O rozsahu frekvencií, ktoré ľudské ucho počuje. Dynamický rozsah sluchu

Video vytvorené spoločnosťou AsapSCIENCE je akýmsi testom straty sluchu súvisiacim s vekom, ktorý vám pomôže spoznať hranice vášho sluchu.

Vo videu sa prehrávajú rôzne zvuky, od 8000 Hz, čo znamená, že nemáte sluchové postihnutie.

Potom frekvencia stúpa a to naznačuje vek vášho sluchu v závislosti od toho, kedy prestanete počuť určitý zvuk.

Takže ak počujete frekvenciu:

12 000 Hz - máte menej ako 50 rokov

15 000 Hz - máte menej ako 40 rokov

16 000 Hz - máte menej ako 30 rokov

17 000 – 18 000 – máte menej ako 24 rokov

19 000 – máte menej ako 20 rokov

Ak chcete, aby bol test presnejší, mali by ste nastaviť kvalitu videa na 720p, alebo lepšie 1080p a počúvať pomocou slúchadiel.

Test sluchu (video)

strata sluchu

Ak ste počuli všetky zvuky, s najväčšou pravdepodobnosťou máte menej ako 20 rokov. Výsledky závisia od senzorických receptorov vo vašom uchu tzv vlasové bunky ktoré sa časom poškodia a degenerujú.

Tento typ straty sluchu sa nazýva senzorineurálna strata sluchu. Túto poruchu môže spôsobiť celý rad infekcií, liekov a autoimunitných ochorení. Vonkajšie vláskové bunky, ktoré sú naladené tak, aby zachytávali vyššie frekvencie, zvyčajne odumierajú ako prvé, a tak dochádza k efektu straty sluchu súvisiacej s vekom, ako je demonštrované v tomto videu.

Ľudský sluch: zaujímavé fakty

1. Medzi zdravými ľuďmi frekvenčný rozsah, ktorý môže počuť ľudské ucho sa pohybuje od 20 (nižšia ako najnižšia nota na klavíri) do 20 000 Hertzov (vyššia ako najvyššia nota na malej flaute). Horná hranica tohto rozsahu sa však s vekom neustále znižuje.

2. Ľudia hovorte medzi sebou pri frekvencii 200 až 8000 Hz a ľudské ucho je najcitlivejšie na frekvenciu 1000 - 3500 Hz

3. Zvuky, ktoré sú nad hranicou ľudského sluchu sa nazývajú ultrazvuk a tie nižšie infrazvuk.

4. Náš uši neprestávajú fungovať ani v spánku a pritom stále počuť zvuky. Náš mozog ich však ignoruje.


5. Zvuk sa šíri rýchlosťou 344 metrov za sekundu. Sonický tresk nastane, keď objekt prekoná rýchlosť zvuku. Zvukové vlny pred a za objektom sa zrážajú a vytvárajú náraz.

6. Uši - samočistiaci orgán. Póry vo zvukovode vylučujú ušný maz a drobné chĺpky nazývané riasinky vytláčajú vosk von z ucha

7. Hluk detského plaču je približne 115 dB a je to hlasnejšie ako klaksón auta.

8. V Afrike žije kmeň Maabanov, ktorí žijú v takom tichu, že sú aj v starobe. počuť šepot do vzdialenosti 300 metrov.


9. Úroveň zvuk buldozéra pri nečinnosti je asi 85 dB (decibel), čo môže spôsobiť poškodenie sluchu už po jednom 8-hodinovom pracovnom dni.

10. Sedenie vpredu rečníci na rockovom koncerte, vystavujete sa 120 dB, čo začne poškodzovať váš sluch už po 7,5 minútach.

7. februára 2018

Ľudia (aj tí, ktorí sa v danej problematike dobre orientujú) majú často zmätok a ťažkosti s jasným pochopením toho, ako presne je frekvenčný rozsah zvuku, ktorý človek počuje, rozdelený na všeobecné kategórie (nízke, stredné, vysoké) a užšie podkategórie (horné basy, nižšia stredná atď.). Tieto informácie sú zároveň mimoriadne dôležité nielen pre experimenty s audiosystémom v aute, ale sú užitočné aj pre všeobecný vývoj. Znalosti sa určite zídu pri nastavovaní audiosystému akejkoľvek zložitosti a hlavne pomôžu správne posúdiť silné alebo slabé stránky konkrétneho reproduktorového systému alebo nuansy miestnosti počúvania hudby (v našom prípade napr. interiér auta je relevantnejší), pretože má priamy vplyv na výsledný zvuk. Ak je sluchom dobre a jasne pochopená prevaha určitých frekvencií vo zvukovom spektre, potom je elementárne a rýchlo možné posúdiť zvuk konkrétnej hudobnej skladby, pričom je zreteľne počuť vplyv akustiky miestnosti na zafarbenie zvuku, príspevok samotného akustického systému k zvuku a jemnejšie rozoznať všetky nuansy, o čo sa snaží ideológia „hi-fi“ ozvučenia.

Rozdelenie počuteľného rozsahu do troch hlavných skupín

Terminológia rozdelenia počuteľného frekvenčného spektra k nám prišla čiastočne z muzikálu, čiastočne z vedeckých svetov a vo všeobecnosti je známa takmer každému. Najjednoduchšie a najzrozumiteľnejšie rozdelenie, ktoré môže zažiť frekvenčný rozsah zvuku vo všeobecnosti, je nasledovné:

  • nízke frekvencie. Limity nízkofrekvenčného rozsahu sú v rámci 10 Hz (dolný limit) – 200 Hz (horný limit). Spodná hranica začína presne od 10 Hz, hoci v klasickom pohľade je človek schopný počuť už od 20 Hz (všetko pod ním spadá do infrazvukovej oblasti), zvyšných 10 Hz je stále čiastočne počuť, ale aj cítiť hmatovo v prípade hlbokých nízkych basov a dokonca ovplyvňujú aj psychický stav človeka.
    Nízkofrekvenčný rozsah zvuku má funkciu obohatenia, emocionálneho nasýtenia a konečnej odozvy – ak je výpadok v nízkofrekvenčnej časti akustiky alebo pôvodnej nahrávky silný, tak to neovplyvní rozpoznanie konkrétnej skladby, melódiu alebo hlas, ale zvuk bude vnímaný slabo, ochudobnene a priemerne, pričom subjektívne bude z hľadiska vnímania ostrejší a ostrejší, keďže stredy a výšky budú vyduté a dominujú na pozadí absencie dobrej nasýtenej basovej oblasti.

    Dosť veľké množstvo hudobné nástroje reprodukujú zvuky v nízkofrekvenčnom rozsahu, vrátane mužských vokálov môže spadať do oblasti až 100 Hz. Najvýraznejší nástroj, ktorý hrá od samého začiatku počuteľného rozsahu (od 20 Hz), môžeme pokojne nazvať dychovým organom.
  • Stredné frekvencie. Limity stredného frekvenčného rozsahu sú v rámci 200 Hz (dolný limit) – 2400 Hz (horný limit). Stredný rozsah bude vždy zásadný, určujúci a vlastne tvoria základ zvuku či hudby skladby, preto jeho význam nemožno preceňovať.
    Vysvetľuje sa to rôzne, ale hlavne je táto vlastnosť ľudského sluchového vnímania daná evolúciou - stalo sa za dlhé roky nášho formovania, že načúvací prístroj najostrejšie a najzreteľnejšie zachytí stredný frekvenčný rozsah, pretože. v ňom je ľudská reč a je hlavným nástrojom efektívnej komunikácie a prežitia. To vysvetľuje aj určitú nelineárnosť sluchového vnímania, ktoré je pri počúvaní hudby vždy zamerané na prevahu stredných frekvencií, pretože. náš načúvací prístroj je na tento rozsah najcitlivejší a tiež sa mu automaticky prispôsobuje, akoby viac „zosilňoval“ na pozadí iných zvukov.

    Prevažná väčšina zvukov, hudobných nástrojov alebo vokálov je v strednom rozsahu, aj keď je úzky rozsah ovplyvnený zhora alebo zdola, potom rozsah zvyčajne siaha aj tak do horného alebo spodného stredu. V súlade s tým sa vokály (mužské aj ženské) nachádzajú v strednom frekvenčnom rozsahu, ako aj takmer všetky známe nástroje, ako sú: gitara a iné struny, klavír a iné klávesy, dychové nástroje atď.
  • Vysoké frekvencie. Hranice vysokofrekvenčného rozsahu sú v rámci 2400 Hz (dolný limit) - 30000 Hz (horný limit). Horná hranica, podobne ako v prípade nízkofrekvenčného rozsahu, je do istej miery svojvoľná a tiež individuálna: priemerný človek nepočuje nad 20 kHz, ale sú vzácni ľudia s citlivosťou do 30 kHz.
    Množstvo hudobných podtónov môže teoreticky ísť aj do oblasti nad 20 kHz a ako viete, podtóny sú v konečnom dôsledku zodpovedné za zafarbenie zvuku a výsledné zafarbenie celého zvukového obrazu. Zdanlivo „nepočuteľné“ ultrazvukové frekvencie môžu jednoznačne ovplyvniť psychický stav človeka, hoci ich nebude počuť obvyklým spôsobom. V opačnom prípade je úloha vysokých frekvencií, opäť analogicky s nízkymi, viac obohacujúca a doplnková. Aj keď má vysokofrekvenčný rozsah oveľa väčší vplyv na rozpoznanie konkrétneho zvuku, spoľahlivosť a zachovanie pôvodného timbru ako nízkofrekvenčná sekcia. Vysoké frekvencie dodávajú hudobným skladbám „vzdušnosť“, transparentnosť, čistotu a jasnosť.

    Mnoho hudobných nástrojov tiež hrá vo vysokofrekvenčnom rozsahu, vrátane vokálov, ktoré môžu ísť do oblasti 7000 Hz a vyššie pomocou podtónov a harmonických. Najvýraznejšou skupinou nástrojov vo vysokofrekvenčnom segmente sú sláčikové a dychové nástroje, činely a husle dosahujú zvukovo plnšie takmer hornú hranicu počuteľného rozsahu (20 kHz).

V každom prípade je úloha absolútne všetkých frekvencií v rozsahu počuteľnom ľudským uchom pôsobivá a problémy v dráhe pri akejkoľvek frekvencii budú pravdepodobne jasne viditeľné, najmä pre trénovaného načúvacieho prístroja. Cieľom reprodukovania hi-fi zvuku vysokej kvality triedy (alebo vyššej) je zabezpečiť, aby všetky frekvencie zneli navzájom čo najpresnejšie a najrovnomernejšie, ako sa to stalo v čase nahrávania zvukovej stopy v štúdiu. Prítomnosť silných prepadov alebo špičiek vo frekvenčnej odozve akustického systému naznačuje, že vďaka svojim konštrukčným vlastnostiam nie je schopný reprodukovať hudbu tak, ako to autor alebo zvukár pôvodne zamýšľal v čase nahrávania.

Pri počúvaní hudby človek počuje kombináciu zvuku nástrojov a hlasov, z ktorých každý znie vo svojom vlastnom segmente frekvenčného rozsahu. Niektoré nástroje môžu mať veľmi úzky (obmedzený) frekvenčný rozsah, iné naopak doslova siahajú od spodnej po hornú hranicu počuteľnosti. Treba si uvedomiť, že napriek rovnakej intenzite zvukov v rôznych frekvenčných rozsahoch ľudské ucho vníma tieto frekvencie s rôznou hlasitosťou, čo je opäť spôsobené mechanizmom biologického zariadenia načúvacieho prístroja. Povaha tohto javu je v mnohých ohľadoch vysvetlená aj biologickou nevyhnutnosťou adaptácie hlavne na stredofrekvenčný rozsah zvuku. Takže v praxi bude zvuk s frekvenciou 800 Hz pri intenzite 50 dB vnímaný sluchom subjektívne ako hlasnejší ako zvuk rovnakej sily, ale s frekvenciou 500 Hz.

Navyše, rôzne zvukové frekvencie zaplavujúce počuteľný frekvenčný rozsah zvuku budú mať rôznu prahovú citlivosť na bolesť! prah bolesti referencia sa uvažuje pri priemernej frekvencii 1000 Hz s citlivosťou približne 120 dB (môže sa mierne líšiť v závislosti od individuálnych vlastností osoby). Rovnako ako v prípade nerovnomerného vnímania intenzity pri rôznych frekvenciách pri normálnych hladinách hlasitosti, približne rovnaká závislosť sa pozoruje vzhľadom na prah bolesti: najrýchlejšie sa vyskytuje pri stredných frekvenciách, ale na okrajoch počuteľného rozsahu sa prah stáva vyššie. Pre porovnanie, prah bolesti pri priemernej frekvencii 2000 Hz je 112 dB, zatiaľ čo prah bolesti pri nízkej frekvencii 30 Hz bude už 135 dB. Prah bolesti pri nízkych frekvenciách je vždy vyšší ako pri stredných a vysokých frekvenciách.

Podobný nepomer je pozorovaný vzhľadom na sluchový prah je spodná hranica, po ktorej sa zvuky stávajú počuteľnými pre ľudské ucho. Bežne sa za prah počutia považuje 0 dB, ale opäť to platí pre referenčnú frekvenciu 1000 Hz. Ak na porovnanie zoberieme nízkofrekvenčný zvuk s frekvenciou 30 Hz, potom bude počuteľný až pri intenzite vyžarovania vĺn 53 dB.

Uvedené črty ľudského sluchového vnímania majú, samozrejme, priamy dosah, keď je nastolená otázka počúvania hudby a dosiahnutia určitého psychologického efektu vnímania. Pamätáme si, že zvuky s intenzitou nad 90 dB sú zdraviu škodlivé a môžu viesť k znehodnoteniu a výraznému poškodeniu sluchu. Ale zároveň bude príliš tichý zvuk nízkej intenzity trpieť silnou frekvenčnou nerovnomernosťou v dôsledku biologických charakteristík sluchového vnímania, ktoré je nelineárneho charakteru. Hudobná dráha s hlasitosťou 40-50 dB bude teda vnímaná ako vyčerpaná, s výrazným nedostatkom (dalo by sa povedať poruchou) nízkych a vysokých frekvencií. Pomenovaný problém je dobre a dlho známy, na boj s ním dokonca aj známa funkcia tzv kompenzácia hlasitosti, ktorá pomocou ekvalizácie vyrovnáva úrovne nízkych a vysokých frekvencií v blízkosti úrovne stredov, čím eliminuje nežiaduci pokles bez potreby zvyšovania úrovne hlasitosti, čím sa počuteľný frekvenčný rozsah zvuku subjektívne zjednocuje z hľadiska stupňa. distribúcie zvukovej energie.

Ak vezmeme do úvahy zaujímavé a jedinečné vlastnosti ľudského sluchu, je užitočné poznamenať, že so zvyšujúcou sa hlasitosťou zvuku sa krivka frekvenčnej nelinearity splošťuje a pri 80-85 dB (a vyšších) sa zvukové frekvencie stanú subjektívne ekvivalentné v intenzite (s odchýlkou ​​3-5 dB). Zarovnanie síce nie je úplné a graf bude stále viditeľný, síce vyhladený, ale zakrivená čiara, ktorá si zachová tendenciu k prevahe intenzity stredných frekvencií oproti zvyšku. V audio systémoch je možné takéto nerovnosti vyriešiť buď pomocou ekvalizéra, alebo pomocou samostatných ovládačov hlasitosti v systémoch so samostatným zosilňovaním kanál po kanáli.

Rozdelenie počuteľného rozsahu na menšie podskupiny

Popri všeobecne akceptovanom a dobre známom rozdelení do troch všeobecných skupín sa niekedy stáva, že je potrebné podrobnejšie a podrobnejšie zvážiť jednu alebo druhú úzku časť, čím sa frekvenčný rozsah zvuku rozdelí na ešte menšie "fragmenty". Vďaka tomu sa objavilo podrobnejšie členenie, pomocou ktorého jednoducho rýchlo a pomerne presne naznačíte zamýšľaný segment zvukového rozsahu. Zvážte toto rozdelenie:

Malý vybraný počet nástrojov zostupuje do oblasti najnižších basov a ešte viac subbasov: kontrabas (40-300 Hz), violončelo (65-7000 Hz), fagot (60-9000 Hz), tuba ( 45-2000 Hz), rohy (60-5000Hz), basgitara (32-196Hz), basový bubon (41-8000Hz), saxofón (56-1320Hz), klavír (24-1200Hz), syntetizátor (20-20000Hz), organ (20-7000 Hz), harfa (36-15000 Hz), kontrafagot (30-4000 Hz). Uvedené rozsahy zahŕňajú všetky harmonické tóny nástrojov.

  • Horné basy (80 Hz až 200 Hz) reprezentované vysokými tónmi klasických basových nástrojov, ako aj najnižšími počuteľnými frekvenciami jednotlivých strún, napríklad gitary. Horný basový rozsah je zodpovedný za pocit sily a prenos energetického potenciálu zvukovej vlny. Dáva tiež pocit drive, horné basy sú navrhnuté tak, aby naplno odhalili perkusívny rytmus tanečných skladieb. Na rozdiel od spodných basov je horný zodpovedný za rýchlosť a tlak basovej oblasti a celého zvuku, preto je v kvalitnom audio systéme vždy vyjadrený rýchlo a uštipačným spôsobom, ako citeľný hmatový úder. súčasne s priamym vnímaním zvuku.
    Útok, tlak a hudobný drajv má teda na svedomí horný bas a len tento úzky segment zvukového rozsahu dokáže dať poslucháčovi pocit legendárneho „punču“ (z anglického punch – blow), kedy silný zvuk je vnímaný hmatateľným a silným úderom do hrudníka. Dobre sformovaný a správny rýchly horný bas v hudobnom systéme teda spoznáte podľa kvalitného vypracovania energického rytmu, zozbieraného ataku a podľa dobre sformovaných nástrojov v spodnom registri nôt, ako sú violončelo, klavír alebo dychové nástroje.

    V audio systémoch je najvýhodnejšie dať segment horného basového rozsahu stredobasovým reproduktorom s pomerne veľkým priemerom 6,5 "-10" a s dobrými indikátormi výkonu, silným magnetom. Tento prístup je vysvetlený skutočnosťou, že práve tieto reproduktory budú z hľadiska konfigurácie schopné naplno odhaliť energetický potenciál, ktorý je súčasťou tejto veľmi náročnej oblasti počuteľného rozsahu.
    Nezabudnite však na detail a zrozumiteľnosť zvuku, tieto parametre sú dôležité aj v procese vytvárania konkrétneho hudobného obrazu. Keďže horné basy sú už dobre lokalizované / definované v priestore sluchom, rozsah nad 100 Hz je potrebné dať výhradne predným reproduktorom, ktoré budú tvoriť a budovať scénu. V segmente horných basov sa výborne ozýva stereo panoráma, ak ju zabezpečuje samotná nahrávka.

    Horná basová oblasť už pokrýva pomerne veľké množstvo nástrojov a dokonca aj nízke mužské vokály. Preto sú medzi nástrojmi tie isté, ktoré hrali nízke basy, no pridávajú sa k nim mnohé ďalšie: tomy (70-7000 Hz), malý bubon (100-10000 Hz), perkusie (150-5000 Hz), tenorový trombón ( 80-10000 Hz), trúbka (160-9000 Hz), tenor saxofón (120-16000 Hz), alt saxofón (140-16000 Hz), klarinet (140-15000 Hz), altové husle (130-6700 Hz), gitara (80-5000 Hz). Uvedené rozsahy zahŕňajú všetky harmonické tóny nástrojov.

  • Spodný stred (200 Hz až 500 Hz)- najrozsiahlejšia oblasť, zachytávajúca väčšinu nástrojov a vokálov, mužských aj ženských. Keďže oblasť spodných stredov skutočne prechádza z energicky nasýtených horných basov, dá sa povedať, že to „preberá“ a zodpovedá aj za správny prenos rytmickej sekcie v spojení s pohonom, aj keď tento vplyv už klesá. smerom k čistým stredným frekvenciám.
    V tomto rozsahu sa sústreďujú nižšie harmonické a podtóny, ktoré vypĺňajú hlas, preto je mimoriadne dôležitý pre správny prenos vokálov a saturáciu. V dolnom strede sa nachádza aj celý energetický potenciál hlasu interpreta, bez ktorého nedôjde k zodpovedajúcemu návratu a emocionálnej odozve. Analogicky s prenosom ľudského hlasu v tomto segmente rozsahu ukrývajú svoj energetický potenciál aj mnohé živé nástroje, najmä tie, ktorých spodná hranica počuteľnosti začína od 200-250 Hz (hoboj, husle). Spodný stred umožňuje počuť melódiu zvuku, ale neumožňuje jasné rozlíšenie nástrojov.

    V súlade s tým je spodný stred zodpovedný za správny dizajn väčšiny nástrojov a hlasov, saturuje ich a robí ich rozpoznateľnými podľa farby. Taktiež spodný stred je mimoriadne náročný z hľadiska správneho prenosu plnohodnotného basového rozsahu, keďže „vychytáva“ drajv a atak basov hlavných bicích a očakáva sa, že ho patrične podporí a plynulo „dotvorí“, postupne to znižuje na nič. Pocity zvukovej čistoty a zrozumiteľnosti basov spočívajú práve v tejto oblasti a ak sú v dolnom strede problémy z prebytku alebo prítomnosti rezonančných frekvencií, tak zvuk poslucháča unaví, bude špinavý a mierne mumlavý. .
    Ak je nedostatok v oblasti nižšieho stredu, utrpí to správne cítenie basov a spoľahlivý prenos vokálneho partu, ktorý bude bez tlaku a energie. To isté platí pre väčšinu nástrojov, ktoré bez opory spodného stredu stratia „tvár“, nesprávne orámujú a ich zvuk sa citeľne ochudne, aj keď zostane poznať, už nebude taký plný.

    Pri stavbe audiosystému je rozsah spodného stredného a vyššieho (až po vrchol) zvyčajne daný stredným reproduktorom (MF), ktoré by bezpochyby mali byť umiestnené v prednej časti pred poslucháčom. a postaviť pódium. Pri týchto reproduktoroch nie je až taká dôležitá veľkosť, môže byť 6,5" a nižšia, nakoľko dôležitý je detail a schopnosť odhaliť nuansy zvuku, čo je dosiahnuté konštrukčnými vlastnosťami samotného reproduktora (difúzor, zavesenie a iné vlastnosti).
    Správna lokalizácia je tiež životne dôležitá pre celý stredofrekvenčný rozsah a doslova najmenšie naklonenie alebo otočenie reproduktora môže mať citeľný vplyv na zvuk v zmysle správnej realistickej reprodukcie obrazu nástrojov a vokálov v priestore, hoci to bude do značnej miery závisieť od konštrukčných prvkov samotného kužeľa reproduktora.

    Spodná stredná pokrýva takmer všetky existujúce nástroje a ľudské hlasy, nehrá síce zásadnú úlohu, no aj tak je veľmi dôležitá pre plnohodnotné vnímanie hudby či zvukov. Medzi nástrojmi bude rovnaká zostava, ktorá dokázala získať späť spodný rozsah basov, no pridávajú sa k nim ďalšie, ktoré začínajú už od spodného stredu: činely (190-17000 Hz), hoboj (247-15000 Hz), flauta (240- 14500 Hz), husle (200-17000 Hz). Uvedené rozsahy zahŕňajú všetky harmonické tóny nástrojov.

  • Stredný stred (500 Hz až 1200 Hz) alebo len čistý stred, takmer podľa teórie rovnováhy možno tento segment rozsahu považovať za fundamentálny a fundamentálny vo zvuku a právom ho nazvať „zlatým stredom“. V prezentovanom segmente frekvenčného rozsahu nájdete hlavné tóny a harmonické tóny veľkej väčšiny nástrojov a hlasov. Čistota, zrozumiteľnosť, jas a prenikavý zvuk závisia od sýtosti stredu. Dá sa povedať, že celý zvuk sa akoby „rozťahuje“ do strán od základne, čo je stredofrekvenčný rozsah.

    V prípade výpadku v strede sa zvuk stáva nudným a nevýrazným, stráca zvukovosť a jas, vokály prestávajú fascinovať a vlastne miznú. Stred je tiež zodpovedný za zrozumiteľnosť hlavných informácií pochádzajúcich z nástrojov a vokálov (v menšej miere, pretože spoluhlásky idú vo vyššom rozsahu), čo pomáha dobre ich rozlíšiť podľa ucha. Väčšina existujúcich nástrojov v tomto rozsahu ožíva, stáva sa energickou, informatívnou a hmatateľnou, to isté sa deje s vokálom (najmä ženským), ktorý je v strede naplnený energiou.

    Základný rozsah strednej frekvencie pokrýva absolútnu väčšinu nástrojov, ktoré už boli uvedené vyššie, a tiež odhaľuje plný potenciál mužských a ženských vokálov. Iba vzácne vybrané nástroje začínajú svoj život na stredných frekvenciách, pričom spočiatku hrajú v pomerne úzkom rozsahu, napríklad malá flauta (600-15000 Hz).
  • Horná stredná (1200 Hz až 2400 Hz) predstavuje veľmi jemnú a náročnú časť sortimentu, s ktorou je potrebné narábať opatrne a opatrne. V tejto oblasti nie je toľko základných tónov, ktoré tvoria základ zvuku nástroja alebo hlasu, ale veľké množstvo podtónov a harmonických, vďaka ktorým je zvuk zafarbený, stáva sa ostrým a jasným. Ovládaním tejto oblasti frekvenčného rozsahu sa možno skutočne hrať so sfarbením zvuku, takže je buď živý, iskrivý, priehľadný a ostrý; alebo naopak suchý, umiernený, no zároveň asertívnejší a šoférsky.

    No prílišné zdôrazňovanie tohto rozsahu má na zvukový obraz krajne nežiadúci vplyv, pretože. začína nápadne rezať ucho, dráždiť a dokonca spôsobovať bolestivé nepohodlie. Preto horný stred vyžaduje jemný a opatrný postoj s ním, tk. kvôli problémom v tejto oblasti je veľmi ľahké pokaziť zvuk, alebo naopak urobiť ho zaujímavým a dôstojným. Zvyčajne sfarbenie v hornej strednej oblasti do značnej miery určuje subjektívny aspekt žánru akustického systému.

    Vďaka vyššiemu stredu sa konečne sformujú vokály a mnohé nástroje, dobre sa rozlíšia podľa sluchu a objaví sa zrozumiteľnosť zvuku. To platí najmä pre nuansy reprodukcie ľudského hlasu, pretože v hornej strednej časti je umiestnené spektrum spoluhlások a samohlásky, ktoré sa objavili v raných rozsahoch stredu, pokračujú. Vo všeobecnom zmysle horný stred priaznivo zdôrazňuje a plne odhaľuje tie nástroje alebo hlasy, ktoré sú nasýtené hornými harmonickými, podtónmi. Najmä ženské vokály, mnohé sláčikové, sláčikové a dychové nástroje sa v hornej polovici odhaľujú skutočne živo a prirodzene.

    Prevažná väčšina nástrojov hrá stále vo vyššej strednej časti, aj keď mnohé sú už zastúpené len vo forme wrapov a ústnych harmoník. Výnimkou sú niektoré zriedkavé, ktoré sa spočiatku vyznačujú obmedzeným nízkofrekvenčným rozsahom, napríklad tuba (45-2000 Hz), ktorá úplne končí v hornej časti.

  • Nízke výšky (2400 Hz až 4800 Hz)- toto je zóna/oblasť zvýšeného skreslenia, ktorá, ak je prítomná v ceste, sa v tomto segmente zvyčajne prejaví. Nižšie výšky sú tiež zaplavené rôznymi harmonickými nástrojmi a vokálom, ktoré zároveň zohrávajú veľmi špecifickú a dôležitú úlohu vo výslednom dizajne umelo vytvoreného hudobného obrazu. Nižšie výšky nesú hlavnú záťaž vysokofrekvenčného rozsahu. Vo zvuku sa prejavujú z väčšej časti zvyškovými a dobre počúvanými harmonickými vokálmi (hlavne ženskými) a neutíchajúcimi silnými harmonickými niektorými nástrojmi, ktoré dotvárajú obraz konečnými dotykmi prirodzeného zafarbenia zvuku.

    Prakticky nehrajú rolu z hľadiska rozlišovania nástrojov a rozpoznávania hlasov, hoci spodná časť zostáva vysoko informatívnou a zásadnou oblasťou. V skutočnosti tieto frekvencie načrtávajú hudobné obrazy nástrojov a vokálov, naznačujú ich prítomnosť. V prípade výpadku spodného vysokého segmentu frekvenčného rozsahu sa prejav stane suchým, nezáživným a neúplným, približne to isté sa deje s inštrumentálnymi časťami - stráca sa jas, je skreslená samotná podstata zdroja zvuku, stáva sa zreteľne neúplným a nedostatočne formovaným.

    V každom bežnom audio systéme preberá úlohu vysokých frekvencií samostatný reproduktor nazývaný výškový reproduktor (vysoká frekvencia). Rozmerovo zvyčajne malý, je nenáročný na vstupný výkon (v rozumných medziach) analogicky so stredovou a najmä basovou sekciou, no je tiež nesmierne dôležitý, aby zvuk hral správne, realisticky a aspoň krásne. Výškový reproduktor pokrýva celý počuteľný vysokofrekvenčný rozsah od 2000-2400 Hz do 20000 Hz. V prípade vysokofrekvenčných meničov je takmer analogicky so stredotónovou sekciou veľmi dôležité správne fyzické umiestnenie a smerovosť, pretože výškové reproduktory sa maximálne podieľajú nielen na tvorbe zvukovej scény, ale aj na procese. jeho jemného doladenia.

    Pomocou výškových reproduktorov môžete do veľkej miery ovládať scénu, približovať/odďaľovať interpretov, meniť tvar a priebeh nástrojov, hrať sa s farbou zvuku a jeho jasom. Rovnako ako v prípade nastavovania stredotónových reproduktorov, aj tu ovplyvňuje správny zvuk výškových reproduktorov takmer všetko, a to často veľmi, veľmi citlivo: natočenie a sklon reproduktora, jeho vertikálne a horizontálne umiestnenie, vzdialenosť od blízkych plôch atď. Úspech správneho naladenia a rafinovanosť HF sekcie však závisí od konštrukcie reproduktora a jeho polárneho vzoru.

    Nástroje, ktoré hrajú až do nižších výšok, to robia prevažne cez harmonické, a nie základné. Inak v spodnom vysokom pásme "naživo" takmer všetky tie isté, ktoré boli v stredofrekvenčnom segmente, t.j. takmer všetky existujúce. Rovnako je to aj s hlasom, ktorý je aktívny najmä v nižších vysokých frekvenciách, v ženských vokálnych partoch je počuť zvláštny jas a vplyv.

  • Stredne vysoká (4800 Hz až 9600 Hz) Stredne vysoké frekvenčné pásmo sa často považuje za hranicu vnímania (napríklad v lekárskej terminológii), hoci v praxi to nie je pravda a závisí od individuálnych charakteristík človeka a od jeho veku (čím je človek starší, tým viac klesá prah vnímania). V hudobnej ceste tieto frekvencie dávajú pocit čistoty, priehľadnosti, „vzdušnosti“ a určitej subjektívnej úplnosti.

    V skutočnosti je prezentovaný segment rozsahu porovnateľný so zvýšenou čistotou a detailmi zvuku: ak nedochádza k poklesu v strednej časti, potom je zdroj zvuku mentálne dobre lokalizovaný v priestore, koncentrovaný v určitom bode a vyjadrený pocit určitej vzdialenosti; a naopak, ak chýba spodný vrch, potom sa zdá byť čistota zvuku rozmazaná a obrazy sa strácajú v priestore, zvuk sa stáva zakaleným, upnutým a synteticky nereálnym. Podľa toho je regulácia nižších vysokých frekvencií porovnateľná so schopnosťou virtuálne „pohybovať“ zvukovou scénou v priestore, t.j. posuňte ho preč alebo priblížte.

    Stredné vysoké frekvencie v konečnom dôsledku poskytujú požadovaný prezenčný efekt (presnejšie ho dotvárajú naplno, keďže efekt je založený na hlbokých a oduševnených basoch), vďaka týmto frekvenciám sa nástroje a hlas stávajú maximálne realistickými a spoľahlivými. . O stredových vrcholoch môžeme tiež povedať, že sú zodpovedné za detail vo zvuku, za početné drobné nuansy a presahy ako vo vzťahu k inštrumentálnej časti, tak aj vo vokálnej časti. Na konci segmentu strednej výšky začína „vzduch“ a transparentnosť, čo je tiež celkom jasne cítiť a ovplyvňuje vnímanie.

    Napriek tomu, že zvuk neustále klesá, v tomto segmente rozsahu sú stále aktívne: mužský a ženský spev, basový bubon (41-8000 Hz), tomy (70-7000 Hz), snare drum (100-10000 Hz), činely (190-17000 Hz), vzdušný trombón (80-10000 Hz), trúbka (160-9000 Hz), fagot (60-9000 Hz), saxofón (56-1320 Hz), klarinet (140-15000 Hz), hoboj (247-15000 Hz), flauta (240-14500 Hz), pikola (600-15000 Hz), violončelo (65-7000 Hz), husle (200-17000 Hz), harfa (36-15000 Hz) ), organ (20-7000 Hz), syntetizátor (20-20000 Hz), tympány (60-3000 Hz).

  • Horné vysoké (9600 Hz až 30000 Hz) veľmi zložitý a pre mnohých nepochopiteľný rozsah, poskytujúci z väčšej časti podporu pre určité nástroje a vokály. Horné výšky dodávajú zvuku najmä charakteristiky vzdušnosti, priehľadnosti, kryštalinity, niekedy aj jemného pridania a zafarbenia, čo sa môže zdať pre mnohých nepodstatné a dokonca nepočuteľné, no stále má veľmi určitý a špecifický význam. Pri pokuse o vytvorenie špičkového „hi-fi“ alebo dokonca „hi-endového“ zvuku sa hornému rozsahu výšok venuje maximálna pozornosť, pretože právom sa verí, že vo zvuku sa nemôže stratiť ani ten najmenší detail.

    Navyše, okrem bezprostredne počuteľnej časti môže mať aj horná vysoká oblasť, ktorá sa plynule mení na ultrazvukové frekvencie, stále určitý psychologický efekt: aj keď tieto zvuky nie sú zreteľne počuť, vlny sú vyžarované do priestoru a môžu byť vnímané osoba, pričom viac na úrovni tvorby nálady. V konečnom dôsledku ovplyvňujú aj kvalitu zvuku. Vo všeobecnosti sú tieto frekvencie najjemnejšie a najjemnejšie v celom rozsahu, ale sú zodpovedné aj za pocit krásy, elegancie, iskrivú dochuť hudby. Pri nedostatku energie v hornom vysokom rozsahu je celkom možné cítiť nepohodlie a hudobné podhodnotenie. Rozmarný horný vysoký rozsah navyše dáva poslucháčovi pocit priestorovej hĺbky, akoby sa ponoril hlboko do pódia a bol zahalený zvukom. Prebytok sýtosti zvuku v naznačenom úzkom rozsahu však môže zvuk zbytočne „piesočať“ a neprirodzene stenčovať.

    Pri diskusii o hornom vysokofrekvenčnom rozsahu stojí za zmienku aj výškový reproduktor s názvom „super výškový reproduktor“, čo je vlastne konštrukčne rozšírená verzia bežného výškového reproduktora. Takýto reproduktor je navrhnutý tak, aby pokryl väčšiu časť rozsahu v hornej časti. Ak prevádzkový rozsah bežného výškového reproduktora končí na očakávanej limitnej značke, nad ktorou ľudské ucho zvukovú informáciu teoreticky nevníma, t.j. 20 kHz, potom môže super výškový reproduktor zvýšiť túto hranicu na 30-35 kHz.

    Myšlienka implementácie takéhoto sofistikovaného reproduktora je veľmi zaujímavá a kuriózna, pochádza zo sveta „hi-fi“ a „hi-end“, kde sa verí, že žiadne frekvencie v hudobnej ceste nemožno ignorovať a , aj keď ich priamo nepočujeme, stále sú spočiatku prítomné pri živom prevedení konkrétnej skladby, čo znamená, že môžu mať nejaký vplyv nepriamo. Situáciu so super výškovým reproduktorom komplikuje len fakt, že nie všetky zariadenia (zdroje/prehrávače zvuku, zosilňovače a pod.) sú schopné vydávať signál v plnom rozsahu, bez orezávania frekvencií zhora. To isté platí aj pre samotný záznam, ktorý sa často robí s škrtom vo frekvenčnom rozsahu a stratou kvality.

  • Približne vyššie popísaným spôsobom vyzerá rozdelenie počuteľného frekvenčného rozsahu na podmienené segmenty ako v skutočnosti, pomocou delenia možno ľahšie pochopiť problémy v audio ceste za účelom ich eliminácie alebo vyrovnania zvuku. Napriek tomu, že si každý človek predstavuje nejaký výlučne svoj vlastný a len jemu zrozumiteľný referenčný obraz zvuku len v súlade s jeho vkusovými preferenciami, povaha pôvodného zvuku má tendenciu vyrovnávať, respektíve spriemerovať všetky znejúce frekvencie. Preto je správny štúdiový zvuk vždy vyvážený a pokojný, celé spektrum zvukových frekvencií v ňom smeruje k rovnej čiare na grafe frekvenčnej odozvy (amplitúda-frekvenčná odozva). Rovnaký smer sa snaží implementovať nekompromisné „hi-fi“ a „hi-end“: získať čo najrovnomernejší a vyvážený zvuk, bez špičiek a poklesov v celom počuteľnom rozsahu. Takýto zvuk sa môže svojou povahou zdať nudný a nevýrazný, bez jasu a nezaujímavý pre bežného neskúseného poslucháča, ale je to práve tento zvuk, ktorý je v skutočnosti skutočne správny, pričom sa usiluje o rovnováhu analogicky k tomu, ako platia zákony samotný vesmír, v ktorom žijeme, sa prejavuje.

    Tak či onak, túžba znovu vytvoriť nejaký špecifický charakter zvuku vo vašom audio systéme závisí výlučne od preferencií poslucháča. Niekomu vyhovuje zvuk s prevládajúcimi mohutnými basmi, inému zvýšený jas „zvýšených“ výšok, iní si môžu celé hodiny vychutnávať drsné vokály zdôraznené v strede... Možnosti vnímania môžu byť obrovské a informácie o frekvenčné rozdelenie rozsahu do podmienených segmentov pomôže každému, kto chce vytvoriť zvuk svojich snov, len teraz s úplnejším pochopením nuancií a jemností zákonov, ktoré zvuk ako fyzikálny jav dodržiava.

    Pochopenie procesu saturácie určitými frekvenciami zvukového rozsahu (naplnenie energie v každej sekcii) v praxi nielen uľahčí ladenie akéhokoľvek audio systému a umožní v princípe postaviť scénu, ale tiež poskytne neoceniteľné skúsenosti pri posudzovaní špecifickej povahy zvuku. So skúsenosťami bude človek schopný okamžite identifikovať nedostatky zvuku sluchom, navyše veľmi presne opísať problémy v určitej časti rozsahu a navrhnúť možné riešenie na zlepšenie zvukového obrazu. Korekciu zvuku je možné vykonávať rôznymi metódami, pričom ako „páky“ možno použiť napríklad ekvalizér, alebo sa môžete „hrať“ s umiestnením a nasmerovaním reproduktorov – čím sa zmení charakter odrazov skorých vĺn, čím sa eliminuje stojaté vlny atď. To už bude „úplne iný príbeh“ a téma na samostatné články.

    Frekvenčný rozsah ľudského hlasu v hudobnej terminológii

    Samostatne a oddelene v hudbe je priradená úloha ľudského hlasu ako vokálnej časti, pretože povaha tohto javu je skutočne úžasná. Ľudský hlas je tak mnohostranný a jeho rozsah (v porovnaní s hudobnými nástrojmi) je najširší, s výnimkou niektorých nástrojov, ako napríklad pianoforte.
    Navyše v rôznom veku môže človek vydávať zvuky rôznych výšok, v detstve až po ultrazvukové výšky, v dospelosti je mužský hlas celkom schopný klesnúť extrémne nízko. Tu, ako predtým, sú mimoriadne dôležité individuálne vlastnosti ľudských hlasiviek, pretože. sú ľudia, ktorí dokážu ohromiť hlasom v rozsahu 5 oktáv!

      Baby
    • alt (nízky)
    • soprán (vysoký)
    • Výšky (vysoké u chlapcov)
      Pánske
    • Basy hlboké (extra nízke) 43,7-262 Hz
    • Basy (nízke) 82-349 Hz
    • Barytón (stredný) 110-392 Hz
    • Tenor (vysoký) 132-532 Hz
    • Tenor altino (extra vysoký) 131-700 Hz
      Dámske
    • Kontralt (nízky) 165-692 Hz
    • Mezzosoprán (stredný) 220-880 Hz
    • Soprán (vysoký) 262-1046 Hz
    • Koloratúrny soprán (extra vysoký) 1397 Hz

    Ľudský sluch

    Sluch- schopnosť biologických organizmov vnímať zvuky orgánmi sluchu; špeciálna funkcia načúvacieho prístroja, ktorá je vzrušená zvukovými vibráciami prostredia, ako je vzduch alebo voda. Jeden z biologických vzdialených vnemov, nazývaný aj akustický vnem. Poskytuje sluchový senzorický systém.

    Ľudský sluch je schopný počuť zvuk v rozsahu od 16 Hz do 22 kHz pri prenose vibrácií vzduchom a až do 220 kHz pri prenose zvuku cez kosti lebky. Tieto vlny majú dôležitý biologický význam, napríklad zvukové vlny v rozsahu 300-4000 Hz zodpovedajú ľudskému hlasu. Zvuky nad 20 000 Hz majú malú praktickú hodnotu, pretože sa rýchlo spomaľujú; vibrácie pod 60 Hz sú vnímané prostredníctvom vibračného zmyslu. Rozsah frekvencií, ktoré je človek schopný počuť, sa nazýva sluchový alebo zvukový rozsah; vyššie frekvencie sa nazývajú ultrazvuk a nižšie frekvencie infrazvuk.

    Schopnosť rozlíšiť zvukové frekvencie silne závisí od konkrétneho človeka: jeho veku, pohlavia, dedičnosti, náchylnosti na choroby sluchového orgánu, tréningu a únavy sluchu. Niektorí ľudia sú schopní vnímať zvuky relatívne vysokej frekvencie – až 22 kHz, prípadne aj vyššej.
    U ľudí, rovnako ako u väčšiny cicavcov, je orgánom sluchu ucho. U mnohých zvierat sa sluchové vnímanie uskutočňuje kombináciou rôznych orgánov, ktoré sa môžu svojou štruktúrou výrazne líšiť od ucha cicavcov. Niektoré zvieratá sú schopné vnímať akustické vibrácie, ktoré človek nepočuje (ultrazvuk alebo infrazvuk). Netopiere používajú ultrazvuk na echolokáciu počas letu. Psy sú schopné počuť ultrazvuk, ktorý je základom pre prácu tichých píšťaliek. Existujú dôkazy, že veľryby a slony môžu používať infrazvuk na komunikáciu.
    Človek dokáže rozlíšiť niekoľko zvukov súčasne vďaka tomu, že v slimáku môže byť súčasne niekoľko stojatých vĺn.

    Mechanizmus sluchového systému:

    Zvukový signál akejkoľvek povahy možno opísať pomocou určitého súboru fyzikálnych vlastností:
    frekvencia, intenzita, trvanie, časová štruktúra, spektrum atď.

    Zodpovedajú určitým subjektívnym vnemom vznikajúcim pri vnímaní zvukov sluchovým systémom: hlasitosť, výška tónu, zafarbenie, údery, konsonancie-disonancie, maskovanie, lokalizácia-stereoefekt atď.
    Sluchové vnemy sú spojené s fyzikálnymi vlastnosťami nejednoznačným a nelineárnym spôsobom, napríklad hlasitosť závisí od intenzity zvuku, od jeho frekvencie, od spektra atď. Ešte v minulom storočí sa ustálil Fechnerov zákon, ktorý potvrdil, že tento vzťah je nelineárny: „Senzácie
    úmerné pomeru logaritmov podnetu.“ Napríklad pocity zmeny hlasitosti sú primárne spojené so zmenou logaritmu intenzity, výšky tónu – so zmenou logaritmu frekvencie atď.

    Všetky zvukové informácie, ktoré človek prijíma z vonkajšieho sveta (tvorí asi 25 % z celkového počtu), rozpoznáva pomocou sluchového ústrojenstva a práce vyšších častí mozgu, prevádza ich do sveta svoje pocity a robí rozhodnutia, ako na ne reagovať.
    Predtým, ako pristúpime k štúdiu problému, ako sluchový systém vníma tón, stručne sa zastavíme pri mechanizme sluchového systému.
    V tomto smere sa teraz dosiahlo veľa nových a veľmi zaujímavých výsledkov.
    Sluchová sústava je akýmsi prijímačom informácií a skladá sa z periférnej časti a vyšších častí sluchovej sústavy. Najviac študované sú procesy premeny zvukových signálov v periférnej časti sluchového analyzátora.

    periférna časť

    Ide o akustickú anténu, ktorá prijíma, lokalizuje, zaostruje a zosilňuje zvukový signál;
    - mikrofón;
    - frekvenčný a časový analyzátor;
    - analógovo-digitálny prevodník, ktorý premieňa analógový signál na binárne nervové impulzy - elektrické výboje.

    Celkový pohľad na periférny sluchový systém je znázornený na prvom obrázku. Periférny sluchový systém sa zvyčajne delí na tri časti: vonkajšie, stredné a vnútorné ucho.

    vonkajšie ucho pozostáva z ušnice a zvukovodu, zakončeného tenkou membránou nazývanou bubienka.
    Vonkajšie uši a hlava sú komponenty externej akustickej antény, ktorá spája (prispôsobuje) ušný bubienok k vonkajšiemu zvukovému poľu.
    Hlavnými funkciami vonkajších uší sú binaurálne (priestorové) vnímanie, lokalizácia zdroja zvuku a zosilnenie zvukovej energie najmä v stredných a vysokých frekvenciách.

    zvukovodu je zakrivená valcová trubica dĺžky 22,5 mm, ktorá má prvú rezonančnú frekvenciu cca 2,6 kHz, takže v tomto frekvenčnom rozsahu výrazne zosilňuje zvukový signál a práve tu sa nachádza oblasť maximálnej citlivosti sluchu.

    Ušný bubienok - tenký film s hrúbkou 74 mikrónov, má tvar kužeľa smerujúceho špičkou k strednému uchu.
    Pri nízkych frekvenciách sa pohybuje ako piest, pri vyšších vytvára zložitý systém uzlových čiar, ktorý je dôležitý aj pre zosilnenie zvuku.

    Stredné ucho- vzduchom vyplnená dutina spojená s nosohltanom Eustachovou trubicou na vyrovnávanie atmosférického tlaku.
    Pri zmene atmosférického tlaku môže vzduch vstupovať alebo vystupovať zo stredného ucha, takže bubienok nereaguje na pomalé zmeny statického tlaku – hore a dole atď. V strednom uchu sú tri malé sluchové kostičky:
    kladivo, nákovu a strmeň.
    Malleus je jedným koncom pripevnený k bubienkovej membráne, druhý koniec je v kontakte s nákovkou, ktorá je spojená so strmeňom pomocou malého väziva. Základňa strmeňa je spojená s oválnym okienkom do vnútorného ucha.

    Stredné ucho vykonáva nasledujúce funkcie:
    zosúladenie impedancie vzdušného prostredia s kvapalným prostredím kochley vnútorného ucha; ochrana pred hlasitými zvukmi (akustický reflex); zosilnenie (pákový mechanizmus), vďaka ktorému sa akustický tlak prenášaný do vnútorného ucha zvýši o takmer 38 dB v porovnaní s tým, ktorý vstupuje do bubienka.

    vnútorné ucho nachádza sa v labyrinte kanálov v spánkovej kosti a zahŕňa orgán rovnováhy (vestibulárny aparát) a slimák.

    Slimák(kochlea) hrá hlavnú úlohu v sluchovom vnímaní. Je to trubica s premenlivým prierezom, trikrát preložená ako hadí chvost. V rozloženom stave má dĺžku 3,5 cm.Vnútri má slimák mimoriadne zložitú štruktúru. Po celej dĺžke je rozdelený dvomi membránami na tri dutiny: scala vestibuli, strednú dutinu a scala tympani.

    V Cortiho orgáne dochádza k transformácii mechanických vibrácií membrány na diskrétne elektrické impulzy nervových vlákien. Keď bazilárna membrána vibruje, riasinky na vláskových bunkách sa ohýbajú a tým vzniká elektrický potenciál, ktorý spôsobuje prúd elektrických nervových impulzov, ktoré prenášajú všetky potrebné informácie o prichádzajúcom zvukovom signáli do mozgu na ďalšie spracovanie a reakciu.

    Vyššie časti sluchového ústrojenstva (vrátane sluchovej kôry) možno považovať za logický procesor, ktorý extrahuje (dekóduje) užitočné zvukové signály na pozadí hluku, zoskupuje ich podľa určitých charakteristík, porovnáva ich s obrazmi v pamäti, určuje ich informačnú hodnotu a rozhoduje o reakciách.

    O téme zvuku sa oplatí hovoriť o ľudskom sluchu trochu podrobnejšie. Aké subjektívne je naše vnímanie? Môžete si otestovať sluch? Dnes sa dozviete najjednoduchší spôsob, ako zistiť, či je váš sluch plne v súlade s tabuľkovými hodnotami.

    Je známe, že priemerný človek je schopný vnímať akustické vlny v rozsahu od 16 do 20 000 Hz (16 000 Hz v závislosti od zdroja). Tento rozsah sa nazýva zvukový rozsah.

    20 Hz Hukot, ktorý je len cítiť, ale nepočuť. Reprodukujú ho najmä špičkové audiosystémy, takže v prípade ticha je na vine ona
    30 Hz Ak to nepočujete, s najväčšou pravdepodobnosťou ide opäť o problém s prehrávaním.
    40 Hz Bude to počuť v rozpočtoch a mainstreamových reproduktoroch. Ale veľmi tichý
    50 Hz Hukot elektrického prúdu. Treba počuť
    60 Hz Počuteľné (ako všetko do 100 Hz, skôr hmatateľné odrazom od zvukovodu) aj cez tie najlacnejšie slúchadlá a reproduktory
    100 Hz Koniec basov. Začiatok rozsahu priameho počutia
    200 Hz Stredné frekvencie
    500 Hz
    1 kHz
    2 kHz
    5 kHz Začiatok vysokofrekvenčného rozsahu
    10 kHz Ak túto frekvenciu nepočujete, sú pravdepodobné vážne problémy so sluchom. Potrebujete konzultáciu s lekárom
    12 kHz Neschopnosť počuť túto frekvenciu môže naznačovať počiatočné štádium straty sluchu.
    15 kHz Zvuk, ktorý niektorí ľudia nad 60 rokov nepočujú
    16 kHz Na rozdiel od predchádzajúceho takmer všetci ľudia nad 60 rokov túto frekvenciu nepočujú.
    17 kHz Frekvencia je pre mnohých problémom už v strednom veku
    18 kHz Problémy s počuteľnosťou tejto frekvencie sú začiatkom zmien sluchu súvisiacich s vekom. Teraz ste dospelý. :)
    19 kHz Limitná frekvencia priemerného sluchu
    20 kHz Túto frekvenciu počujú iba deti. Je to pravda

    »
    Tento test na hrubý odhad stačí, ale ak nepočujete zvuky nad 15 kHz, potom by ste sa mali poradiť s lekárom.

    Upozorňujeme, že problém počutia nízkych frekvencií s najväčšou pravdepodobnosťou súvisí s.

    Najčastejšie nápis na škatuľke v štýle „Reproducible range: 1–25 000 Hz“ nie je ani marketing, ale vyslovená lož zo strany výrobcu.

    Bohužiaľ, spoločnosti nemusia certifikovať nie všetky audio systémy, takže je takmer nemožné dokázať, že ide o lož. Reproduktory alebo slúchadlá možno reprodukujú hraničné frekvencie... Otázne je ako a pri akej hlasitosti.

    Problémy so spektrom nad 15 kHz sú celkom bežným vekovým fenoménom, s ktorým sa používatelia pravdepodobne stretnú. Ale 20 kHz (práve tie, o ktoré sa audiofili toľko bijú) väčšinou počujú len deti do 8-10 rokov.

    Stačí si postupne vypočuť všetky súbory. Pre podrobnejšie štúdium si môžete prehrať ukážky, počnúc minimálnou hlasitosťou a postupne ju zvyšovať. To vám umožní získať presnejší výsledok, ak je sluch už mierne poškodený (pripomeňme, že pre vnímanie niektorých frekvencií je potrebné prekročiť určitú prahovú hodnotu, ktorá ako keby otvára a pomáha načúvaciemu prístroju počuť to).

    Počujete celý frekvenčný rozsah, ktorý je schopný?

    Strata sluchu je patologický stav charakterizovaný stratou sluchu a ťažkosťami s porozumením hovorenej reči. Vyskytuje sa pomerne často, najmä u starších ľudí. V súčasnosti však existuje trend k skoršiemu rozvoju straty sluchu, a to aj medzi mladými ľuďmi a deťmi. Podľa toho, ako je sluch oslabený, sa porucha sluchu delí na rôzne stupne.


    Čo sú decibely a hertz

    Akýkoľvek zvuk alebo hluk možno charakterizovať dvoma parametrami: výškou a intenzitou zvuku.

    Smola

    Výška zvuku je určená počtom vibrácií zvukovej vlny a vyjadruje sa v hertzoch (Hz): čím vyšší je hertz, tým vyšší je tón. Napríklad úplne prvý biely kláves vľavo na bežnom klavíri („A“ subkontroktáva) produkuje nízky zvuk pri 27 500 Hz, zatiaľ čo úplne posledný biely kláves napravo („až“ piata oktáva) produkuje 4186,0 Hz. .

    Ľudské ucho je schopné rozlíšiť zvuky v rozsahu 16–20 000 Hz. Všetko, čo je menšie ako 16 Hz, sa nazýva infrazvuk a všetko nad 20 000 sa nazýva ultrazvuk. Ultrazvuk aj infrazvuk ľudské ucho nevníma, ale môže pôsobiť na telo a psychiku.

    Podľa frekvencie možno všetky počuteľné zvuky rozdeliť na vysoké, stredné a nízke frekvencie. Nízkofrekvenčné zvuky sú do 500 Hz, stredná frekvencia - v rozmedzí 500-10 000 Hz, vysokofrekvenčné - všetky zvuky s frekvenciou vyššou ako 10 000 Hz. Ľudské ucho pri rovnakej nárazovej sile lepšie počuje zvuky strednej frekvencie, ktoré sú vnímané ako hlasnejšie. V súlade s tým sú nízkofrekvenčné a vysokofrekvenčné zvuky „počuteľné“ tichšie alebo dokonca „prestanú znieť“. Vo všeobecnosti platí, že po 40–50 rokoch sa horná hranica počuteľnosti zvukov zníži z 20 000 na 16 000 Hz.

    zvuková sila

    Ak je ucho vystavené veľmi hlasnému zvuku, môže dôjsť k prasknutiu bubienka. Na obrázku nižšie - normálna membrána, hore - membrána s defektom.

    Akýkoľvek zvuk môže ovplyvniť orgán sluchu rôznymi spôsobmi. Závisí to od jeho sily zvuku alebo hlasitosti, ktorá sa meria v decibeloch (dB).

    Normálny sluch je schopný rozlíšiť zvuky v rozsahu od 0 dB a viac. Pri vystavení hlasitému zvuku viac ako 120 dB.

    Najpohodlnejšie ľudské ucho cíti v rozsahu do 80-85 dB.

    Na porovnanie:

    • zimný les v pokojnom počasí - asi 0 dB,
    • šuchot lístia v lese, parku - 20-30 dB,
    • bežná hovorová reč, kancelárska práca - 40-60 dB,
    • hluk z motora v aute - 70-80 dB,
    • hlasné výkriky - 85-90 dB,
    • hromy - 100 dB,
    • zbíjačka vo vzdialenosti 1 meter od nej - asi 120 dB.


    Stupne straty sluchu vo vzťahu k hlasitosti

    Zvyčajne sa rozlišujú tieto stupne straty sluchu:

    • Normálny sluch – človek počuje zvuky v rozsahu od 0 do 25 dB a vyššie. Rozlišuje šuchot lístia, spev vtákov v lese, tikanie nástenných hodín atď.
    • Strata sluchu:
    1. I stupeň (mierny) - človek začína počuť zvuky od 26-40 dB.
    2. II stupeň (stredný) - prah vnímania zvukov začína od 40 do 55 dB.
    3. III stupeň (ťažký) - počuje zvuky od 56-70 dB.
    4. IV stupeň (hlboký) - od 71 do 90 dB.
    • Hluchota je stav, keď človek nepočuje zvuk hlasnejší ako 90 dB.

    Skrátená verzia stupňov straty sluchu:

    1. Svetelný stupeň - schopnosť vnímať zvuky menšie ako 50 dB. Hovorovej reči človek rozumie takmer v plnom rozsahu na vzdialenosť viac ako 1 m.
    2. Stredný stupeň - prah vnímania zvukov začína pri hlasitosti 50–70 dB. Komunikácia medzi sebou je náročná, pretože v tomto prípade človek dobre počuje reč na vzdialenosť do 1 m.
    3. Ťažký stupeň - viac ako 70 dB. Reč normálnej intenzity už nie je v blízkosti ucha počuteľná alebo nezrozumiteľná. Musíte kričať alebo použiť špeciálny načúvací prístroj.

    V každodennom praktickom živote môžu odborníci použiť inú klasifikáciu straty sluchu:

    1. Normálny sluch. Osoba počuje konverzačnú reč a šepot na vzdialenosť viac ako 6 m.
    2. Mierna strata sluchu. Človek rozumie hovorovej reči na vzdialenosť viac ako 6 m, ale šepot počuje najviac 3-6 metrov od neho. Pacient dokáže rozlíšiť reč aj s vonkajším hlukom.
    3. Stredný stupeň straty sluchu. Šepot rozlišuje vo vzdialenosti nie viac ako 1-3 m a bežná konverzačná reč - do 4-6 m. Vnímanie reči môže byť narušené vonkajším hlukom.
    4. Významný stupeň straty sluchu. Konverzačný prejav nepočuť ďalej ako na vzdialenosť 2-4 m a šepot - do 0,5-1 m. Je nečitateľné vnímanie slov, niektoré jednotlivé frázy alebo slová sa musia niekoľkokrát opakovať.
    5. Ťažký stupeň. Šepot je takmer nerozoznateľný aj pri samotnom uchu, hovorová reč, aj keď kričí, je ťažko rozlíšiteľná na vzdialenosť menšiu ako 2 m. Číta viac z pier.


    Stupne straty sluchu vo vzťahu k výške tónu

    • I skupina. Pacienti sú schopní vnímať len nízke frekvencie v rozsahu 125–150 Hz. Reagujú len na nízke a silné hlasy.
    • II skupina. V tomto prípade sa pre vnímanie sprístupnia vyššie frekvencie, ktoré sú v rozsahu od 150 do 500 Hz. Zvyčajne sa jednoduché hovorové samohlásky "o", "y" stanú rozlíšiteľnými pre vnímanie.
    • III skupina. Dobré vnímanie nízkych a stredných frekvencií (do 1000 Hz). Takíto pacienti už počúvajú hudbu, rozlišujú zvonček, počujú takmer všetky samohlásky a zachytávajú význam jednoduchých fráz a jednotlivých slov.
    • IV skupina. Staňte sa prístupným vnímaniu frekvencií až do 2000 Hz. Pacienti rozlišujú takmer všetky zvuky, ako aj jednotlivé frázy a slová. Rozumejú reči.

    Táto klasifikácia straty sluchu je dôležitá nielen pre správny výber načúvacieho prístroja, ale aj pre určenie detí v bežnej alebo špecializovanej škole pre.

    Diagnóza straty sluchu


    Audiometria môže pomôcť určiť stupeň straty sluchu u pacienta.

    Najpresnejším spoľahlivým spôsobom na identifikáciu a určenie stupňa straty sluchu je audiometria. Za týmto účelom sa pacientovi nasadia špeciálne slúchadlá, do ktorých sa aplikuje signál príslušných frekvencií a sily. Ak subjekt počuje signál, dá o tom vedieť stlačením tlačidla na zariadení alebo kývnutím hlavy. Na základe výsledkov audiometrie sa zostaví primeraná krivka sluchového vnímania (audiogram), ktorej analýza umožňuje nielen identifikovať stupeň straty sluchu, ale v niektorých situáciách aj hlbšie pochopiť podstatu poruchy sluchu. strata sluchu.
    Niekedy pri vykonávaní audiometrie nenosia slúchadlá, ale používajú ladičku alebo jednoducho vyslovujú určité slová v určitej vzdialenosti od pacienta.

    Kedy navštíviť lekára

    Je potrebné kontaktovať lekára ORL, ak:

    1. Začali ste otáčať hlavu smerom k tomu, kto hovorí, a zároveň ste sa napínali, aby ste ho počuli.
    2. Príbuzní žijúci s vami alebo priatelia, ktorí prišli na návštevu, poznamenali, že ste zapli televízor, rádio, prehrávač príliš nahlas.
    3. Zvonček teraz nie je taký zreteľný ako predtým alebo ste ho úplne prestali počuť.
    4. Pri telefonovaní požiadate druhú osobu, aby hovorila hlasnejšie a jasnejšie.
    5. Začali ťa žiadať, aby si zopakoval, čo ti bolo povedané.
    6. Ak je okolo hluk, potom je oveľa ťažšie počuť partnera a pochopiť, o čom hovorí.

    Napriek tomu, že vo všeobecnosti platí, že čím skôr sa stanoví správna diagnóza a začne sa liečba, tým lepšie sú výsledky a je pravdepodobnejšie, že sluch bude pretrvávať ešte dlhé roky.

    KATEGÓRIE

    POPULÁRNE ČLÁNKY

    2023 "kingad.ru" - ultrazvukové vyšetrenie ľudských orgánov