Активация теломеразы – самый перспективный подход к продлению молодости. Теломеры и онкология

Нашла самое главное, что я искала в тему теломер.
Напомним, что есть теломеры.

В результате исследований удалось доказать благотворное влияние на длину теломер следующих питательных веществ:

Витамин B12 Цинк Витамин D

Oмега-3 Витамин К Витамина E

Ниже будет представлен их анализ, а также даны несколько добавочных рекомендаций, относящихся к потреблению продуктов с высоким содержанием указанных веществ, способствующих удлинению теломер.
Естественно, что эффект от употребления представленных ниже продуктов, в силу особенностей каждого отдельно взятого человеческого организма, не может быть абсолютным для 100% населения. Однако в изложенном перечне представлены продукты, благотворный эффект которых на человеческий организм достаточно изучен и научно доказан.
В презентуемом ниже списке собраны 12 лучших питательных веществ, замедляющих процесс старения, в дополнение к которым приведены 2 основные стратегии, не предполагающие дополнительного потребления биодобавок и мультивитаминных комплексов. Все они способны радикально повлиять на жизнь каждого человека и защитить теломеры.

Перечень 12-ти питательных веществ изложен в порядке уменьшения важности оных.

Лично я ежедневно потребляю продукты из первых 6 пунктов плюс дополнительно повышаю содержание витамина D посредством принятия солнечных ванн.

Витамин D
В исследовании с участием более чем 2,000 представительниц слабого пола было установлено следующее: ДНК женщин с большим уровнем витамина D оказались менее подвержены старению. Также была доказана прямая зависимость длины теломер от концентрации в организме витамина D. Кроме того, исследователи не преминули отметить то обстоятельство, что женщины с большей концентрацией витамина D оказались более уравновешенными и менее раздражительными. Всё это, по мнению учёных, указывает на то, что люди с большим уровнем витамина D стареют медленнее по сравнению с людьми, «обделёнными» данным элементом.Длина теломер лейкоцитов (англ. LTL) - это лучший предсказатель болезней, ускоряющих наступление старости. Дело в том, что по мере старения организма LTL становится всё более короткой, а при хронических воспалениях уменьшение длины теломер происходит ещё быстрее. Причина этого кроется в ответе организма на воспалительные процессы путём увеличения объёма лейкоцитов. Уровень витамина D с возрастом также уменьшается, в то время как концентрация C-реактивного белка (C-reactive protein, сокр. CRP) при воспалении возрастает. Этот «двойной удар» увеличивает общий риск развития таких аутоиммунных заболеваний как рассеянный склероз, ревматоидный артрит и др.Витамин D, со своей стороны, является мощным ингибитором, замедляющим воспалительные процессы. Результатом этого является уменьшение объёма лейкоцитов и формирование положительной реакции в цепи, защищающей организм от множества болезней, и, как следствие, - от преждевременного старения.Учёные установили, что субпопуляции лейкоцитов (англ. lymphocyte subsets) располагают рецепторами для активной формы витамина D (D3), позволяющими витамину напрямую воздействовать на эти клетки. В частности, дефекты рецепторов витамина D способствуют развитию рахита и других аутоимунных болезней, тогда как физиологическая обеспеченность организма витамином D увеличивает противораковый иммунитет (посредством уменьшения выживаемости раковых клеток). Данный эффект «привязан» к иммуномодулирующей активности рецептора витамина D и его производных (агонистов). Эти данные фундаментальных исследований в области клеточной биологии подтверждены доказательной медициной.
Солнечные ванны являются самым благоприятным способом оптимизации уровня витамина D в организме. Я в полной мере осознаю, что у многих современных людей отсутствует возможность регулярно загорать, но с моей стороны было бы непростительной небрежностью не акцентировать внимание на том, что получение витамина D от солнца в разы предпочтительнее насыщения организма витамином D путём приёма различных пищевых добавок.
Астаксантин (производная микроводорослей Pluvialis Haematoccous)
В исследовании об использовании мультивитаминов, проведённом в 2009 году, была выявлена взаимосвязь между длиной теломер и использованием антиоксидантных формул. Согласно авторам, теломеры особенно уязвимы перед окислительным (оксидативным) стрессом (англ. oxidative stress). Кроме того, наличие в организме воспалительных процессов существенно увеличивает степень повреждения клеток под воздействием оксидативного стресса и приводит к уменьшению активности теломеразы - фермента, ответственного за поддержание длины теломер.Астаксантин - один из самых мощных антиоксидантов с сильными противовоспалительными свойствами и способностями к защите ДНК. Исследование доказало, что это вещество обеспечивает надёжную защиту ДНК даже от радиации, вызываемой смертоносным гамма-излучением. Антаксантин обладает рядом уникальных характеристик, отсутствующих у прочих антиоксидантов.В частности, астаксантин мощнее всех известных антиоксидантов-каротиноидов по части уничтожения свободных радикалов: он в 65 раз мощнее витамина C, в 54 раза эффективнее бета-каротина и в 14 раз сильнее витамина E VI. Кроме того, эффективность астаксантина в «тушении» синглетного кислорода (англ. singlet oxygen) в 550 раз превышает возможности витамина Е и в 11 раз - эффективность бета-каротина в нейтрализации данной разновидности окисления.Астаксантин способен преодолевать гемато-энцефалический (между кровеносной и центральной нервной системами) и гемато-ретинальный (сетчатки) барьеры, благодаря чему обеспечивается противовоспалительная и антиоксидантная защита глаз, мозга и центральной нервной системы.
Еще одной особенностью, отличающей астаксантин от других каротиноидов, является его неспособность функционировать в качестве про-окислителя (рro-oxidant). Другие антиоксиданты в случае повышенной концентрации в тканях могут выступать в качестве про-окислителей (т.е вызывать ещё большее окисление). Именно по этой причине не рекомендуется употреблять слишком много антиоксидантов (вроде бета-каротина). Астаксантин, со своей стороны, даже при значительной концентрации в организме, не способен выступать в качестве про-оксиданта, что делает его чрезвычайно полезным.
И, наконец, едва ли не главным его свойством является уникальная способность защищать клетку целиком (в отличие от других антиоксидантов, обеспечивающих защиту лишь отдельных частей клетки). Эта особенность проистекает из физических характеристик астаксантина, позволяющих ему находиться внутри клеточной мембраны, защищая также внутреннюю часть клетки.
Убихинон (CoQ10)
Коензима Q10 (CoQ10) - пятая по популярности биодобавка в Соединенных Штатах, которую предпочитают 53% американцев (данные опроса 2010 г., проведённого ConsumerLab.com). Согласно статистическим данным, каждый четвёртый американец старше 45 лет принимает статины (англ. statins или HMG-CoA reductase inhibitors) - лекарства, тормозящие в печени биосинтез холестерина, в дополнение к которым необходимо принимать эту коэнзиму.CoQ10 используется каждой клеткой человеческого тела, именно поэтому название данного элемента («ubiquinone») переводится как «присутствующий везде» или «вездесущный» (англ. omnipresent).Для того, чтобы питательные вещества для производства клеточной энергии и уменьшения основных признаков старения приносили должный эффект, человеческий организм должен преобразовать убихинон в редуцированную форму, которая называется убихинол (ubiquinol).Человеческий организм до 25-летнего возраста способен превращать окисленную форму CoQ10 в редуцированную, однако с возрастом эта способность постепенно уменьшается. Преждевременное старение является главным побочным эффектом, демонстрирующим уменьшение количества CoQ10 - витамина, перерабатывающего антиоксиданты подобно витаминам C и E. Кроме того, недостаток CoQ10 наносит значительный ущерб ДНК. В свете того, что коэнзима Q10 оказывает благотворный эффект на здоровье сердца и мускульные функции, её истощение приводит к быстрой утомляемости, мускульной слабости, болям и сердечной недостаточности.
Д-р Стефан Синатра (Stephen Sinatra) в одном из интервью рассказывал об эксперименте, проведённом в середине 1990-х годов на крысах преклонного возраста (в среднем эти грызуны живут 2 года). Животные, получавшие CoQ10 в конце жизни, были более энергичными и отличались повышенным аппетитом по сравнению со своими сородичами, лишёнными CoQ10. Исходя из результатов данного эксперимента, учёные пришли к выводу, что эта коэнзима обладает мощным эффектом анти-старения в том смысле, что позволяет поддерживать молодость до конца жизни. Однако в контексте увеличения продолжительности жизни эффект от приёма CoQ10 является незначительным.
Др. Синатра позднее провёл собственное исследование, по результатам которого констатировал приток энергии и сил как у молодых, так и у старых мышей, в пищу которых добавляли CoQ10. Самые старые мыши проходили через лабиринты быстрее, отличались лучшей памятью и большей двигательной активностью по сравнению со своими ровесниками, не получавшими CoQ10.
Всё это может свидетельствовать в пользу того, что коэнзима Q10 существенно улучшает качество жизни и минимально увеличивает её продолжительность.
Кисломолочные продукты / пробиотики
Общеизвестно, что потребление в пищу значительного количества обработанных химикатами продуктов питания отрицательно сказывается на продолжительности жизни. Несмотря на это, 90% денег, потраченных американцами на еду, приходятся именно на эти продукты. Все они - от замороженной еды до приправ и аперитивов - содержат кукурузный сироп с высоким содержанием фруктозы, являющийся главным источником калорий в США. Учёным удалось доказать прямое влияние обработанных продуктов на появление у будущих поколений значительных генетических изменений (вплоть до серьёзных мутаций), однако даже этот факт не останавливает американцев.Основная проблема состоит в том, что «перегруженные» химией и искусственными подсластителями продукты активно разрушают кишечную микрофлору, ответственную за защиту иммунной системы. Антибиотики, стресс, вода с содержанием хлора, искусственные подсластители и прочие негативные факторы приводят к уменьшению количества пробиотиков (полезных бактерий) в кишечнике, что способствует преждевременному старению и возникновению болезней.Источниками пробиотиков могут служить как ферментированные продукты, так и биодобавки. Первый вариант является более предпочтительным, поскольку ферментированная пища (особенно овощи) содержит значительно больше (вплоть до 100 раз) полезных бактерий.
Масло криля
По мнению д-ра Ричарда Харриса (Richard Harris), люди, у которых показатель жирных кислот омега-3 составляет менее 4%, стареют значительно быстрее тех, у кого указанный показатель превышает 8 процентов. Следовательно, количество omega-3 также влияет на процесс старения.Исследования д-ра Харриса (главного специалиста США по части omega-3) показали, что данные жиры непосредственно влияют на активизацию теломеразы, которая, повторим, способна предотвращать укорачивание теломер.Хотя исследование, о котором идёт речь, является предварительным, я позволю себе предположить, что увеличение жирных кислот омега-3 до более чем 8-процентного уровня является прекрасной стратегией для замедления процесса старения (измерением уровня жирных кислот омега-3 в США занимается Лаборатория диагностики здоровья (Health Diagnostic Laboratory) в г. Ричмонд, штат Вирджиния.Главным источником жирных кислот омега-3 является масло криля, обладающее серией значительных преимуществ перед другими источниками омега-3 (такими как жир холодноводных морских рыб). Кроме того, добавки на основе рыбьего жира несут в себе высокий риск окисления (прогоркания) жира. Д-р. Руди Моерк (Rudi Moerck) указывал на этот нюанс в одном из интервью.
Масло криля также содержит астаксантин натурального происхождения, благодаря чему оно почти в 200 раз устойчивее к окислению, нежели рыбий жир.
В соответствии с исследованием д-ра Харриса, содержание омега-3 в грамме масла криля на 25-50% превышает аналогичный показатель в рыбьем жире. И, наконец, масло криля значительно быстрее абсорбируется организмом.
Витамин K
Витамин K является почти таким же важным, как и витамин D, гласят результаты последних исследований. Несмотря на то, что большинство людей получает достаточное количество витамина K из повседневного рациона, этого недостаточно для поддержания адекватного уровня свертываемости крови и защиты от возможных проблем со здоровьем.В частности, исследования последних лет доказали способность витамина К2 противодействовать появлению рака простаты - главного ракового заболевания среди мужского населения США. В результате изучения данного витамина также удалось установить его преимущества по части улучшения «сердечного» здоровья.Благотворный эффект витамина К2 был впервые доказан в 2004 году (исследование в Роттердаме). В результате последующих опытов удалось установить, что люди, потребляющие 45 микрограмм (мкг) витамина K2 ежедневно, живут в среднем на 7 лет дольше по сравнению с теми, чья дневная норма К2 не превышает 12 мкг.В ходе ещё одного исследования (Prospect Stud), специалисты наблюдали 16.000 добровольцев в течение 10 лет. В результате учёные обнаружили, что дополнительные 10 мкг витамина K2 в ежедневном рационе снижают риск возникновения сердечно-сосудистых заболеваний на 9 процентов.
Витамин K2 присутствует в кисломолочных продуктах (особенно в сыре) и японской натто - пище, являющейся настоящим кладезем K2.
Магний
По данным исследования, опубликованного в октябрьском номере «Journal of Nutritional» за 2011г., магний также играет одну из ключевых ролей в репликации ДНК и синтезе РНК; «пищевой» магний, со своей стороны, оказал положительное влияние на увеличение длины теломер у женщин.Другие исследования показали, что долгосрочный дефицит этого элемента приводит к укорочению теломер в клетках крыс. Это даёт основание полагать, что отсутствие ионов магния оказывают негативное воздействие на целостность генома. Кроме того, дефицит магния может привести к негативным изменениям в хромосомах и снизить способности организма восстанавливать поврежденные ДНК.Авторы эксперимента пришли к следующему заключению: «гипотеза о том, что … магний влияет на длину теломер, является полностью обоснованной, поскольку магний обеспечивает целостность и исправляет дефекты ДНК, а также способен эффективно противостоять оксидативному стрессу и воспалительным процессам
Полифенолы
Полифенолы - это мощные антиоксиданты, содержащиеся в продуктах питания растительного происхождения, многие из которых способны замедлять процесс старения и противостоять некоторым заболеваниям. Ниже приведён перечень продуктов с самыми сильными антиоксидантными свойствами.

Виноград (Resveratrol).

Две дополнительные стратегии здорового образа жизни, влияющие на длину теломер.

Правильное питание «ответственно» примерно за 80% благ, проистекающих от здорового образа жизни (одной из составных частей которого являются голодание). Остальные 20% приходится на физические упражнения, которые также препятствуют сокращению длины теломер.

Физические упражнения.

Недавнее исследование (PLoS One, май 2010) женщин, страдающих от хронического стресса в период постменопаузы, показало, что «энергичная физическая активность … защищает людей, находящихся в состоянии стресса, оказывая влияние на длину теломер (TL)». Это значит, что у женщин, игнорирующих физические упражнения, повышение уровня стресса на 1 пункт увеличивает вероятность сокращения длины теломер на 15% (изменение уровня стресса проводится по Шкале восприятия стресса PSS-10 (англ. PERCEIVED STRESS SCALE). В то же время стрессовое состояние у физически активных женщин никак не отразилось на длине теломер.Высокая интенсивность физических упражнений оказалась весьма действенным инструментом уменьшения сокращения длины теломер и, как следствие, - замедления процесса старения.

Грета Блэкберн (Greta Blackburn) в своей книге «Возраст бессмертия…» («The Immortality Edge: Realize the Secrets of Your Telomeres for a Longer, Healthier Life») представила подробный отчёт о том, как физические упражнения высокой интенсивности препятствуют сокращению длины теломер.

Периодическое голодание

Предыдущие исследования показали, что возможность продления жизни за счет снижения потребления калорий действительно существует. Проблема состоит в том, что большинство людей не понимает, как правильно нужно голодать (ведь для того, чтобы оставаться здоровым, следует сокращать лишь некоторые виды калорий - углеводы).

Исследование, проведённое профессором Синтией Кенйон (Cynthia Jane Kenyon), доказало, что уменьшение количества углеводов приводит к активизации генов, управляющих молодостью и долголетием.

Одним из самых действенных способов ограничения таких калорий является периодическое голодание (в частности, прекращение потребления сахара и зерновых).

Теломеры на концах хромосом

Американским ученым удалось обратить преждевременное старение клеток, взятых у пациентов с прогерией, путем удлинения теломер с помощью РНК-терапии. Результаты работы опубликованы в Journal of the American College of Cardiology .

Теломеры представляют собой «насадки» на концах хромосом, которые обеспечивают репликацию (удвоение) ДНК при делении клеток. С каждым делением они укорачиваются, что ограничивает возможности клеток к размножению (максимально возможное число делений называется пределом Хейфлика). Укорочение теломер с возрастом служит одним из факторов старения организма. В клетках присутствует фермент теломераза, способный увеличивать длину теломер, однако он активен только в клетках, которым необходимо постоянно делиться (стволовых, половых, некоторых эпителиальных и большинстве злокачественных).

Прогерия Хатчинсона-Гилфорда - редкое генетическое заболевание, обусловленное мутацией гена LMNA , который кодирует белок ламин А, входящий в оболочку клеточного ядра. Дефектная форма этого белка, названная прогерином, нарушает архитектуру ядра, репарацию ДНК, многие другие биохимические процессы, а также резко ускоряет укорочение теломер. Все это приводит к быстрому старению организма - средняя продолжительность жизни при прогерии не превышает 13 лет.

Сотрудники Хьюстонского методистского исследовательского института с помощью монохромной мультиплексной количественной ПЦР измерили длину теломер в фибробластах 17 пациентов с прогерией возрастом от 1 до 14 лет, а также аналогичных клетках здоровых новорожденных и взрослых. У 12 пациентов эта длина соответствовала 69-летним здоровым людям, у остальных пяти она оказалась нормальной.

После этого ученые ввели в часть фибробластов пациентов с прогерией матричную РНК (мРНК), кодирующую человеческую теломеразу (hTERT), а в остальные - мРНК, кодирующую каталитически инертную форму этого фермента (CI hTERT), которая связывается с теломерами, но не удлиняет их. Процедуру повторили трижды с интервалом в 48 часов, что привело к стабильной экспрессии мРНК в течение нескольких дней.

РНК-терапия обычной hTERT восстановила пролиферацию фибробластов с укороченными теломерами, уменьшила потерю клеток в культуре и продлила срок жизни клеток. Это сопровождалось признаками омоложения фибробластов, в том числе увеличением активности теломеразы и длины теломер, снижением секреции воспалительных цитокинов и другими (авторы намерены подробно описать их в последующих публикациях). В целом кинетика роста клеток приблизилась к нормальной, но иммортализации (приобретения способности к неограниченному размножению и злокачественному перерождению) клеточной культуры не наблюдалось.

Введение CI hTERT в дефектные фибробласты и hTERT - в фибробласты с нормальной длиной теломер подобных эффектов не производили, то есть за них отвечало именно восстановление длины укороченных теломер.

«Полученные результаты свидетельствуют, что временная экспрессия мРНК теломеразы может служить быстрым и эффективным методом обращения старения клеток при прогерии. Хотя длительная экспрессия теломеразы может вызвать опасения, связанные с иммортализацией, наш подход не привел к перерождению клеток», - пишут авторы работы. В дальнейшем они намерены усовершенствовать методику так, чтобы адаптировать ее к клиническому применению.

Ранее ученым замедлить старение клеток мышей с аналогом прогерии временным «включением» факторов транскрипции, преобразующих зрелые клетки в стволовые. Также был орган-на-чипе для изучения реакции клеток пациентов с прогерией на механическую деформацию.

Ни слова о функции Гомперца-Мейкема! Ни слова о её трёх параметрах и особенно о третьей (константе Мейкема), которая на протяжении уже 40 лет так исправно кормит наших друзей из Чикаго.

Поговорим о теломерах. С их укорочением в процессе клеточных делений связано множество ложных представлений, апофеозом чего явилась теломерная теория старения.. Я не буду здесь вновь (как я делаю это на протяжении уже почти 20 лет) критически рассматривать всю данную теорию.
Я обращу ваше внимание лишь на два скромных представления:
- о том, что репликативное укорочение ДНК обусловлено недорепликацией теломерных (концевых) отделов ДНК,
- а также о том, что при этом хромосомы укорачиваются сразу с обеих сторон.

Увы, даже скромность не делает эти утверждения верными. Но, вообще говоря, не так уж они и скромны!

Так, феномен недорепликации ДНК был теоретически предсказан А.М. Оловниковым ещё в 1971 году. Замечательная интуиция: анализируя сложный процесс репликации, Оловников обратил внимание на то,что начальный участок каждой молекулы ДНК не может быть воспроизведён имеющимся комплексом ферментов.
Исходя именно из этого, Оловников и предложил свою знаменитую теломерную теорию: в клетках, лишенных теломеразы, молекулы ДНК при каждом делении укорачиваются. Это, по Оловникову, и является причиной старения.
Не будем обсуждать примитивную простоту этой очень популярной по сей день теории (популярной вопреки тому,
что сам автор уже давно от неё отказался).

Скажем только, что, видимо, Оловникову не повезло ещё в одном аспекте. Последние исследования показывают. что реальной причиной укорочения ДНК является не предсказанная им недорепликация ДНК, а образование на обеих концах ДНК длинных оверхенгов.
Оверхенг похож на двужильный провод, в котором одна жила - короткая, а вторая - значительно длиньше. В данном случае жилы - это цепи двуспиральной ДНК. Более длинная цепь образует Т-петлю и спаривается с короткой цепью. В таком состоянии (да ещё скрепленном специальными белками - шелтеринами) концы ДНК наиболее устойчивы к атакам супербдительных систем репарации ДНК.
Одни из этих систем воспринимают «ровный» (без оверхенга) конец ДНК как двуцепочечный разрыв и начинают его с чем-нибудь сшивать или удлинять. Другие системы остро реагируют на наличие «острого» конца, воспринимая его как свидетельство одноцепочечного разрыва. Наличие Т-петли защищает теломеру от неуместного в данном случае внимания как первых, так и вторых систем.
Вот необходимость создания после каждого удвоения ДНК новых оверхенгов и приводит (в отсутствие теломеразы) к укорочению ДНК. Концевая недорепликация, разумеется, тоже имеет здесь место. Но ее вклад в укорочение ДНК на фоне размаха оверхенгов, совершенно незаметен.

Итак, одно устаревшее представление мы заменили на новое. Теперь - о втором,
Объект и происходящий с ним процесс - те же. Только теперь нас интересует: с дного или с обоих концов укорачиваются молекулы ДНК при каждой репликации?
Казалось бы:: оверхенг образуется на каждом конце - значит, и укорачиваться должны оба конца.
Но это не так. Представим: после репликации исходной молекулы ДНК получаются две дочерние молекулы - каждая с двумя оверхенгами. Так вот, обе молекулы укорачиваются лишь с одной стороны. одна - справа, другая - слева.
Действительно, тот конец дочерней ДНК, который,образуется на базе оверхенга материнской цепи, при формировании нового оверхенга не укорачивается.
Казалось бы, так ли важен этот вопрос? - Важен - и даже очень. Потому что получается, что любая хромосома в очередном цикле репликации с равной вероятностью может укоротиться как с одной, так и с другой стороны.
Поэтому в серии делений потомки каждой ДНК образуют по числу отщеплённых фрагментов ("билетиков") биномиальное распределение Бернулли.
Так, после 10 клеточных циклов примерно лишь у четверти хромосом А обе теломеры окажутся укороченными одинаково, причём каждая – лишь на 5 «билетиков».
У остальных хромосом теломеры будут укорочены на неодинаковое число «билетиков».
Если же число митотических циклов достигнет n = 50, то доля хромо с равным укорочением теломер – на 25 «билетиков» каждая – снизится вообще до ничтожных 3%.
Эти вероятностные оценки ставят под сомнение «счётную» функцию, которую нередко приписывают теломерам и которая предполагает. одинаковое укорочение обеих теломер. Более подробно эти вопросы освещены в книге:
Мушкамбаров Н.Н., Кузнецов С.Л., "Молекулярная биология", изд-во "МИА", 2016, 3-е издание (дополненное), 660 с.


Детерминированность процесса клеточного старения предполагает наличие молекулярного механизма, позволяющего клетке " отсчитывать" число пройденных удвоений. ДНК является единственной макромолекулой, обладающей достаточной стабильностью, чтобы служить базой такого механизма. Основой функционирования "молекулярных часов" могут быть изменения ДНК, сопряженные с процессом ее репликации, такие как метилирование ДНК, либо потеря части ДНК в результате ее неполной репликации. В натоящее время роль "молекулярных часов" отводится теломерам линейных хромосом эукариотических клеток.

Хромосомы позвоночных оканчиваются последовательностью ТТАGGG, повторенной в теломерах сотни и тысячи раз ( Blackburn E.H., 1991). Считается, что функциями теломерного повтора является защита хромосом от деградации и предотвращение их слияния друг с другом ( Zakian V.A., 1989 ; Counter C.M. et al., 1992). Анализ длины теломерных повторов выявил, что соматические клетки теряют от 50 до 200 нуклеотидов при каждом клеточном делении ( Harley C.B. et al., 1990). Причиной этого явления является неполная репликация концов хромосом из-за особенностей молекулярного механизма репликативного синтеза ДНК ( Оловников А.М., 1971 ; Watson J.D., 1972). Отстающая цепь репликативной вилки в синтезе ДНК не может синтезироваться до 5"-конца в отсутствие рибопраймера, который, в свою очередь, не образуется непосредственно на концевом фрагменте. Потери концевой ДНК делают невозможной бесконечную пролиферацию. Предполагают, что укорачивание хромосом до определенного размера индуцирует процессы клеточного старения, а длина теломер, по этим представлениям, может служить мерой пролиферативного потенциала клеток ( Allsopp R.C. et al., 1992).

Предложено несколько гипотетических моделей, объясняющих каким образом клетка "определяет" длину своих теломер и в определенный момент запускает механизм блока пролиферации. Возможно, определяется общее количество ТТАGGG повторов благодаря учету специфически связывающегося с ними белка ( Kipling D. et al., 1992).

Другая модель исходит из того, что длинные теломеры молодых клеток находятся в области гетерохроматина. Предполагается, что ген, супрессирующий программу клеточного старения, локализован в субтеломерном районе. По мере укорачивания теломер область гетерохроматина включает в себя все больше субтеломерной ДНК. Включение в эту область гена-супрессора приводит к его инактивации и запуску механизма клеточного старения ( Wright W.E., Shay J.W., 1992).

В противоположность соматическим смертным клеткам, то есть клеткам, обладающим пределом размножения in vitro, большинство иммортальных клеток, обладающих способностью к бесконечной пролиферации, содержит теломеразу ( Kim N.W. et al., 1994).

Обнаружено, что в соматических клетках, делящихся в организме, длина теломер со временем уменьшается. Укорочение тепомер наблюдается также по мере старения фибробластов в культуре. Более того, оказалось, что длина теломер лучше предсказывает способность клетки к делению, чем возраст донора клеток. Предположительно, теломеры укорачиваются в результате того, что механизм, ответственный за удвоение ДНК в процессе клеточного деления, делает характерную ошибку - в каждой новой копии ДНК элиминируется маленький участок каждой теломеры ( Мойзис. Р.,1991) Из этого следует, что теломеры могут быть теми часами, которые определяют в клетках потерю способности к пролиферации. Интересно, что, по данным Харли и Грейдера, длина теломер сохраняется или даже немного увеличивается в сперматозоидах и в трансформированных ("бессмертных") клетках . Такое постоянство помогает объяснить, каким образом половые и злокачественные клетки не утрачивают способности к делению.

Можно, таким образом, выдвинуть предположение, что организм в целом угасает, когда его отдельные органы неизбежно утрачивают способность замещать поврежденные клетки. Однако, как отмечают скептики, люди ведь не умирают от того, что их фибробласты перестают удваиваться. Обычно у клеток остается неиспользованный запас потенциальных делений, когда их "владелец" погибает. В числе критических аргументов также заявляется, что изучение ослабления способности к пролиферации никак не проясняет процессы, приводящие к гибели неделящихся клеток, а именно нейронов и клеток сердечной мышцы, которые годами превосходно функционируют. Мало изучать процесс клеточной пролиферации, его возможности и пределы - надо еще показать, как получаемые результаты соотносятся со старением человека.

Генетические изменения, наблюдаемые в фибробластах, отражают, быть может, лишь один аспект процесса старения, но зато весьма важный.

Возможно, возникают локальные области, в которых клетки функционируют неправильно и не могут быть заменены. Например слой эндотелия кровеносных сосудов толщиной в одну клетку. Если клетки эндотелия на небольшом участке кровеносного сосуда теряют способность к пролиферации и утрачиваются или же не функционируют, это может привести к атеросклерозу. Кроме того, уменьшение способности к пролиферации составляет серьезную проблему в иммунной системе.

Как соотносятся результаты, полученные на фибробластах, с эволюционными гипотезами? Многие исследователи, считают, что ограничение пролиферации могло возникнуть не как "программа смерти", а как защитный механизм против рака . В таком случае потеря способности к клеточному делению является еще одним примером антагонистической плейотропии. Хотя многие люди в конце концов заболевают раком, человеку присуща сопротивляемость, обеспечивающая значительно меньшую подверженность опухолям по сравнению с животными.

Соматические клетки совершают ограниченное число делений в культуре и приходят в состояние необратимой остановки в фазах клеточного цикла G1 и G2/M, которое и называется старением (senescence) . Было высказано предположение, что укорочение теломер, связанное с проблемой концевой репликации , служит митотическими часами, работа которых в конце концов приводит к старению. Предложено несколько моделей для объяснения того, как укорочение теломер ведет к старению клетки. Мы ранее предположили, что укорочение теломер может в конце концов привести к формированию дицентрических хромосом, последующий разрыв которых активирует реакцию на повреждение ДНК, опосредованную белком р53. Поэтому мы предположили, что сигнал укорочения теломер воспринимается клеткой как повреждение ДНК.

Получены экспериментальные доказательства посттрансляционной активации белка р53 в фибробластах человека, в которых происходят укорочение теломер и последующее старение в культуре. В этой статье мы также показываем, что повышение активности белка р53 совпадает с формированием дицентрических хромосом и старением. Ранее мы также показали, что повышение уровня p21WAF1/SDll/CIP1 , т.е. иерархически одной из ближайших мишеней белка р53, зависит как от белка р53, так и от рЗОО . Мы также показали, что фибробласты, взятые у больных с атаксией-телангиэктазией , ускоренно теряют теломерную ДНК, активируют белок р53 и подвергаются преждевременному старению в культуре. Эти данные свидетельствуют о том, что ATM и р53 участвуют в мониторинге и регуляции теломерной ДНК. После достижения критической длины теломерной ДНК ATM и р53 воспринимают и передают этот сигнал в клеточный цикл, что ведет к старению.

Кандидат химических наук Мария Зверева, кандидат химических наук Мария Рубцова (МГУ им. М. В. Ломоносова, химический факультет).

В октябре 2009 года в Стокгольме объявлены имена лауреатов Нобелевской премии по физиологии и медицине. Это американские учёные Элизабет Блэкбёрн (Elizabeth H. Blackburn), Кэрол Грейдер (Carol W. Greider) и Джек Шостак (Jack W. Szostak), удостоившиеся самой престижной научной награды дословно «за открытие того, как теломеры и фермент теломераза защищают хромосомы». Попробуем разобраться, что такое теломеры и теломераза, почему и каким образом они защищают хромосомы?

Элизабет Блэкбёрн.

Кэрол Грейдер.

Джек Шостак.

Теломераза активна не во всех клеточных популяциях. Максимальная активность наблюдается в «вечно молодых» эмбриональных клетках. В стволовых клетках теломераза работает не в полную силу.

Теломеры: фунции и синтез.

ХРОМОСОМЫ НУЖДАЮТСЯ В ЗАЩИТЕ

Генетическая информация хранится в ядрах клеток в виде дезоксирибонуклеиновой кислоты (ДНК), которая плотно упакована в линейные хромосомы. В середине 1970-х годов Джек Шостак в своей лаборатории в Медицинской школе Гарварда провёл эксперимент. Он добавил в дрожжевые клетки фрагменты чужеродных молекул ДНК и обнаружил, что они не могут долго оставаться в клетке в исходном виде и встраиваются в хромосомы. Так выяснилось, что обломки хромосом нестабильны: они постоянно обмениваются участками с другими хромосомами, перестраиваются, в их нуклеотидных цепочках образуются разрывы, в то время как сами хромосомы остаются в неизменном виде. К счастью, клетки обладают функцией репарации - в них имеется система молекулярной «починки» случайных разрывов в хромосомных цепочках.

Всё же оставалось неясным, почему ДНК в составе хромосом стабильна, а обломки без концевых последовательностей подвержены перестройкам. Исследования Пауля Германа Мюллера (лауреат Нобелевской премии по физиологии и медицине 1946 года) и Барбары Мак-Клинток (лауреат Нобелевской премии по физиологии и медицине 1983 года) в начале 1940-х годов показали, что концевые участки защищают хромосомы от перестроек и разрывов. Мюллер назвал эти особые участки теломерами - от двух греческих слов: telos - конец и meros - участок. Но что представляют собой эти участки и какую функцию они выполняют в клетке, учёные тогда ещё не знали.

ТЕЛОМЕРЫ СТАБИЛИЗИРУЮТ ХРОМОСОМЫ

В 1975 году Элизабет Блэкбёрн в лаборатории Джозефа Гала в Йельском университете, изучая внехромосомные молекулы ДНК инфузории, обнаружила, что концевые участки этих молекул содержат тандемные повторяющиеся последовательности, состоящие из шести нуклеотидов: на каждом конце таких повторов было от 20 до 70.

В дальнейших экспериментах Блэкбёрн и Шостак добавили в дрожжи молекулы ДНК с присоединёнными к ним повторами из инфузории и обнаружили, что молекулы ДНК стали стабильнее. В 1982 году в совместной публикации они предположили, что эти повторяющиеся последовательности нуклеотидов и есть теломеры.

Их догадка подтвердилась. Теперь уже точно известно, что теломеры состоят из повторяющихся нуклеотидных участков и набора специальных белков, особым образом организующих эти участки в пространстве. Теломерные повторы - весьма консервативные последовательности, например, повторы всех позвоночных состоят из шести нуклеотидов - TTAGGG, повторы всех насекомых из пяти - TTAGG, повторы большинства растений из семи - TTTAGGG. Благодаря наличию в теломерах устойчивых повторов клеточная система репарации не путает теломерный участок со случайным разрывом. Таким путём обеспечивается стабильность хромосом: конец одной хромосомы не может соединиться с разрывом другой.

ТЕЛОМЕРЫ ПОСТОЯННО УКОРАЧИВАЮТСЯ

Теломерные повторы не просто стабилизируют хромосомы, они выполняют ещё одну важную функцию. Как известно, воспроизведение генетического материала от поколения к поколению происходит за счёт удвоения молекул ДНК с помощью специального фермента (ДНК-полимеразы). Этот процесс называется репликацией. Проблему «концевой репликации» ещё в 1970-х годах независимо сформулировали Алексей Матвеевич Оловников и нобелевский лауреат Джеймс Уотсон. Она заключается в том, что ДНК-полимераза неспособна полностью скопировать концевые участки линейных молекул ДНК, она лишь наращивает уже имеющуюся полинуклеотидную нить.

Откуда же берётся начальный участок? Специальный фермент синтезирует небольшую РНК-«затравку». Её размер (<20 нуклеотидов) невелик по сравнению с размером всей цепи ДНК. Впоследствии РНК-«затравка» удаляется специальным ферментом, а образовавшаяся при этом брешь заделывается ДНК-полимеразой. Удаление крайних РНК-«затравок» приводит к тому, что «дочерние» молекулы ДНК оказываются короче «материнских». То есть теоретически при каждом цикле деления клеток должна происходить потеря генетической информации. Но так происходит далеко не во всех клеточных популяциях. Почему?

ТЕЛОМЕРАЗА НЕ ДАЁТ ТЕЛОМЕРАМ УКОРАЧИВАТЬСЯ

Чтобы клетки не растеряли при делении часть генетического материала, теломерные повторы обладают способностью восстанавливать свою длину. В этом и заключается суть процесса «концевой репликации». Но учёные не сразу поняли, каким образом наращиваются концевые последовательности. Было предложено несколько различных моделей. Российский учёный А. М. Оловников предположил существование специального фермента (теломеразы), наращивающего теломерные повторы и тем самым поддерживающего длину теломер постоянной.

В середине 1980-х годов в лабораторию Блэкбёрн пришла работать Кэрол Грейдер, и именно она обнаружила, что в клеточных экстрактах инфузории происходит присоединение теломерных повторов к синтетической теломероподобной «затравке». Очевидно, в экстракте содержался какой-то белок, способствовавший наращиванию теломер. Так блестяще подтвердилась догадка Оловникова и был открыт фермент теломераза. Кроме того, Грейдер и Блэкбёрн определили, что в состав теломеразы входят белковая молекула, которая, собственно, осуществляет синтез теломер, и молекула РНК, служащая матрицей для их синтеза.

БЕЗ ТЕЛОМЕРАЗЫ КЛЕТКА СТАРЕЕТ, А С ТЕЛОМЕРАЗОЙ - ПЕРЕРОЖДАЕТСЯ

Позднее в лаборатории Шостака обнаружили, что определённые мутации в некоторых генах дрожжей приводят к быстрому укорочению теломер после каждого цикла деления клеток, в результате чего хромосомы становятся нестабильными, а клетки переходят в состояние старения (сенессенса). Теперь мы знаем, что эти гены кодируют теломеразу. Полученные данные подтвердили ещё одну гипотезу А. М. Оловникова о том, что потеря длины теломерных повторов в каждом раунде репликации хромосом зависит от числа делений клетки.

Итак, теломераза решает проблему «концевой репликации»: синтезирует повторы и поддерживает длину теломер. В отсутствие теломеразы с каждым клеточным делением теломеры становятся короче и короче, и в какой-то момент теломерный комплекс разрушается, что служит сигналом к программируемой гибели клетки. То есть длина теломер определяет, какое количество делений клетка может совершить до своей естественной гибели.

На самом деле у разных клеток могут быть разные сроки жизни. В эмбриональных стволовых клеточных линиях теломераза очень активна, поэтому длина теломер поддерживается на постоянном уровне. Вот почему эмбриональные клетки - «вечно молодые» и способны к неограниченному размножению. В обычных стволовых клетках активность теломеразы ниже, поэтому укорачивание теломер скомпенсировано лишь отчасти. В соматических клетках теломераза вовсе не работает, поэтому теломеры укорачиваются с каждым клеточным циклом. Укорочение теломер приводит к достижению предела Хайфлика - к переходу клеток в состояние сенессенса. После этого наступает массовая клеточная смерть. Уцелевшие клетки перерождаются в раковые (как правило, в этом процессе задействована теломераза). Раковые клетки способны к неограниченному делению и поддержанию длины теломер.

Наличие теломеразной активности в тех соматических клетках, где она обычно не проявляется, может быть маркёром злокачественной опухоли и индикатором неблагоприятного прогноза. Так, если активность теломеразы появляется в самом начале лимфогранулематоза, то можно говорить об онкологии. При раке шейки матки теломераза активна уже на первой стадии.

Мутации в генах, кодирующих компоненты теломеразы или других белков, участвующих в поддержании длины теломер, являются причиной наследственной гипопластической анемии (нарушения кроветворения, связанные с истощением костного мозга) и врождённого Х-сцеплённого дискератоза (тяжёлое наследственное заболевание, сопровождающееся умственной отсталостью, глухотой, неправильным развитием слёзных каналов, дистрофией ногтей, различными дефектами кожи, развитием опухолей, нарушениями иммунитета и др.).

ЗАЧЕМ ИЗУЧАТЬ ТЕЛОМЕРЫ И ТЕЛОМЕРАЗУ

Сейчас многие учёные заняты поиском взаимосвязи между активностью теломеразы и старением. Тут необходимо осознать, что длина теломер может контролировать продолжительность жизни клеток, но не всего организма. Старение как биологическое явление - более сложный многофакторный процесс. Гораздо более важна взаимосвязь между активностью теломеразы и риском развития раковых заболеваний. Учёные ищут вещества, влияющие на активность теломеразы и на структуру теломер, с целью создания новых противоопухолевых лекарственных препаратов.

Вот мы и пришли к заключению, что «открытие того, как теломеры и фермент теломераза защищают хромосомы» - это, безусловно, великое достижение современной науки, позволяющее понять, как генетическая информация передаётся от материнской клетки к дочерней без потерь, чем определяется продолжительность жизни клеток, а также некоторые особенности их злокачественного перерождения. Обретённые знания помогут в будущем создать лекарственные препараты, избавляющие людей от неизлечимых болезней. Это действительно выдающееся научное открытие. Но не стоит забывать о выдающихся гипотезах русского учёного А. М. Оловникова, которые подтвердились в работах нынешних нобелевских лауреатов.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека