Что такое микроскоп? Значение и толкование слова mikroskop, определение термина. Виды современных микроскопов

Исследовательская работа на тему: «Что такое микроскоп? » АВТОР ПРОЕКТА: УЧЕНИЦА 2 -Б КЛАССА ХАМИДУЛЛИНА ЭЛЬВИНА РУКОВОДИТЕЛЬ: НИЗАМОВА ЭЛИНА ЗИНАРОВНА УЧИТЕЛЬ НАЧАЛЬНЫХ КЛАССОВ

Цели и задачи моего исследования Цель: Исследовать возможности микроскопа для объектов живой и неживой природы. Создать свой микроскоп. Задачи: 1. Узнать историю создания микроскопа. 2. Узнать, из чего состоят микроскопы, и какими могут они быть. 3. Провести опыты с элементами исследования

Актуальность проекта Разве кого-то из школьников не интересует устройство всего живого на Земле? Мы постоянно задаем сложнейшие вопросы папам, мамам и учителям в школе.

2. 1. История создания микроскопа. Микроскоп (от греч. - малый и смотрю) - оптический прибор для получения увеличенных изображений объектов, невидимых невооружённым глазом.

Учитель биологии Светлана Сергеевна очень интересно рассказывала ребятам, что такое микроскоп и что можно увидеть посмотрев в него.

2. 4. Создание собственного микроскопа. Когда мы искали сведения об истории микроскопов, то на одном из сайтов узнали, что можно сделать свой микроскоп из капли воды. И тогда я решила попробовать провести эксперимент по созданию такого микроскопа

Создание микроскопа Для этого нужно взять плотную бумагу, проколоть в ней толстой иглой дырочку и на нее аккуратно посадить каплю воды. Микроскоп готов! Поднесите эту капельку к газете – буквы увеличились.
Заключение Исследуя разные объекты под микроскопом, человек познает природу самой жизни. Выполняя этот проект мы узнали историю создания первого микроскопа, и какие теперь использует человек в современной жизни. Ответы на эти вопросы мы нашли в энциклопедиях школьной библиотеки, а также на сайтах интернета.

МИКРОСКОП

ДОКЛАД по Биологии ученика 6-го класса

На протяжении длительного времени человек жил в окружении невидимых существ, использовал продукты их жизнедеятельности (например, при выпечке хлеба из кислого теста, приготовлении вина и уксуса), страдал, когда эти существа являлись причинами болезней или портили запасы пищи, но не подозревал об их присутствии. Не подозревал потому, что не видел, а не видел потому, что размеры этих микро существ лежали много ниже того предела видимости, на который способен человеческий глаз. Известно, что человек с нормальным зрением на оптимальном расстоянии (25-30 см) может различить в виде точки предмет размером 0,07–0,08 мм. Меньшие объекты человек заметить не может. Это определяется особенностями строения его органа зрения.

Приблизительно в то же время, когда началось исследование космоса с помощью телескопов, были сделаны первые попытки раскрыть, с помощью линз тайны микромира. Так, при археологических раскопках в Древнем Вавилоне находили двояковыпуклые линзы — самые простые оптические приборы. Линзы были изготовлены из отшлифованного горногохрусталя. Можно считать, что с их изобретением человек сделал первый шаг на пути в микромир.


Простейший способ увеличить изображение небольшого предмета - это наблюдать его с помощью лупы. Лупой называют собирающую линзу с малым фокусным расстоянием (как правило, не более 10 см), вставленную в рукоятку.


Создатель телескопаГалилей в1610 году обнаружил, что в сильно раздвинутом состоянии его зрительная труба позволяет сильно увеличить мелкие предметы. Его можно считатьизобретателем микроскопа , состоящего из положительной и отрицательной линз.
Более совершенным инструментом для наблюдения микроскопических предметов является простой микроскоп . Когда появились эти приборы, в точности неизвестно. В самом начале XVII века несколько таких микроскопов изготовил очковый мастерЗахария Янсен из Миддельбурга.

В сочиненииА. Кирхера , вышедшем в1646 году, содержится описаниепростейшего микроскопа , названного им"блошиным стеклом" . Он состоял из лупы, вделанной в медную основу, на которой укрепляли предметный столик, служивший для помещения рассматриваемого объекта; внизу находилось плоское или вогнутое зеркало, отражающее солнечные лучи на предмет и таким образом освещающее его снизу. Лупу передвигали посредством винта к предметному столику, пока изображение не становилось отчетливым и ясным.

Первые выдающиеся открытия были сделаны как разс помощью простого микроскопа . В середине XVII века блестящих успехов добился голландский естествоиспытательАнтони Ван Левенгук . В течение многих лет Левенгук совершенствовался в изготовлении крохотных (иногда меньше 1 мм в диаметре) двояковыпуклых линзочек, которые он изготавливал из маленького стеклянного шарика, в свою очередь получавшегося в результате расплавления стеклянной палочки в пламени. Затем этот стеклянный шарик подвергался шлифовке на примитивном шлифовальном станке. На протяжении своей жизни Левенгук изготовил не менее 400 подобных микроскопов. Один из них, хранящийся в университетском музее в Утрехте, дает более чем 300-кратное увеличение, что для XVII века было огромным успехом.

В начале XVII века появилисьсложные микроскопы , составленные из двух линз. Изобретатель такого сложного микроскопа точно не известен, но многие факты говорят о том, что им был голландецКорнелий Дребель , живший в Лондоне и находившийся на службе у английского короля Иакова I. В сложном микроскопе былодва стекла: одно - объектив - обращенное к предмету, другое - окуляр - обращенное к глазу наблюдателя. В первых микроскопах объективом служило двояковыпуклое стекло, дававшее действительное, увеличенное, но обратное изображение. Это изображение и рассматривалось при помощи окуляра, который играл, таким образом, роль лупы, но только лупа эта служила для увеличения не самого предмета, а его изображения.

В1663 году микроскопДребеля был усовершенствован английским физикомРобертом Гуком , который ввел в него третью линзу, получившую название коллектива. Этот тип микроскопа приобрел большую популярность, и большинство микроскопов конца XVII - первой половины VIII века строились по его схеме.

Устройство микроскопа


Микроскоп – это оптический прибор, предназначенный для исследования увеличенных изображений микрообъектов, которые невидны невооруженным глазом.

Основными частями светового микроскопа (рис. 1) являются объектив и окуляр, заключенные в цилиндрический корпус – тубус. Большинство моделей, предназначенных для биологических исследований, имеют в комплекте три объектива с разными фокусными расстояниями и поворотный механизм, предназначенный для их быстрой смены – турель, часто называемую револьверной головкой. Тубус располагается на верхней части массивного штатива, включающего тубусодержатель. Чуть ниже объектива (или турели с несколькими объективами) находится предметный столик, на который устанавливаются предметные стекла с исследуемыми образцами. Резкость регулируется с помощью винта грубой и точной настройки, который позволяет изменять положение предметного столика относительно объектива.


Для того чтобы исследуемый образец имел достаточную для комфортного наблюдения яркость, микроскопы снабжаются еще двумя оптическими блоками (рис. 2) – осветителем и конденсором. Осветитель создает поток света, освещающий исследуемый препарат. В классических световых микроскопах конструкция осветителя (встроенного или внешнего) предполагает низковольтную лампу с толстой нитью накала, собирающую линзу и диафрагму, изменяющую диаметр светового пятна на образце. Конденсор, представляющий собой собирающую линзу, предназначен для фокусировки лучей осветителя на образце. Конденсор также имеет ирисовую диафрагму (полевую и апертурную), с помощью которой регулируется интенсивность освещения.


При работе с пропускающими свет объектами (жидкостями, тонкими срезами растений и т. п.), их освещают проходящим светом – осветитель и конденсор располагаются под предметным столиком. Непрозрачные же образцы нужно освещать спереди. Для этого осветитель располагают над предметным столиком, и его лучи с помощью полупрозрачного зеркала направляются на объект через объектив.

Осветитель может быть пассивным, активным (лампа) или состоять из обоих элементов. Самые простые микроскопы не имеют ламп для подсветки образцов. Под столиком у них располагается двустороннее зеркало, у которого одна сторона плоская, а другая – вогнутая. При дневном освещении, если микроскоп стоит у окна, получить довольно неплохое освещение можно при помощи вогнутого зеркала. Если же микроскоп находится в темном помещении, для подсветки используются плоское зеркало и внешний осветитель.

Увеличение микроскопа равно произведению увеличения объектива и окуляра. При увеличении окуляра равном 10 и увеличении объектива равном 40 общий коэффициент увеличения равен 400. Обычно в комплект исследовательского микроскопа входят объективы с увеличением от 4 до 100. Типичный комплект объективов микроскопа для любительских и учебных исследований (х 4, х10 и х 40), обеспечивает увеличение от 40 до 400.

Разрешающая способность – другая важнейшая характеристика микроскопа, определяющая его качество и четкость формируемого им изображения. Чем больше разрешающая способность, тем больше мелких деталей можно рассмотреть при сильном увеличении. В связи с разрешающей способностью говорят о «полезном» и «бесполезном» увеличении. «Полезным» называется предельное увеличение, при котором обеспечивается максимальная деталировка изображения. Дальнейшее увеличение («бесполезное») не поддерживается разрешающей способностью микроскопа и не выявляет новых деталей, зато может негативно повлиять на четкость и контраст изображения. Таким образом, предел полезного увеличения светового микроскопа ограничивается не общим коэффициентом увеличения объектива и окуляра - его при желании можно сделать сколь угодно большим, - а качеством оптических компонентов микроскопа, то есть, разрешающей способностью.

Микроскоп включает в себя три основные функциональные части:

1. Осветительная часть
Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах и перед объектом над объективом в инвертированных.
Осветительная часть включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

2. Воспроизводящая часть
Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т.е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа. Воспроизводящая часть включает объектив и промежуточную оптическую систему.
Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность.
Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

3. Визуализирующая часть
Предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).

Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (камерой, фотокамерой).
Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системой (окулярами, которые работают как лупа).
Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими согласующими элементами (фотоканал).

МИКРОСКОП
оптический прибор с одной или несколькими линзами для получения увеличенных изображений объектов, не видимых невооруженным глазом. Микроскопы бывают простые и сложные. Простой микроскоп - это одна система линз. Простым микроскопом можно считать обычную лупу - плосковыпуклую линзу. Сложный микроскоп (который часто называют просто микроскопом) представляет собой комбинацию двух простых. Сложный микроскоп дает большее увеличение, чем простой, и обладает большей разрешающей способностью. Разрешающая способность - это возможность различения деталей образца. Увеличенное изображение, на котором неразличимы подробности, дает мало полезной информации. Сложный микроскоп имеет двухступенчатую схему. Одна система линз, называемая объективом, подводится близко к образцу; она создает увеличенное и разрешенное изображение объекта. Изображение далее увеличивается другой системой линз, называемой окуляром и помещающейся ближе к глазу наблюдателя. Эти две системы линз расположены на противоположных концах тубуса.

Работа с микроскопом. На иллюстрации представлен типичный биологический микроскоп. Штативная подставка выполняется в виде тяжелой отливки, обычно подковообразной формы. К ней на шарнире прикреплен тубусодержатель, несущий все остальные части микроскопа. Тубус, в который вмонтированы линзовые системы, позволяет перемещать их относительно образца для фокусировки. Объектив расположен на нижнем конце тубуса. Обычно микроскоп снабжен несколькими объективами разного увеличения на револьверной головке, которая позволяет устанавливать их в рабочее положение на оптической оси. Оператор, исследуя образец, начинает, как правило, с объектива, имеющего наименьшее увеличение и наиболее широкое поле зрения, находит детали, интересующие его, а затем рассматривает их, пользуясь объективом с большим увеличением. Окуляр вмонтирован в конец выдвижного держателя (который позволяет изменять длину тубуса, когда это необходимо). Весь тубус с объективом и окуляром можно передвигать вверх и вниз, наводя микроскоп на резкость. Образец обычно берется в виде очень тонкого прозрачного слоя или среза; его кладут на прямоугольную стеклянную пластинку, называемую предметным стеклом, и накрывают сверху более тонкой стеклянной пластинкой меньших размеров, называемой покровным стеклом. Образец часто окрашивают химическими веществами, чтобы увеличить контраст. Предметное стекло кладут на предметный столик так, чтобы образец находился над центральным отверстием столика. Столик обычно снабжается механизмом для плавного и точного перемещения образца в поле зрения. Под предметным столиком находится держатель третьей системы линз - конденсора, который концентрирует свет на образце. Конденсоров может быть несколько, и здесь же располагается ирисовая диафрагма для регулировки апертуры. Еще ниже расположено осветительное зеркало, устанавливаемое в универсальном шарнире, которое отбрасывает свет лампы на образец, за счет чего вся оптическая система микроскопа и создает видимое изображение. Окуляр можно заменить фотоприставкой, и тогда изображение будет формироваться на фотопленке. Многие исследовательские микроскопы оснащаются специальным осветителем, так что в осветительном зеркале нет необходимости.
Увеличение. Увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра. Для типичного исследовательского микроскопа увеличение окуляра равно 10, а увеличение объективов - 10, 45 и 100. Следовательно, увеличение такого микроскопа составляет от 100 до 1000. Увеличение некоторых микроскопов достигает 2000. Повышать увеличение еще больше не имеет смысла, так как разрешающая способность при этом не улучшается; наоборот, качество изображения ухудшается.
Теория. Последовательную теорию микроскопа дал немецкий физик Эрнст Аббе в конце 19 в. Аббе установил, что разрешение (минимально возможное расстояние между двумя точками, которые видны по отдельности) определяется выражением


где R - разрешение в микрометрах (10-6 м), l - длина волны света (создаваемого осветителем), мкм, n - показатель преломления среды между образцом и объективом, а a - половина входного угла объектива (угла между крайними лучами конического светового пучка, входящего в объектив). Величину Аббе назвал числовой апертурой (она обозначается символом NA). Из приведенной формулы видно, что разрешаемые детали исследуемого объекта тем меньше, чем больше NA и чем меньше длина волны. Числовая апертура не только определяет разрешающую способность системы, но и характеризует светосилу объектива: интенсивность света, приходящаяся на единицу площади изображения, приблизительно равна квадрату NA. Для хорошего объектива величина NA составляет примерно 0,95. Микроскоп обычно рассчитывают так, чтобы его полное увеличение составляло ок. 1000 NA.
Объективы. Существуют три основных типа объективов, различающихся степенью исправления оптических искажений - хроматических и сферических аберраций. Хроматические аберрации связаны с тем, что световые волны с разной длиной волны фокусируются в разных точках на оптической оси. В результате изображение оказывается окрашенным. Сферические аберрации обусловлены тем, что свет, проходящий через центр объектива, и свет, идущий через его периферийную часть, фокусируется в разных точках на оси. В результате изображение оказывается нечетким. Ахроматические объективы в настоящее время являются наиболее распространенными. В них хроматические аберрации подавляются благодаря применению стеклянных элементов с разной дисперсией, обеспечивающих схождение крайних лучей видимого спектра - синих и красных - в одном фокусе. Небольшая окрашенность изображения остается и проявляется иногда в виде слабых зеленых полос вокруг объекта. Сферическая аберрация может быть скорректирована только для одного цвета. Во флюоритовых объективах используются добавки к стеклу, улучшающие цветовую коррекцию до такой степени, что окрашенность изображения почти полностью устраняется. Апохроматические объективы - это объективы с самой сложной цветовой коррекцией. В них не только почти полностью устранены хроматические аберрации, но и коррекция сферических аберраций выполнена не для одного, а для двух цветов. Увеличение апохроматов для синего цвета несколько больше, чем для красного, и поэтому для них нужны специальные "компенсирующие" окуляры. Большинство объективов являются "сухими", т.е. они рассчитаны на работу в таких условиях, когда промежуток между объективом и образцом заполнен воздухом; величина NA для таких объективов не превышает 0,95. Если между объективом и образцом ввести жидкость (масло или, что бывает реже, воду), то получится "иммерсионный" объектив с величиной NA, достигающей 1,4, и с соответствующим улучшением разрешения. В настоящее время промышленность выпускает и различного рода специальные объективы. К ним относятся объективы с плоским полем для микрофотографирования, объективы без внутренних напряжений (релаксированные) для работы в поляризованном свете и объективы для исследования непрозрачных металлургических образцов, освещаемых сверху.
Конденсоры. Конденсор формирует световой конус, направляемый на образец. Обычно в микроскопе предусматривается ирисовая диафрагма для согласования апертуры светового конуса с апертурой объектива, чем обеспечиваются максимальное разрешение и максимальный контраст изображения. (Контраст в микроскопии имеет столь же важное значение, как и в телевизионной технике.) Самый простой конденсор, вполне подходящий для большинства микроскопов общего назначения, - это двухлинзовый конденсор Аббе. Для объективов с большей апертурой, особенно иммерсионных масляных, нужны более сложные конденсоры с коррекцией. Масляные объективы с максимальной апертурой требуют специального конденсора, имеющего иммерсионный масляный контакт с нижней поверхностью предметного стекла, на котором лежит образец.
Специализированные микроскопы. В связи с различными требованиями науки и техники были разработаны микроскопы многих специальных видов. Стереоскопический бинокулярный микроскоп, предназначенный для получения трехмерного изображения объекта, состоит из двух отдельных микроскопических систем. Прибор рассчитан на небольшое увеличение (до 100). Обычно применяется для сборки миниатюрных электронных компонентов, технического контроля, хирургических операций. Поляризационный микроскоп предназначен для исследования взаимодействия образцов с поляризованным светом. Поляризованный свет нередко позволяет выявлять структуру объектов, лежащую за пределами обычного оптического разрешения. Отражательный микроскоп снабжен вместо линз зеркалами, формирующими изображение. Поскольку изготовить зеркальный объектив затруднительно, полностью отражательных микроскопов очень мало, и зеркала в настоящее время применяются в основном лишь в приставках, например, для микрохирургии отдельных клеток. Люминесцентный микроскоп - с освещением образца ультрафиолетовым или синим светом. Образец, поглощая это излучение, испускает видимый свет люминесценции. Микроскопы такого типа применяются в биологии, а также в медицине - для диагностики (особенно рака). Темнопольный микроскоп позволяет обойти трудности, связанные с тем, что живые материалы прозрачны. Образец в нем рассматривается при столь "косом" освещении, что прямой свет не может попасть в объектив. Изображение формируется светом, дифрагированным на объекте, и в результате объект выглядит очень светлым на темном фоне (с очень большим контрастом). Фазово-контрастный микроскоп применяется для исследования прозрачных объектов, особенно живых клеток. Благодаря специальным устройствам часть света, проходящего через микроскоп, оказывается сдвинутой по фазе на половину длины волны относительно другой части, чем и обусловлен контраст на изображении. Интерференционный микроскоп - это дальнейшее развитие фазово-контрастного микроскопа. В нем интерферируют два световых луча, один из которых проходит сквозь образец, а другой отражается. При таком методе получаются окрашенные изображения, дающие очень ценную информацию при исследовании живого материала. См. также
ЭЛЕКТРОННЫЙ МИКРОСКОП ;
ОПТИЧЕСКИЕ ПРИБОРЫ ;
ОПТИКА .
ЛИТЕРАТУРА
Микроскопы. Л., 1969 Проектирование оптических систем. М., 1983 Иванова Т.А., Кирилловский В.К. Проектирование и контроль оптики микроскопов. М., 1984 Кулагин С.В., Гоменюк А.С. и др. Оптико-механические приборы. М., 1984

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "МИКРОСКОП" в других словарях:

    Микроскоп … Орфографический словарь-справочник

    МИКРОСКОП - (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

    микроскоп - а, м. microscope m.<гр. mikros малый + skopeo смотрю. Оптический прибор с системой сильно увеличивающих стекол для рассматривания предметов или частей их, не видимых вооруженным глазом. БАС 1. Микроскоп, мелкозор. 1790. Кург. // Мальцева 54.… … Исторический словарь галлицизмов русского языка

    МИКРОСКОП (Microscopus), небольшое созвездие южного неба. Самая яркая его звезда имеет звездную величину 4,7. МИКРОСКОП, оптический прибор, позволяющий получить увеличенное изображение мелких предметов. Первый микроскоп был создан в 1668 г.… … Научно-технический энциклопедический словарь

    - (греч., от mikros маленький, и skopeo смотрю). Физический снаряд для рассматривания самых малых предметов, которые представляются, при посредстве его, в увеличенном виде. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

    - (от микро... и...скоп) инструмент, позволяющий получать увеличенное изображение мелких объектов и их деталей, не видимых невооруженным глазом. Увеличение микроскопа, достигающее 1500 2000, ограничено дифракционными явлениями. Невооруженным… … Большой Энциклопедический словарь

    Микротекстил, ортоскоп Словарь русских синонимов. микроскоп сущ., кол во синонимов: 11 биомикроскоп (1) … Словарь синонимов

    МИКРОСКОП, а, муж. Увеличительный прибор для рассматривания предметов, неразличимых простым глазом. Оптический м. Электронный м. (дающий увеличенное изображение с помощью пучков электронов). Под микроскопом (в микроскоп) рассматривать что н. |… … Толковый словарь Ожегова

    - (от греч. mikros малый и skopeo смотрю), оптич. прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), не видимых невооружённым глазом. Различные типы М. предназначаются для обнаружения л изучения бактерий,… … Физическая энциклопедия

    МИКРОСКОП, микроскопа, муж. (от греч. mikros маленький и skopeo смотрю) (физ.). Оптический прибор, с системой сильно увеличивающих стекол, для рассматривания предметов, которые не могут быть видимы невооруженным глазом. Толковый словарь Ушакова.… … Толковый словарь Ушакова

    Оптический прибор для получения увеличенного изображения объектов, не различимых невооруженным глазом. В микробиол. используется световой и электронный М. Один из основных показателей М. – разрешение – возможность различать два соседних объекта… … Словарь микробиологии

Микроскоп – это устройство, предназначенное для увеличения изображения объектов изучения для просмотра скрытых для невооруженного глаза деталей их структуры. Прибор обеспечивает увеличение в десятки или тысячи раз, что позволяет проводить исследования, которые невозможно получить используя любое другое оборудование или приспособление.

Микроскопы широко применяются в медицине и лабораторных исследованиях. С их помощью проводится инициализация опасных микроорганизмов и вирусов с целью определения метода лечения. Микроскоп является незаменимым и постоянно совершенствуется. Впервые подобие микроскопа было создано в 1538 году итальянским врачом Джироламо Фракасторо, который решил установить последовательно две оптические линзы, подобные тем, что используются в очках, биноклях, подзорных трубах и лупах. Над усовершенствованием микроскопа трудился Галилео Галилей, а также десятки всемирно известных ученых.

Устройство

Существует много разновидностей микроскопов, которые отличаются между собой по устройству. Большинство моделей объединяет похожая конструкция, но с небольшими техническими особенностями.

В подавляющем большинстве случаев микроскопы состоят из стойки, на которой закрепляется 4 главных элемента:

  • Объектив.
  • Окуляр.
  • Осветительная система.
  • Предметный столик.
Объектив

Объектив представляет собой сложную оптическую систему, которая состоит из идущих друг за другом стеклянных линз. Объективы сделаны в виде трубок, внутри которых могут быть закреплены до 14 линз. Каждая из них увеличивает изображение, снимая его с поверхности впереди стоящей линзы. Таким образом, если одна увеличит предмет в 2 раза, следующая сделает увеличение данной проекции еще больше и так до тех пор, пока предмет не отобразится на поверхности последний линзы.

Каждая линза имеет свое расстояние для фокусировки. В связи с этим они намертво закреплены в тубусе. Если любая из них будет передвинута ближе или дальше, получить отчетливое увеличение изображения не удастся. В зависимости от особенностей линзы, длина тубуса, в котором заключен объектив, может отличаться. Фактически, чем он выше, тем более увеличенным будет изображение.

Окуляр

Окуляр микроскопа также состоит из линз. Он предназначен для того чтобы оператор, который работает с микроскопом, мог приложить к нему глаз и увидеть увеличенное изображение на объективе. В окуляре имеются две линзы. Первая располагается ближе к глазу и называется глазной, а вторая полевой. С помощью последней осуществляется регулировка увеличенного объективом изображения для его правильной проекции на сетчатку глаза человека. Это необходимо для того, чтобы путем регулировки убрать дефекты восприятия зрения, поскольку у каждого человека фокусировка осуществляется на разном расстоянии. Полевая линза позволяет подстроить микроскоп под данную особенность.

Осветительная система

Чтобы рассмотреть изучаемый предмет необходимо его осветить, поскольку объектив закрывает естественный свет. В результате смотря в окуляр всегда можно видеть только черное или серое изображение. Специально для этого была разработана осветительная система. Она может быть выполнена в виде лампы, светодиода или другого источника света. У самых простых моделей осуществляется прием световых лучей из внешнего источника. Они направляются на предмет изучения с помощью зеркал.

Предметный столик

Последней важной и самой простой в изготовлении деталью микроскопа является предметный столик. На него направлен объектив, поскольку именно на нем закрепляется предмет для изучения. Столик имеет плоскую поверхность, что позволяет фиксировать объект без опаски, что он сдвинется. Даже минимальное передвижение объекта исследований под увеличением будет огромным, поэтому найти изначальную точку, которая исследовалась, заново будет непросто.

Типы микроскопов

За огромную историю существования данного прибора, было разработано несколько значительно отличающихся между собой по принципу действия микроскопов.

Среди самых часто используемых и востребованных типов этого оборудования выделяют такие виды:

  • Оптические.
  • Электронные.
  • Сканирующие зондовые.
  • Рентгеновские.
Оптические

Оптический микроскоп является самым бюджетным и простым устройством. Данное оборудование позволяет провести увеличение изображения в 2000 раз. Это довольно большой показатель, который позволяет изучать строение клеток, поверхность ткани, находить дефекты на искусственно созданных предметах и пр. Стоит отметить, что для достижения столь большого увеличения устройство должно быть очень качественно выполненным, поэтому стоит дорого. Подавляющее большинство оптических микроскопов сделано значительно проще и имеют сравнительно небольшое увеличение. Учебные типы микроскопов представлены именно оптическими. Это обусловлено их меньшей стоимостью, а также не слишком большой кратностью увеличения.

Обычно оптический микроскоп имеет несколько объективов, которые закрепляются на стойке подвижными. Каждый из них имеет свою степень увеличения. Рассматривая предмет можно передвинуть объектив в рабочее положение и изучить его под определенной кратностью. При желании еще больше приблизить изображение, нужно просто перейти на еще более увеличивающий объектив. Данные устройства не имеют сверхточной регулировки. К примеру, если необходимо лишь немного приблизить изображение, то перейдя на другой объектив, можно его приблизить в десятки раз, что будет чрезмерно и не позволит правильно воспринять увеличенную картинку и избежать ненужных деталей.

Электронный микроскоп

Электронный является более совершенной конструкцией. Он обеспечивает увеличение изображения как минимум в 20000 раз. Максимальное увеличение подобного прибора возможно в 10 6 раз. Особенность этого оборудования заключается в том, что вместо луча света как у оптических, у них направляется пучок электронов. Получение изображения осуществляется благодаря применению специальных магнитных линз, которые реагируют на движение электронов в колоне прибора. Регулировка направленности пучка осуществляется с помощью . Данные устройства появились в 1931 году. В начале 2000-х годов начали совмещать компьютерное оборудование и электронные микроскопы, что значительно повысило кратность увеличения, диапазон настройки и позволило запечатлеть получаемое изображение.

Электронные устройства при всех своих достоинствах имеют большую цену, и требуют особенных условий для работы. Чтобы получать качественное четкое изображение необходимо, чтобы предмет изучения находился в вакууме. Это связано с тем, что молекулы воздуха рассеивают электроны, что нарушает четкость изображения и не позволяет проводить точную регулировку. В связи с этим данное оборудование применяют в лабораторных условиях. Также важным требованием для использования электронных микроскопов является отсутствие внешних магнитных полей. В связи с этим лаборатории, в которых их используют, имеют очень толстые изолированные стены или находятся в подземных бункерах.

Подобное оборудование используется в медицине, биологии, а также в различных отраслях промышленности.

Сканирующие зондовые микроскопы

Сканирующий зондовый микроскоп позволяет получать изображение с объекта путем его исследования с помощью специального зонда. В результате получается трехмерное изображение, с точными данными характеристики объектов. Данное оборудование имеет высокое разрешение. Это сравнительно новое оборудование, которое создали несколько десятков лет назад. Вместо объектива у данных приборов имеется зонд и система его перемещения. Получаемое из него изображение регистрируется сложной системой и записывается, после чего создается топографическая картина увеличенных объектов. Зонд оснащается чувствительными сенсорами, которые реагируют на движение электронов. Также встречаются зонды, которые работают по оптическому типу путем увеличения благодаря установке линз.

Часто зонды применяют для получения данных о поверхности предметов со сложным рельефом. Зачастую их опускают в трубу, отверстия, а также мелкие тоннели. Единственным условием является соответствие диаметра зонда диаметру объекта изучения.

Для данного метода характерна значительная погрешность измерения, поскольку получаемая в результате 3D картина сложно поддается расшифровке. Присутствует много деталей, которые искажаются компьютером при обработке. Первоначальные данные обрабатываются математическим способом с помощью специализированного программного обеспечения.

Рентгеновские микроскопы

Рентгеновский микроскоп относится к лабораторному оборудованию, применяемому для изучения объектов, размеры которых сопоставимы с длиной рентгеновской волны. Эффективность увеличения данного устройства находится между оптическими и электронными приборами. На изучаемый объект отправляются рентгеновские лучи, после чего чувствительные датчики реагируют на их преломление. В результате создается картинка поверхности изучаемого объекта. Благодаря тому, что рентгеновские лучи могут проходить сквозь поверхность предмета, подобное оборудование позволяет не только получить данные о структуре объекта, но и его химическом составе.

Рентгеновское оборудование обычно используется для оценки качества тонких покрытий. Его используют в биологии и ботанике, а также для анализа порошковых смесей и металлов.

Татьяна Осипова
Познавательно-исследовательский проект «Микроскоп»

Познавательно – исследовательский проект «Микроскоп »

Тип проекта : краткосрочный исследовательский

Продолжительность : 4 недели

Участники : воспитатель и воспитанники средней группы «Цветочки» .

Цель :

Исследовать возможности микроскопа для объектов живой и неживой природы

Задачи :

1. Узнать историю создания микроскопа .

2. Узнать, из чего состоят микроскопы , и какими могут они быть.

3. Провести опыты с элементами исследования.

Актуальность проекта

Среди дошкольников отыскать тех, кого не интересует устройство всего живого на Земле, очень не просто. Ежедневно дети задают десятки сложнейших вопросов своим мамам и папам. Любознательных малышей интересует определенно все : из чего состоят животные и растения, чем жжется крапива, почему одни листочки гладкие, а другие – пушистые, как стрекочет кузнечик, отчего помидор красный, а огурец – зеленый. И именно микроскоп даст возможность найти ответы на многие детские "почему". Куда интереснее не просто послушать мамин рассказ о каких-то там клетках, а посмотреть на эти клетки собственными глазами. Трудно даже представить, насколько захватывающие картинки можно увидеть в окуляр микроскопа , какие удивительные открытия сделает ваш маленький естествоиспытатель.

Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности , экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям. Он будет ставить вопросы и самостоятельно искать на них ответы. Маленький исследователь сможет совсем иначе взглянуть на самые простые вещи, увидеть их красоту и уникальность. Все это станет крепкой основой для дальнейшего развития и обучения.

Проект призван на примере микроскопа показать детям возможности использования приборов для изучения объектов и явлений окружающего мира, расширять кругозор, вовлекать их в экспериментальную и проектную деятельность с использованием микроскопа .

Механизм реализации проекта

Осуществление проекта проводилось через подбор материала, проведение опытов.

Ожидаемые результаты

Повышение уровня экологического образования дошкольников.

Появление желания экспериментировать с использованием микроскопа .

Получить практические знания по использованию микроскопа .

Основная часть

История создания микроскопа .

Микроскоп (от греч. - малый и смотрю) - оптический прибор для получения увеличенных изображений объектов, невидимых невооружённым глазом.

Увлекательное это занятие - рассматривать что-либо в микроскоп . Но кто же придумал это чудо - микроскоп ?

В голландском городе Миддельбурге жил триста пятьдесят лет назад очковый мастер. Терпеливо шлифовал он стекла, делал очки и продавал их всем, кто в этом нуждался. Было у него двое детей - два мальчика. Они очень любили забираться в мастерскую отца и играть его инструментами и стеклами, хотя это и было им запрещено. И вот однажды, когда отец куда-то отлучился, ребята пробрались по обыкновению к его верстаку, - нет ли чего-нибудь новенького, чем можно позабавиться? На столе лежали стекла, приготовленные для очков, а в углу валялась короткая медная трубка : из нее мастер собирался вырезать кольца - оправу для очков. Ребята втиснули в концы трубки по очковому стеклу. Старший мальчик приставил к глазу трубку и посмотрел на страницу развернутой книги, которая лежала здесь же на столе. К его удивлению, буквы стали огромными. В трубку посмотрел младший и закричал, пораженный : он увидел запятую, но какую запятую - она была похожа на толстого червяка! Ребята навели трубку на стеклянную пыль, оставшуюся после шлифовки стекол. И увидели не пыль, а кучку стеклянных зернышек. Трубка оказалась прямо волшебной : она сильно увеличивала все предметы. О своем открытии ребята рассказали отцу. Тот даже не стал бранить их : так был он удивлен необычайным свойством трубки. Он попробовал сделать другую трубку с такими же стеклами, длинную и раздвижную. Новая трубка увеличивала еще лучше. Это и был первый микроскоп . Его случайно изобрел в 1590 году очковый мастер Захария Янсен, - вернее сказать, - его дети.

Микроскоп можно назвать прибором, открывающим тайны. Микроскопы в разные года выглядели по-разному, но с каждым годом становились всё сложнее, и у них стало появляться много деталей.

Виды микроскопов .

Существует множество различных видов увеличительных приборов. Например, лупы, телескопы, бинокли, микроскопы . Какие же бывают микроскопы ?

Существует 3 вида микроскопов .

1. Оптический микроскоп , который был изобретен еще в 16 веке. Он состоит из 2-х линз, одна из которых предназначена для глаза, другая для объекта, который ты хочешь рассмотреть.

2. Электронный микроскоп был изобретен в начале 20 века. Наблюдаемый объект сканируется электронным лазером, который анализирует частицы при помощи компьютера, который воссоздает трехмерное изображение наблюдаемого объекта.

3. Сканирующий туннельный микроскоп и атомно-силовой микроскоп изобретены позднее , с их помощью можно увидеть бесконечно малые частицы.

Профессии, в которых используется микроскоп .

Химики используют микроскоп для изучения молекул. Видя то, что не видно вооруженным взглядом, они могут смешивать молекулы и создавать новые материалы, называемые пластмассами.

Врачи и биологи используют микроскоп , чтобы понять функционирование живых организмов. При помощи микроскопа , врачи изучают различные заболевания и создают лекарства, а также проводят хирургические операции, которые требуют особой точности.

Инженер-агроном изучает молекулы пищи. Это помогает создавать новые продукты из уже существующих видов пищи. Микроскоп используется и для контроля качества пищи, что может предотвратить множество болезней.

Криминалисты расследуют преступления научными методами. Они используют микроскоп для изучения улик , оставленных на месте преступления. Микроскоп помогает собирать и изучать отпечатки пальцев.

Микроскоп

В лаборатории нашего детского сада мы будем работать с оптическим микроскопом , который работает на батарейках. Основная задача этого микроскопа - показать объект в увеличенном виде.

Я познакомила детей с этим микроскопом , рассказала из чего он состоит, как работает.

Дети узнали какие предметы входят в его набор это :

Прозрачные пластины, с их помощью можно сохранять образцы, которые были изучены ранее;

Пинцет и палочка для размешивания;

Игла, скальпель и микрорезка ;

Чашка Петри.

Прежде чем проводить исследования, дети узнали правила работы с микроскопом :

1. Поставь микроскоп на ровную поверхность.

2. Проверь подсветку. Установи образец на подставку и зажми пластину, крути регулятор для получения 150-ти кратного увеличения.

3. Посмотри в окуляр. С помощью регулятора фокусировки придвинь объектив как можно ближе к платине, не касаясь ее. Затем крути регулятор в обратном направлении до тех пор, пока изображение не станет четким.

4. С помощью светофильтров можно изменять цвета рассматриваемых объектов.

5. Если изображение слишком темное, можно настроить яркость подсветки.

6. Выбрать объект для исследования и навести фокус.

Эксперименты с микроскопом .

Под микроскопом можно рассмотреть буквально все это интересно и познавательно .

1. Состав растений

Все, начиная от семян, заканчивая листьями деревьев и прочих растений, живое. Эти предметы состоят из тысячи крошечных клеток, которые помогают растениям расти, развиваться и размножаться. Вот они-то и видны в микроскоп , будто маленькие кирпичики. А почему их назвали клетками? Это имя придумал английский ботаник Р. Гук. Рассматривая под микроскопом срез пробки , он заметил, что она состоит "из множества коробочек". А еще он называл эти "коробочки" камерами и. клетками.

Микроскоп поможет узнать о том, что все живое состоит из клеток. Под микроскопом можно увидеть не только клетку, но и рассмотреть ее строение.

Опыт 1. Листочек.

Листья – это нос дерева. У них есть 2 основные функции : поглощение солнечных лучей, углекислого газа и кислорода. Возьмем хороший зеленый листик клена. Отрежем от него небольшой кусочек. Поместим этот кусочек на пластину, закрепим ее на подставке, будем использовать прямое освещение.

Лист имеет простую структуру. Он состоит из черенка, который отходит от ствола дерева или веточки. Жилки являются скелетом растения. Листовая платина – основная ткань листа. С каждой стороны листа находятся клетки 2 типов, которые отвечают за обе функции. Снаружи есть хлоропласты, которые отвечают за захват солнечного света. На внутренней стороне есть устьица, которые поглощают углекислый газ днем, а кислород ночью.

Почему листья зеленые? Хлорофилл – это зеленый пигмент листочка. Это что-то вроде «крови» листа. Осенью лист покраснеет или пожелтеет, так как содержание хлорофилла уменьшится.

2. Люди и животные

У человека множество сходства с животными. Они состоят из одинаковых клеток. Эти клетки позволяют им жить, думать, двигаться и размножаться. Проведем опыт, который откроет удивительный мир животных клеток.

Опыт 2. Клетки во рту

Слюна состоит из множества животных клеток. Что удивительно, они почти ничем не отличаются от растительных клеток!

Чистым ватным тампоном соберем немного слюны с внутренней стороны щеки. Поместим небольшое количество полученного образца на пластину, распространим по ней, накроем другой прозрачной пластиной и дадим подсохнуть в течении нескольких минут. Наблюдение будем проводить с увеличением в 400 раз и при использовании отраженного света.

Слюна дает возможность легко наблюдать за животными клетками. Большинство клеток в данном образце погибли, но сохранили свою структуру, похожую на структуру растительных клеток – ядро, являющееся жизненным центром, которое погружено в цитоплазму. Внутри цитоплазмы есть питательные вещества, которые позволяют клетке жить, но, к сожалению, не видны в микроскоп . Мембрана защищает клетку. Отличительной чертой от растительных клеток является то, что животные клетки не имеют регулярной формы и могут быть разных размеров.

Какие еще клетки обитают в твоем теле? Твое тело состоит из определенного набора клеток. Например, эритроциты, клетки крови, не имеющие ядра, а мозг состоит из клеток, которые называют нейронами.

Предметы в твоем доме.

В твоем доме находится масса занимательных предметов. В шкафу, в холодильнике, в гостиной находятся множество предметов, с которыми можно провести эксперименты.

Опыт 3. Сахар в еде.

Все дети обожают сладости, сухие завтраки или шоколадную пасту. Все эти продукты содержат сахар

Понадобится сделать два образца. На первый поместим сахар, на второй шоколадный порошок (какао) . Проводить эксперимент будем при слабом увеличении.

Под микроскопом можно различить в порошке какао частички сахара. Это небольшие прозрачные кусочки на фоне шоколадных гранул. Они составляют почти 65% порошка какао. На самом деле это именно тот сахар, который мы добавляем в чай и кофе. Шоколадный порошок не самый сладкий продукт. Например, в бутылке содовой находится 9 кусков сахара. Кроме того, в одном печенье содержится 1 кусок сахара, а конфеты почти полностью состоят из него. Поэтому, чтобы оставаться здоровыми, не стоит злоупотреблять этими продуктами.

Какие фрукты самые сладкие? На 100г фиников приходится 7 кусков сахара. Затем следует виноград и банан. А вот в землянике наоборот содержится меньше всего сахара.

На этом наши исследования закончились. Мы сделали снимки всех объектов, которые исследовали под микроскопом .

Заключение

Исследуя разные объекты под микроскопом , человек познает природу самой жизни . Выполняя этот проект , мы узнали историю создания первого микроскопа , и какие теперь использует человек в современной жизни.

Научились пользоваться оптическим микроскопом – прибором для получения увеличенных изображений объектов, невидимых невооружённым глазом. Узнали, из чего он состоит и как с ним работать. Провели несколько экспериментов по исследованию увеличенных объектов. Действительно, увлекательное это занятие - рассматривать что-либо в микроскоп .

Выводы :

1. Познакомились с интересной историей изобретения микроскопа .

2. Мы узнали, из чего состоят микроскопы , и какими они бывают.

3. Проделали несколько очень интересных и познавательных опытов .

4. Микроскоп - штука интересная !

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека