W denumire fizică. Programa școlară: ce este n în fizică? Fizica și mărimile fizice de bază

    Simbolurile sunt utilizate în mod obișnuit în matematică pentru a simplifica și scurta textul. Mai jos este o listă cu cele mai comune notații matematice, comenzile corespunzătoare în TeX, explicații și exemple de utilizare. Pe lângă cele indicate ... ... Wikipedia

    O listă de simboluri specifice utilizate în matematică poate fi văzută în articolul Tabelul simbolurilor matematice Notația matematică („limbajul matematicii”) este o notație grafică complexă folosită pentru a prezenta abstractul ... ... Wikipedia

    O listă de sisteme de semne (sisteme de notație etc.) utilizate de civilizația umană, cu excepția scripturilor, pentru care există o listă separată. Cuprins 1 Criterii de includere în listă 2 Matematică ... Wikipedia

    Paul Adrien Maurice Dirac Paul Adrien Maurice Dirac Data nașterii: 8& ... Wikipedia

    Dirac, Paul Adrien Maurice Paul Adrien Maurice Dirac Paul Adrien Maurice Dirac Data nașterii: 8 august 1902 (... Wikipedia

    Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz ... Wikipedia

    Acest termen are alte semnificații, vezi Meson (sensuri). Meson (din altă greacă. μέσος medie) boson al interacțiunii puternice. În modelul standard, mezonii sunt particule compozite (nu elementare) constând dintr-o Wikipedia pară

    Fizică nucleară... Wikipedia

    Se obișnuiește să se numească teorii alternative ale gravitației teorii ale gravitației care există ca alternative la teoria generală a relativității (GR) sau care o modifică substanțial (cantitativ sau fundamental). La teorii alternative ale gravitației ... ... Wikipedia

    Teoriile alternative ale gravitației sunt de obicei numite teorii ale gravitației care există ca alternative la teoria generală a relativității sau care o modifică substanțial (cantitativ sau fundamental). La teoriile alternative ale gravitației adesea ...... Wikipedia

Cheat sheet cu formule de fizică pentru examen

și nu numai (poate avea nevoie de 7, 8, 9, 10 și 11 clase).

Pentru început, o poză care poate fi tipărită într-o formă compactă.

Mecanica

  1. Presiune P=F/S
  2. Densitatea ρ=m/V
  3. Presiunea la adâncimea lichidului P=ρ∙g∙h
  4. Gravitate Ft=mg
  5. 5. Forța arhimediană Fa=ρ w ∙g∙Vt
  6. Ecuația mișcării pentru mișcarea uniform accelerată

X=X0 + υ 0∙t+(a∙t 2)/2 S=( υ 2 -υ 0 2) /2а S=( υ +υ 0) ∙t /2

  1. Ecuația vitezei pentru mișcarea uniform accelerată υ =υ 0 +a∙t
  2. Accelerația a=( υ -υ 0)/t
  3. Viteza circulară υ =2πR/T
  4. Accelerația centripetă a= υ 2/R
  5. Relația dintre perioadă și frecvență ν=1/T=ω/2π
  6. Legea a II-a a lui Newton F=ma
  7. Legea lui Hooke Fy=-kx
  8. Legea gravitației universale F=G∙M∙m/R 2
  9. Greutatea unui corp care se mișcă cu accelerație a P \u003d m (g + a)
  10. Greutatea unui corp care se mișcă cu accelerație a ↓ P \u003d m (g-a)
  11. Forța de frecare Ffr=µN
  12. Momentul corpului p=m υ
  13. Impulsul de forță Ft=∆p
  14. Momentul M=F∙ℓ
  15. Energia potențială a unui corp ridicat deasupra solului Ep=mgh
  16. Energia potențială a corpului deformat elastic Ep=kx 2 /2
  17. Energia cinetică a corpului Ek=m υ 2 /2
  18. Lucrul A=F∙S∙cosα
  19. Puterea N=A/t=F∙ υ
  20. Eficiență η=Ap/Az
  21. Perioada de oscilație a pendulului matematic T=2π√ℓ/g
  22. Perioada de oscilație a unui pendul elastic T=2 π √m/k
  23. Ecuația oscilațiilor armonice Х=Хmax∙cos ωt
  24. Relația dintre lungimea de undă, viteza acesteia și perioada λ= υ T

Fizică moleculară și termodinamică

  1. Cantitatea de substanță ν=N/ Na
  2. Masa molară M=m/ν
  3. mier. rude. energia moleculelor de gaz monoatomic Ek=3/2∙kT
  4. Ecuația de bază a MKT P=nkT=1/3nm 0 υ 2
  5. Legea Gay-Lussac (proces izobar) V/T =const
  6. Legea lui Charles (procesul izocor) P/T =const
  7. Umiditate relativă φ=P/P 0 ∙100%
  8. Int. energie ideală. gaz monoatomic U=3/2∙M/µ∙RT
  9. Lucrări cu gaz A=P∙ΔV
  10. Legea lui Boyle - Mariotte (proces izoterm) PV=const
  11. Cantitatea de căldură în timpul încălzirii Q \u003d Cm (T 2 -T 1)
  12. Cantitatea de căldură în timpul topirii Q=λm
  13. Cantitatea de căldură în timpul vaporizării Q=Lm
  14. Cantitatea de căldură în timpul arderii combustibilului Q=qm
  15. Ecuația de stare pentru un gaz ideal este PV=m/M∙RT
  16. Prima lege a termodinamicii ΔU=A+Q
  17. Eficiența motoarelor termice η= (Q 1 - Q 2) / Q 1
  18. Eficienta ideala. motoare (ciclul Carnot) η \u003d (T 1 - T 2) / T 1

Electrostatică și electrodinamică - formule în fizică

  1. Legea lui Coulomb F=k∙q 1 ∙q 2 /R 2
  2. Intensitatea câmpului electric E=F/q
  3. Tensiunea e-mailului. câmp al unei sarcini punctiforme E=k∙q/R 2
  4. Densitatea de sarcină la suprafață σ = q/S
  5. Tensiunea e-mailului. câmpuri ale planului infinit E=2πkσ
  6. Constanta dielectrica ε=E 0 /E
  7. Energia potențială de interacțiune. sarcinile W= k∙q 1 q 2 /R
  8. Potenţialul φ=W/q
  9. Potențial de sarcină punctiformă φ=k∙q/R
  10. Tensiune U=A/q
  11. Pentru un câmp electric uniform U=E∙d
  12. Capacitate electrică C=q/U
  13. Capacitatea unui condensator plat C=S∙ ε ε 0/zi
  14. Energia unui condensator încărcat W=qU/2=q²/2С=CU²/2
  15. Curent I=q/t
  16. Rezistența conductorului R=ρ∙ℓ/S
  17. Legea lui Ohm pentru secțiunea circuitului I=U/R
  18. Legile ultimului compuși I 1 \u003d I 2 \u003d I, U 1 + U 2 \u003d U, R 1 + R 2 \u003d R
  19. Legi paralele. conn. U 1 \u003d U 2 \u003d U, I 1 + I 2 \u003d I, 1 / R 1 + 1 / R 2 \u003d 1 / R
  20. Puterea curentului electric P=I∙U
  21. Legea Joule-Lenz Q=I 2 Rt
  22. Legea lui Ohm pentru un lanț complet I=ε/(R+r)
  23. Curent de scurtcircuit (R=0) I=ε/r
  24. Vector de inducție magnetică B=Fmax/ℓ∙I
  25. Forța amperului Fa=IBℓsin α
  26. Forța Lorentz Fl=Bqυsin α
  27. Flux magnetic Ф=BSсos α Ф=LI
  28. Legea inducției electromagnetice Ei=ΔФ/Δt
  29. EMF de inducție în conductorul în mișcare Ei=Вℓ υ sinα
  30. EMF de autoinducție Esi=-L∙ΔI/Δt
  31. Energia câmpului magnetic al bobinei Wm \u003d LI 2 / 2
  32. Numărul perioadei de oscilație. contur T=2π ∙√LC
  33. Reactanța inductivă X L =ωL=2πLν
  34. Capacitatea Xc=1/ωC
  35. Valoarea curentă a curentului Id \u003d Imax / √2,
  36. Tensiune RMS Ud=Umax/√2
  37. Impedanta Z=√(Xc-X L) 2 +R 2

Optica

  1. Legea refracției luminii n 21 \u003d n 2 / n 1 \u003d υ 1 / υ 2
  2. Indicele de refracție n 21 =sin α/sin γ
  3. Formula de lentilă subțire 1/F=1/d + 1/f
  4. Puterea optică a lentilei D=1/F
  5. interferență maximă: Δd=kλ,
  6. interferență minimă: Δd=(2k+1)λ/2
  7. Rețeaua diferențială d∙sin φ=k λ

Fizica cuantică

  1. Formula lui Einstein pentru efectul fotoelectric hν=Aout+Ek, Ek=U ze
  2. Marginea roșie a efectului fotoelectric ν to = Aout/h
  3. Momentul fotonului P=mc=h/ λ=E/s

Fizica nucleului atomic

  1. Legea dezintegrarii radioactive N=N 0 ∙2 - t / T
  2. Energia de legare a nucleelor ​​atomice

Studiul fizicii la școală durează câțiva ani. În același timp, elevii se confruntă cu problema că aceleași litere indică cantități complet diferite. Cel mai adesea acest fapt se referă la literele latine. Atunci cum să rezolvi problemele?

Nu trebuie să vă fie frică de o astfel de repetare. Oamenii de știință au încercat să le introducă în denumire, astfel încât aceleași litere să nu se întâlnească într-o singură formulă. Cel mai adesea, studenții dau peste latinul n. Poate fi litere mici sau mari. Prin urmare, se pune logic întrebarea ce este n în fizică, adică într-o anumită formulă pe care studentul a întâlnit-o.

Ce înseamnă litera majusculă N în fizică?

Cel mai adesea în cursul școlar, apare în studiul mecanicii. La urma urmei, acolo poate fi imediat în valorile spirituale - puterea și puterea reacției normale a suportului. Desigur, aceste concepte nu se intersectează, deoarece sunt folosite în diferite secțiuni ale mecanicii și sunt măsurate în unități diferite. Prin urmare, este întotdeauna necesar să se definească exact ce este n în fizică.

Puterea este rata de schimbare a energiei unui sistem. Este o valoare scalară, adică doar un număr. Unitatea sa de măsură este watul (W).

Forța de reacție normală a suportului este forța care acționează asupra corpului din lateralul suportului sau suspensiei. Pe lângă o valoare numerică, are o direcție, adică este o mărime vectorială. Mai mult, este întotdeauna perpendicular pe suprafața pe care se realizează acțiunea externă. Unitatea acestui N este newtonul (N).

Ce este N în fizică, în plus față de cantitățile deja indicate? Ar putea fi:

    constanta Avogadro;

    mărirea dispozitivului optic;

    concentrația substanței;

    numărul Debye;

    puterea totală de radiație.

Ce poate reprezenta un n minuscul în fizică?

Lista de nume care pot fi ascunse în spatele ei este destul de extinsă. Denumirea n în fizică este folosită pentru astfel de concepte:

    indicele de refracție și poate fi absolut sau relativ;

    neutron - o particulă elementară neutră cu o masă puțin mai mare decât cea a unui proton;

    frecvența de rotație (folosită pentru a înlocui litera greacă „nu”, deoarece este foarte asemănătoare cu latinescul „ve”) - numărul de repetări de rotații pe unitatea de timp, măsurat în herți (Hz).

Ce înseamnă n în fizică, în afară de valorile deja indicate? Se dovedește că ascunde numărul cuantic de bază (fizica cuantică), concentrația și constanta Loschmidt (fizica moleculară). Apropo, atunci când calculați concentrația unei substanțe, trebuie să cunoașteți valoarea, care este scrisă și în latinescul „en”. Acesta va fi discutat mai jos.

Ce mărime fizică poate fi notă cu n și N?

Numele său provine din cuvântul latin numerus, în traducere sună ca „număr”, „cantitate”. Prin urmare, răspunsul la întrebarea ce înseamnă n în fizică este destul de simplu. Acesta este numărul oricăror obiecte, corpuri, particule - tot ceea ce este discutat într-o anumită sarcină.

Mai mult, „cantitatea” este una dintre puținele mărimi fizice care nu au o unitate de măsură. Este doar un număr, fără nume. De exemplu, dacă problema este de aproximativ 10 particule, atunci n va fi egal cu doar 10. Dar dacă se dovedește că „en” minuscul este deja luat, atunci trebuie să utilizați o literă mare.

Formule care folosesc un N majuscul

Prima dintre ele definește puterea, care este egală cu raportul dintre muncă și timp:

În fizica moleculară, există cantitatea chimică a unei substanțe. Notat cu litera greacă „nu”. Pentru a-l calcula, ar trebui să împărțiți numărul de particule la numărul Avogadro:

Apropo, ultima valoare este notată și de litera atât de populară N. Numai că are întotdeauna un indice - A.

Pentru a determina sarcina electrică, aveți nevoie de formula:

O altă formulă cu N în fizică - frecvența de oscilație. Pentru a-l calcula, trebuie să împărțiți numărul lor la timp:

Litera „en” apare în formula pentru perioada de circulație:

Formule care folosesc un n minuscul

Într-un curs de fizică școlar, această scrisoare este cel mai adesea asociată cu indicele de refracție al materiei. Prin urmare, este important să cunoașteți formulele cu aplicarea acesteia.

Deci, pentru indicele de refracție absolut, formula se scrie după cum urmează:

Aici c este viteza luminii în vid, v este viteza acesteia într-un mediu refractor.

Formula pentru indicele de refracție relativ este ceva mai complicată:

n 21 \u003d v 1: v 2 \u003d n 2: n 1,

unde n 1 și n 2 sunt indicii de refracție absoluti ai primului și celui de-al doilea mediu, v 1 și v 2 sunt vitezele undei luminoase în aceste substanțe.

Cum să găsesc n în fizică? O formulă ne va ajuta în acest sens, în care trebuie să cunoaștem unghiurile de incidență și de refracție ale fasciculului, adică n 21 \u003d sin α: sin γ.

Cu ce ​​este n egal în fizică dacă este indicele de refracție?

De obicei, tabelele oferă valori pentru indici absoluti de refracție a diferitelor substanțe. Nu uitați că această valoare depinde nu numai de proprietățile mediului, ci și de lungimea de undă. Valorile tabelare ale indicelui de refracție sunt date pentru domeniul optic.

Deci, a devenit clar ce este n în fizică. Pentru a evita orice întrebări, merită să luați în considerare câteva exemple.

Provocarea puterii

№1. În timpul aratului, tractorul trage plugul în mod uniform. În acest sens, aplică o forță de 10 kN. Cu această mișcare timp de 10 minute, depășește 1,2 km. Este necesar să se determine puterea dezvoltată de acesta.

Convertiți unitățile în SI. Puteți începe cu forță, 10 N este egal cu 10.000 N. Apoi distanța: 1,2 × 1000 = 1200 m. Timpul rămas este 10 × 60 = 600 s.

Alegerea formulelor. După cum sa menționat mai sus, N = A: t. Dar în sarcină nu există valoare pentru muncă. Pentru a o calcula, este utilă o altă formulă: A \u003d F × S. Forma finală a formulei pentru putere arată astfel: N \u003d (F × S): t.

Soluţie. Calculăm mai întâi munca, apoi puterea. Apoi, în prima acțiune obțineți 10.000 × 1.200 = 12.000.000 J. A doua acțiune dă 12.000.000: 600 = 20.000 W.

Răspuns. Puterea tractorului este de 20.000 de wați.

Sarcini pentru indicele de refracție

№2. Indicele de refracție absolut al sticlei este de 1,5. Viteza de propagare a luminii în sticlă este mai mică decât în ​​vid. Este necesar să se determine de câte ori.

Nu este nevoie să convertiți datele în SI.

Când alegeți formule, trebuie să vă opriți la aceasta: n \u003d c: v.

Soluţie. Din această formulă se poate observa că v = c: n. Aceasta înseamnă că viteza luminii în sticlă este egală cu viteza luminii în vid împărțită la indicele de refracție. Adică se reduce la jumătate.

Răspuns. Viteza de propagare a luminii în sticlă este de 1,5 ori mai mică decât în ​​vid.

№3. Există două medii transparente. Viteza luminii în primul dintre ele este de 225.000 km/s, în al doilea - 25.000 km/s mai puțin. O rază de lumină trece de la primul mediu la al doilea. Unghiul de incidență α este de 30º. Calculați valoarea unghiului de refracție.

Trebuie să mă convertesc în SI? Vitezele sunt date în unități în afara sistemului. Cu toate acestea, atunci când se înlocuiesc în formule, acestea vor fi reduse. Prin urmare, nu este necesar să convertiți vitezele în m/s.

Alegerea formulelor necesare pentru rezolvarea problemei. Va trebui să utilizați legea refracției luminii: n 21 \u003d sin α: sin γ. Și de asemenea: n = c: v.

Soluţie.În prima formulă, n 21 este raportul dintre cei doi indici de refracție ai substanțelor luate în considerare, adică n 2 și n 1. Dacă notăm a doua formulă indicată pentru mediile propuse, atunci obținem următoarele: n 1 = c: v 1 și n 2 = c: v 2. Dacă faceți raportul ultimelor două expresii, se dovedește că n 21 \u003d v 1: v 2. Înlocuind-o în formula pentru legea refracției, putem obține următoarea expresie pentru sinusul unghiului de refracție: sin γ \u003d sin α × (v 2: v 1).

Înlocuim valorile vitezelor indicate și sinusul de 30º (egal cu 0,5) în formulă, rezultă că sinusul unghiului de refracție este 0,44. Conform tabelului Bradis, rezultă că unghiul γ este de 26º.

Răspuns. Valoarea unghiului de refracție este de 26º.

Sarcini pentru perioada de circulație

№4. Lamele unei mori de vânt se rotesc cu o perioadă de 5 secunde. Calculați numărul de rotații ale acestor lame într-o oră.

Pentru a converti în unități SI, doar timpul este de 1 oră. Va fi egal cu 3600 de secunde.

Selectarea formulelor. Perioada de rotație și numărul de rotații sunt legate de formula T \u003d t: N.

Soluţie. Din această formulă, numărul de rotații este determinat de raportul dintre timp și perioadă. Astfel, N = 3600: 5 = 720.

Răspuns. Numărul de rotații ale paletelor morii este de 720.

№5. Elicea aeronavei se rotește la o frecvență de 25 Hz. Cât timp durează șurubul pentru a efectua 3.000 de rotații?

Toate datele sunt date cu SI, deci nu trebuie tradus nimic.

Formula necesară: frecvenţa ν = N: t. Din aceasta este necesar doar să se derivă o formulă pentru timpul necunoscut. Este un divizor, deci se presupune că se găsește împărțind N la ν.

Soluţie.Împărțirea a 3.000 la 25 rezultă în numărul 120. Acesta va fi măsurat în secunde.

Răspuns. Elicea unui avion face 3000 de rotații în 120 de secunde.

Rezumând

Când un elev întâlnește o formulă care conține n sau N într-o problemă de fizică, trebuie să o facă se ocupă de două lucruri. Primul este din ce secțiune a fizicii este dată egalitatea. Acest lucru poate fi clar din titlul dintr-un manual, din carte de referință sau din cuvintele profesorului. Atunci ar trebui să decideți ce se ascunde în spatele „en” cu mai multe fețe. Mai mult decât atât, numele unităților de măsură ajută în acest sens, dacă, desigur, este dată valoarea acesteia. Este permisă și o altă opțiune: priviți cu atenție restul literelor din formulă. Poate că vor fi familiari și vor da un indiciu în problema rezolvată.

Nu este un secret pentru nimeni că există denumiri speciale pentru cantități în orice știință. Denumirile de litere în fizică dovedesc că această știință nu face excepție în ceea ce privește identificarea cantităților folosind simboluri speciale. Există o mulțime de cantități de bază, precum și derivatele lor, fiecare având propriul său simbol. Deci, desemnările literelor în fizică sunt discutate în detaliu în acest articol.

Fizica și mărimile fizice de bază

Datorită lui Aristotel, cuvântul fizică a început să fie folosit, deoarece el a fost primul care a folosit acest termen, care la acea vreme era considerat sinonim cu termenul de filozofie. Acest lucru se datorează generalității obiectului de studiu - legile Universului, mai precis, modul în care funcționează. După cum știți, în secolele XVI-XVII a avut loc prima revoluție științifică, datorită ei, fizica a fost evidențiată ca știință independentă.

Mihail Vasilevici Lomonosov a introdus cuvântul fizică în limba rusă prin publicarea unui manual tradus din germană - primul manual de fizică din Rusia.

Deci, fizica este o ramură a științei naturii dedicată studiului legilor generale ale naturii, precum și materiei, mișcării și structurii sale. Nu există atât de multe cantități fizice de bază pe cât ar putea părea la prima vedere - sunt doar 7 dintre ele:

  • lungime,
  • greutate,
  • timp,
  • actual,
  • temperatura,
  • cantitate de substanță
  • puterea luminii.

Desigur, au propriile lor denumiri de litere în fizică. De exemplu, simbolul m este ales pentru masă, iar pentru temperatură - T. De asemenea, toate mărimile au propria unitate de măsură: intensitatea luminii este candela (cd), iar unitatea de măsură pentru cantitatea de substanță este cârtiță.

Mărimi fizice derivate

Există mult mai multe mărimi fizice derivate decât cele principale. Sunt 26 dintre ele și adesea unele dintre ele sunt atribuite celor principale.

Deci, aria este o derivată a lungimii, volumul este și o derivată a lungimii, viteza este o derivată a timpului, lungimea, iar accelerația, la rândul său, caracterizează rata de schimbare a vitezei. Impulsul este exprimat în termeni de masă și viteză, forța este produsul dintre masă și accelerație, lucrul mecanic depinde de forță și lungime, iar energia este proporțională cu masa. Putere, presiune, densitate, densitate de suprafață, densitate liniară, cantitate de căldură, tensiune, rezistență electrică, flux magnetic, moment de inerție, moment de impuls, moment de forță - toate depind de masă. Frecvența, viteza unghiulară, accelerația unghiulară sunt invers proporționale cu timpul, iar sarcina electrică este direct dependentă de timp. Unghiul și unghiul solid sunt mărimi derivate din lungime.

Care este simbolul stresului în fizică? Tensiunea, care este o mărime scalară, este notată cu litera U. Pentru viteză, desemnarea este sub forma literei v, pentru lucru mecanic - A și pentru energie - E. Sarcina electrică este de obicei notă cu litera q , și flux magnetic - F.

SI: informatii generale

Sistemul internațional de unități (SI) este un sistem de unități fizice bazat pe Sistemul internațional de unități, inclusiv denumirile și denumirile unităților fizice. A fost adoptat de Conferința Generală pentru Greutăți și Măsuri. Acest sistem este cel care reglementează denumirea literelor în fizică, precum și dimensiunea și unitățile de măsură ale acestora. Pentru desemnare, sunt folosite litere ale alfabetului latin, în unele cazuri - greacă. De asemenea, este posibil să utilizați caractere speciale ca desemnare.

Concluzie

Deci, în orice disciplină științifică există denumiri speciale pentru diferite tipuri de cantități. Desigur, fizica nu face excepție. Există o mulțime de denumiri de litere: forță, suprafață, masă, accelerație, tensiune etc. Au propriile lor denumiri. Există un sistem special numit Sistemul Internațional de Unități. Se crede că unitățile de bază nu pot fi derivate matematic din altele. Mărimile derivate se obțin prin înmulțirea și împărțirea de la cele de bază.

CATEGORII

ARTICOLE POPULARE

2022 "kingad.ru" - examinarea cu ultrasunete a organelor umane