень тонкие стенки, через которые кровь способна проникать за пределы сосуды. За счет капилляров происходит питание клеток кислородом. Одновременно происходит насыщение крови углекислым газом, который в дальнейшем выводится из организма через венозные пути.

  • Венулы. Представляют собой небольшие сосуды, соединяющие капилляры и вены. По ним происходит транспортировка отработанного клетками кислорода, остаточных продуктов жизнедеятельности, отмирающих частиц крови.
  • Вены. Обеспечивают движение крови от органов к сердцу. Содержат меньшее количество мышечных волокон, что связано с низким сопротивлением. Из-за этого вены менее толстые и чаще подвергаются повреждениям.

Таким образом, выделяется несколько видов сосудов, совокупность которых формирует систему кровообращения.

Функциональные группы

В зависимости от расположения, сосуды выполняют разные функции. В соответствии с функциональной нагрузкой отличается строение сосудов. В настоящий момент выделяют 6 основных функциональных групп.

К функциональным группам сосудов относятся:

  • Амортизирующие. Сосуды, относящиеся к этой группе, имеют наибольшее количество мышечных волокон. Они являются крупнейшими в человеческом организме и находятся в непосредственно близости от сердца (аорта, легочная артерия). Эти сосуды наиболее эластичны и упруги, что необходимо для сглаживания систолических волн, образующихся во время сердечного сокращения. Количество мышечных тканей в стенках сосудах уменьшается в зависимости от степени удаленности от сердца.
  • Резистивные. К ним относятся конечные, тончайшие кровеносные сосуды. Из-за наименьшего просвета, данные сосуды оказывают наибольшее сопротивление кровотоку. В резистивных сосудах находится множество мышечных волокон, контролирующих просвет. За счет этого регулируется объем крови, поступающей в орган.
  • Емкостные. Выполняют резервуарную функцию, сохраняя большие объемы крови. В данную группу входят крупные венозные сосуды, способные вмещать до 1 л крови. Емкостные сосуды регулируют движение крови к , контролируя ее объем, чтобы снизить нагрузку на сердца.
  • Сфинктеры. Находятся в конечных ветвях мелких капилляров. За счет сужения и расширения, сосуды-сфинктеры контролируют количество поступающей крови. При сужении сфинктеров, кровь не поступает, ввиду чего трофический процесс нарушается.
  • Обменные. Представлены конечными ветвями капилляров. В сосудах происходит обмен веществ, обеспечивающий питание тканей и удаление вредных веществ. Аналогичные функциональные задачи выполняют венулы.
  • Шунтирующие. Сосуды обеспечивают связь между венами и артериями. При этом не затрагиваются капилляры. К ним относятся предсердные, магистральные и органные сосуды.

В целом, выделяют несколько функциональных групп сосудов, обеспечивающих полноценный ток крови и питание всех клеток организма.

Р егуляция деятельности сосудов

Сердечнососудистая система моментально реагирует на внешние изменения или воздействие негативных факторов внутри организма. Например, при возникновении стрессовых ситуаций отмечается учащенное сердцебиение. Сосуды суживаются, за счет чего увеличивается , а мышечные ткани снабжаются большим количеством крови. Находясь в состоянии покоя, большее количество крови притекает к мозговым тканям и органам пищеварения.

За регуляцию сердечнососудистой системы отвечают нервные центры, расположенные мозговой коре и гипоталамусе. Возникающий вследствие реакции на раздражитель сигнал, воздействует на центр, контролирующий тонус сосудов. В дальнейшем через нервные волокна импульс перемещается в сосудистые стенки.

В стенках сосудов расположены рецепторы, воспринимающие скачки давления или же изменения в составе крови. Сосуды также способны передавать нервные сигналы в соответствующие центры, извещая о возможной опасности. Благодаря этому возможна адаптация к меняющимся окружающим условиям, например изменению температуры.

На работу сердца и сосудов оказывают влияние . Данный процесс называется гуморальной регуляцией. Наибольшее влияние на сосуды оказывают адреналин, вазопрессин, ацетилхолин.

Таким образом, деятельность сердечнососудистой системы регулируется нервными центрами головного мозга и эндокринными железами, отвечающими за выработку гормонов.

Заболевания

Как и любой орган, сосуд может поражаться заболеваниями. Причины развития сосудистых патологий часто связаны с неправильным образом жизни человека. Реже болезни развиваются вследствие врожденных отклонений, приобретенных инфекций или на фоне сопутствующих патологий.

Распространенные заболевания сосудов:

  • . Считается одной из самых опасных патологий сердечнососудистой системы. При такой патологии нарушается приток крови через сосуды, питающие миокард – сердечную мышцу. Постепенно вследствие атрофии мышца слабеет. В качестве осложнения выступают инфаркт, а также сердечная недостаточность, при которой возможна внезапная остановка сердца.
  • Нейроциркуляторная дистония. Заболевание, при котором поражаются артерии вследствие сбоев в работе нервных центров. В сосудах из-за избыточного симпатического влияния на мышечные волокна, развивается спазм. Патология часто проявляется в сосудах головного мозга, также поражает артерии, расположенные в других органах. У больного возникают интенсивные боли, перебои в работе сердца, головокружение, изменение давления.
  • Атеросклероз. Болезнь, при которой стенки сосудов суживаются. Это приводит к целому ряду негативных последствий, в числе которых атрофия питающих тканей, а также снижение эластичность и прочности расположенных за сужением сосудов. представляет собой провоцирующий фактор многих сердечнососудистых заболеваний, и приводит к образованию тромбов, инфаркту, инсульту.
  • Аортальная аневризма. При такой патологии на стенках аорты образуются мешковидные выпирания. В дальнейшем образуется рубцовая ткань, а ткани постепенно атрофируются. Как правило, патология развивается на фоне хронической формы гипертонии, инфекционных поражений, в том числе сифилиса, а также при аномалиях развития сосуда. При отсутствии лечения болезни провоцирует разрыв сосуда и смерть больного.
  • . Патология, при которой поражаются вены нижних конечностей. Они сильно расширяются из-за повышенной нагрузки, при этом отток крови к сердцу сильно замедляется. Это приводит к возникновению отеков, болям. Патологические изменения в пораженных венах ног имеют необратимый характер, заболевание на поздних стадиях лечится только хирургическим способом.

  • . Заболевание, при котором варикозное расширение развивается в области геморроидальных вен, питающих нижние отделы кишечника. Поздние стадии болезни сопровождаются выпадением геморроидальных узлов, сильными кровотечениями, нарушением стула. В качестве осложнения выступают инфекционные поражении, в том числе заражение крови.
  • Тромбофлебит. Патология поражает венозные сосуды. Опасность заболевания объясняется потенциальной возможностью отрыва тромба, из-за чего блокируется просвет легочных артерий. Однако крупные вены поражаются крайне редко. Тромбофлебиту подвержены небольшие вены, поражение которых не несет существенной опасности для жизни.

Существует широкий спектр сосудистых патологий, оказывающих негативное влияние на работу всего организма.

Во время просмотра видео вы узнаете о сердечно-сосудистой системе.

Кровеносные сосуды – важный элемент человеческого организма, отвечающий за движение крови. Существует несколько видов сосудов, отличающихся строением, функциональным назначением, размерами, расположением.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека