Какая точка называется фокусом. Линзы: виды линз (физика)

1. Прозрачное тело с двумя сферическими поверхностями.

2. Чем отличаются выпуклые линзы от вогнутых?

2. 1) Середина толще, чем края.

2) Середина тоньше, чем края.

3. Какие линзы являются собирающими, какие рассеивающими?

3. 1) Преобразующие параллельный пучок лучей в сходящийся;

2) в расходящийся.

4. Что называют главной оптической осью линзы?

5. Какую точку называют главным фокусом линзы?

5. Точка, в которой лучи или их продолжения пересекаются после преломления.

6. Что такое фокусное расстояние линзы?

6. Расстояние от оптического центра до главного фокуса.

7. Что называют оптической силой линзы?

7. Физическая величина, обратная фокусному расстоянию.

8. Как называется единица оптической силы линзы?

8. Диоптрия.

9. Каким образом можно измерить фокусное расстояние собирающей линзы?

9. Направив на линзу солнечные лучи, измерить расстояние от нее до изображения Солнца, где оно будет четким.

10. У каких линз оптическая сила положительная, у каких отрицательная?

10. У собирающих - положительное, у рассеивающих - отрицательное.

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих - мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф , то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначается той же буквой F .

Основное свойство линз - способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , у величенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы. Единицой измерения оптической силы является диоптрия (дптр). Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м -1 .

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

d > 0 и f > 0 - для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;

d < 0 и f < 0 - для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: , следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), , то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутых Γ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, , следовательно, - изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, - изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой - отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l - f 1 , где l - расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 - действительное изображение, f 2 < 0 - мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл, изменяются только угловые расстояния.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах - астрономической трубе Кеплера и земной трубе Галилея .

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них - сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5.

Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .

Физика или химия Жанр драма,комедия В главных ролях Виктория Полторак Мария Викторова Александр Лучинин Сергей Годин Анна Невская Любовь Германова Александр Смирнов Композитор Алексей Хитман, Маина Неретина … Википедия

Нестационарный сгусток плотной, высокотемпературной дейтериевой плазмы, служащий локализованным источником нейтронов и жёстких излучений. П. ф. образуется в области кумуляции токовой оболочки на оси газоразрядной камеры в случае т. н. нецилиндрич … Физическая энциклопедия

Левитация в физике это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле являются: (1) наличие силы, компенсирующей силу тяжести, и (2)… … Википедия

У этого термина существуют и другие значения, см. Линза (значения). Двояковыпуклая линза Линза (нем. Linse, от лат. … Википедия

Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад.… … Энциклопедия Кольера

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/19 августа 2012. Пока процесс обсужден … Википедия

Анри Пуанкаре Henri Poincaré Дата рождения: 29 апреля 1854(1854 04 29) Место рождения: Нанси … Википедия

Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия

Обсерватория Пик Терскол … Википедия

ГЛАЗ - ГЛАЗ, самый важный из органов чувств, основной функцией которого является восприятие световых лучей и оценка их по количеству и качеству (через его посредство поступает около 80% всех ощущений внешнего мира). Эта способность принадлежит сетчатой… … Большая медицинская энциклопедия

Книги

  • Физика в играх , Донат Б.. В основе техники лежат явления физики. Физика представляет обширнейшее поле и для детской самодеятельности. Но как раз в этой области до сих пор наблюдался зияющийпробел: не было ни одной…

(вогнутые или рассеивающие). Ход лучей в этих видах линз различен, но свет всегда преломляется , однако, чтобы рассмотреть их устройство и принцип действия, надо ознакомиться с одинаковыми для обоих видов понятиями.

Если дорисовать сферические поверхности двух сторон линзы до полных сфер, то прямая, проходящая сквозь центры этих сфер, будет являться оптической осью линзы. Фактически, оптическая ось проходит сквозь самое широкое место выпуклой линзы и самое узкое у вогнутой.

Оптическая ось, фокус линзы, фокусное расстояние

На этой оси находится точка, где собираются все лучи, прошедшие через собирающую линзу. В случае же рассеивающей линзы можно провести продолжения расходящихся лучей, и тогда мы получим точку, также расположенную на оптической оси, где сходятся все эти продолжения. Эта точка называется фокусом линзы.

У собирающей линзы фокус действительный, и расположен он с обратной стороны от падающих лучей, у рассеивающей фокус мнимый, и располагается он с той же стороны, с которой свет падает на линзу.

Точка на оптической оси ровно посередине линзы называется ее оптическим центром. А расстояние от оптического центра до фокуса линзы – это фокусное расстояние линзы.

Фокусное расстояние зависит от степени кривизны сферических поверхностей линзы. Более выпуклые поверхности будут сильнее преломлять лучи и, соответственно, уменьшать фокусное расстояние. Если фокусное расстояние короче, то данная линза будет давать большее увеличение изображения.

Оптическая сила линзы: формула, единица измерения

Для характеристики увеличивающей способности линзы ввели понятие «оптическая сила». Оптическая силы линзы – это величина, обратная ее фокусному расстоянию. Оптическая сила линзы выражается формулой:

где D – оптическая сила, F – фокусное расстояние линзы.

Единицей измерения оптической силы линзы является диоптрия (1 дптр). 1 диоптрия – это оптическая сила такой линзы, фокусное расстояние которой равно 1 метру. Чем меньше фокусное расстояние, тем большей будет оптическая сила, то есть тем сильнее данная линза увеличивает изображение.

Так как фокус у рассеивающей линзы мнимый, то условились считать ее фокусное расстояние величиной отрицательной. Соответственно, и ее оптическая сила - тоже отрицательная величина. Что касается собирающей линзы, то ее фокус действительный, поэтому и фокусное расстояние и оптическая сила у собирающей линзы – величины положительные.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека