Специфические гуморальные факторы. Гуморальные факторы неспецифической резистентности

1. «Комплемент » - комплекс белковых молекул в крови, которые разрушают клетки или помечают их для уничтожения(от лат. Complementum-дополнение). В крови циркулируют различные фракции (частички) комплемента, обозначаемые символами С1,С2,С3…С9 и др. Находясь в разобщенном состоянии, они являются инертными белками-предшественниками комплемента. Сборка фракций комплемента в единое целое происходит при внедрении в организм болезнетворных микробов. Сформировавшись, комплемент выглядит в виде воронки и способен лизировать (уничтожать) бактерии или помечать их для уничтожения фагоцитами.

У здоровых людей уровень комплемента варьирует незначительно, но у больных может резко повышаться или снижаться.

2. Цитокины - небольшие пептидные информационные молекулы интерлейкины и интерфероны . Они регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз (естественная гибель клеток организма). Обеспечивают согласованность действия иммунной, эндокринной и нервной систем в нормальных условиях и при патологии.

Цитокин выделяется на поверхность клетки (в которой находился) и взаимодействуют с рецептором рядом находящейся другой клетки. Таким образом, передается сигнал, для запуска дальнейших реакции.

а) Интерлейки́ны (ИНЛ или IL) - группа цитокинов, синтезируемая в основном лейкоцитами (по этой причине было выбрано окончание «-лейкин»). Также производятся моноцитами и макрофагами. Существуют разные классы интерлейкинов от 1 до 11 и др.

б) Интерфероны (ИНФ) Это низкомолекулярные белки, содержащие небольшое количество углеводов (от анг.interfere-препятствую размножению). Различают 3 серологические группы α, β и γ. α – ИНФ - это семейство 20 полипептидов продуцируется лейкоцитами, β- ИНФ - гликопротеин, продуцируются фибробластами. γ – ИНФ продуцируется Т-лимфоцитами. Отличаясь по структуре, они обладают одинаковым механизмом действия. Под воздействием инфекционного начала секретируются многими клетками в месте входных ворот инфекции концентрация ИНФ в считанные часы многократно увеличивается. Его защитное действие в отношении вирусов сводится к ингибированию репликации РНК или ДНК. Связавшийся со здоровыми клетками ИНФ I типа защищает их от проникновения вирусов.

3. Опсонины это белки острой фазы. Усиливают фагоцитарную активность, оседают на фагоцитах и облегчают их связывание с а/г, покрытых иммуноглобулином (IgG и IgA) или комплементом.

Иммуногенез

Антителообразование называется иммуногенез и зависит от дозы, кратности и способа введения а/г.

Клетки, обеспечивающие иммунный ответ называются иммунокомпетентными, ведут начало от кроветворной стволовой клетки , которые образуются в красном костном мозге. Там же формируются лейкоциты, тромбоциты и эритроциты, а также предшественники Т и В – лимфоцитов.

На ряду с выше перечисленными клетками предшественники Т- и В- лимфоциты являются клетками иммунной системы. Для созревания Т – лимфоциты направляются в тимус.

В – лимфоциты начальное созревание проходят в красном костном мозге, а завершают созревание в лимфатических сосудах и узлах. В – лимфоциты произошло от слова “бурса” – сумка. В сумке Фабрициуса у птиц развиваются клетки, сходные с В – лимфоцитами человека. У человека органа образующего В – лимфоциты не найдено. Т и В – лимфоциты покрыты ворсинками (рецепторами).

Хранение Т – и В – лимфоцитов осуществляется в селезенке. Весь этот процесс происходит без внедрения антигена. Обновление всех клеток крови и лимфы происходит постоянно.

Процесс формирования Jg может быть продолжен, если происходит проникновение а/г в организм.

В ответ на внедрение а/г реагируют макрофаги. Они определяют чужеродность а/г, затем фагоцитируют и если макрофаги не справились, образованный комплекс гистосовместимости (MHC) (а\г+макрофаг), данный комплекс выделяет вещество интерлейкин I (ИНЛ I) порядка, это вещество действует на Т – лимфоциты, которые дифференцируются на 3 разновидности Тk (киллеры), Th (Т-хелперы), Ts (Т-супрессоры).

Th выделяют ИНЛ II порядка, который действует на преобразование В – лимфоцитов и активацию Тk. После такой активации В - лимфоциты трансформируются в плазматические клетки, из которых в конечном итоге получаются Jg (М,D,G,А,Е,).

Процесс выработки Jg происходит, если человек заболевает впервые.

Если происходит повторное заражение этим же видом микроба, схема выработки Jg сокращается. В этом случае оставшиеся, на В – лимфоцитах JgG соединяются сразу же с а/г и трансформируются в плазматические клетки. Т – система остается, не задействована. Одновременно с активацией В – лимфоцитов при повторном заражении активизируется мощная система сборки комплемента.

Тk обладают противовирусной защитой. Ответственны за клеточный иммунитет: разрушают опухолевые клетки, трансплантированные клетки, мутировавшие клетки собственного организма, учавствуют ГЗТ. В отличие от NK-клеток, T-киллеры специфически распознают определённый антиген и убивают только клетки с этим антигеном.

NK -клетки. Естественные киллеры , натуральные киллеры (англ. Natural killer cells (NK cells) ) - большие гранулярные лимфоциты, обладающие цитотоксичностью против опухолевых клеток и клеток, зараженных вирусами. NK-клетки рассматривают как отдельный класс лимфоцитов. NK являются одним из важнейших компонентов клеточного врождённого иммунитета, осуществляют неспецифическую защиту. Они не имеют Т-клеточных рецепторов, CD3 или поверхностных иммуноглобулинов.

Ts - Т-супрессоры (англ. regulatory T cells, suppressor T cells, Treg ) или регуляторные Т- лимфоциты. Основная их функция - контролировать силу и продолжительность иммунного ответа через регуляцию функции Т-хелперов и Тk. При завершении инфекционного процесса нужно прекратить преобразование В – лимфоцитов в плазматические клетки, Ts подавляют (инактивируют) выработку В – лимфоцитов.

Специфические и неспецифические факторы иммунной защиты всегда действуют одномоментно.

Рисунок схемы выработки иммуноглобулинов

Антитела

Антитела (а\т) - это специфические белки крови, другое название иммуноглобулины, образующиеся в ответе на внедрение а/г.

А/т связанные с глобулинами, и измененные под действием, а\г называются иммуноглобулинами (J g) их делят на 5 классов: JgА, JgG, JgМ, JgЕ, JgД. Все они нужны для ответной реакции иммунитета.JgG имеет 4 подкласса JgG 1-4. .Данный иммуноглобулин составляет 75% от всех иммуноглобулинов. Его молекула самая маленькая, поэтому проникает через плаценту матери, и обеспечивает естественный пассивный иммунитет плода. При первичном заболевании JgG формируется и накапливается. В начале заболевания концентрация его мала, при развитии инфекционного процесса и количество JgG возрастает, при выздоровлении, концентрация снижается и в небольшом количестве остается в организме после перенесенного заболевания, обеспечивая иммунологическую память.

JgМ первыми появляются при заражении и имуннизации. Имеют большую молекулярную массу (самая крупная молекула). Образуется при бытовом многократном инфицировании.

JgА содержится в секретах слизистых дыхательных путей и пищеварительного тракта, а также в молозиве, слюне. Участвуют в противовирусной защите.

JgЕ ответственен за аллергические реакции, участвуют в развитии местного иммунитета.

JgД обнаружен в небольшом количестве в сыворотке крови человека, изучен недостаточно.

Структура Jg

Наиболее простые JgЕ, JgД, JgА

Активные центры связываются с а/г, от количества центров зависит валентность а/т. Jg + G двухвалентны, JgМ – 5ти валентен.

Гуморальные факторы неспецифической защиты организма включают в себя нормальные (естественные) антитела, лизоцим, пропердин, бета-лизины (лизины), комплемент, интерферон, ин­гибиторы вирусов в сыворотке крови и ряд других веществ, посто­янно присутствующих в организме.

Антитела (естественные). В крови животных и человека, которые ранее никогда не болели и не подвергались иммуниза­ции, обнаруживают вещества, вступающие в реакцию со многими антигенами, но в низких титрах, не превышающих разведения 1:10 ... 1:40. Эти вещества были названы нормальными или при­родными антителами. Считают, что они возникают в результате естественной иммунизации различными микроорганизмами.

Л и з о ц и м. Лизосомальный фермент присутствует в слезах, слюне, носовой слизи, секрете слизистых оболочек, сыворотке крови и экстрактах органов и тканей, в молоке; много лизоцима в белке куриных яиц. Лизоцим устойчив к нагреванию (инактивируется при кипячении), обладает свойством лизировать живые и убитые в основном грамположительные микроорганизмы.

Метод определения лизоцима основан на способности сыво­ротки действовать на культуру микрококкус лизодектикус, выра­щенную на косом агаре. Взвесь суточной культуры готовят по оп­тическому стандарту (10 ЕД) на физиологическом растворе. Ис­следуемую сыворотку последовательно разводят физиологическим раствором в 10, 20, 40, 80 раз и т. д. Во все пробирки добавляют равный объем взвеси микробов. Пробирки встряхивают и ставят в термостат на 3 ч при 37 °С. Учет реакции производят по степени просветления сыворотки. Титр лизоцима - это последнее разве­дение, в котором происходит полный лизис микробной взвеси.

С е к р е т о р н ы й и м м у н о г л о б у л и н А. Постоянно присутствует в содержимом секретов слизистых оболочек, молоч­ных и слюнных желез, в кишечном тракте; обладает выраженны­ми противомикробными и противовирусными свойствами.

П р о п е р д и н (от лат. pro и perdere - подготовить к разруше­нию). Описан в 1954 г. в виде полимера как фактор неспецифичес­кой защиты и цитолизина. Присутствует в нормальной сыворотке крови в количестве до 25 мкг/мл. Это сывороточный белок (бета-глобулин) с молекулярной массой

220 000. Пропердин принимает участие в разрушении микробной клетки, нейтрализации вирусов. Пропердин действует в составе пропердиновой системы: пропер­дин комплемент и двухвалентные ионы магния. Нативный пропер­дин, играет значительную роль в неспецифической активации комплемента (альтернативный путь активации).

Л и з и н ы. Белки сыворотки крови, обладающие способнос­тью лизировать (растворять) некоторые бактерии и эритроциты. В сыворотке крови многих животных присутствуют бета-лизины, вызывающие лизис культуры сенной палочки, а также многих патогенных микробов.

Л а к т о ф е р р и н. Негеминовый гликопротеид, обладающий железосвязывающей активностью. Связывает два атома трехвалент­ного железа, конкурируя с микробами, в результате чего рост мик­робов подавляется. Синтезируется полиморфноядерными лейко­цитами и гроздевидными клетками железистого эпителия. Яв­ляется специфическим компонентом секрета желез - слюнных, слезных, молочных, дыхательного, пищеварительного и моче­полового, трактов. Лактоферрин - фактор местного иммунитета, защищающий от микробов эпителиальные покровы.

К о м п л е м е н т. Многокомпонентная система белков сыво­ротки крови и других жидкостей организма, которые играют важ­ную роль в поддержании иммунного гомеостаза. Впервые его опи­сал Бухнер в 1889 г. под названием «алексин» - термолабильный фактор, в присутствии которого происходит лизис микробов. Тер­мин «комплемент» ввел Эрлих в 1895 г. Комплемент весьма не ус­тойчив. Было замечено, что специфические антитела в присутствии свежей сыворотки крови способны вызывать гемолиз эритроцитов или лизис бактериальной клетки, но если сыворотку перед поста­новкой реакции прогревать при 56 "С в течение 30 мин, то лизис не произойдет. Оказалось, что гемолиз (лизис) происходит за счет наличия комплемента в свежей сыворотке. Наибольшее количе­ство комплемента содержится в сыворотке морской свинки.

Система комплемента состоит не менее чем из девяти различ­ных белков сыворотки крови, обозначаемых от С1 до С9. С1 в свою очередь имеет три субъединицы - Clq, Clr, Cls. Активиро­ванная форма комплемента обозначается черточкой сверху (с).

Существует два пути активации (самосборки) системы компле­мента - классический и альтернативный, отличающиеся пуско­выми механизмами.

При к л а с с и ч е с к о м пути активации происходит связы­вание компонента комплемента С1 с иммунными комплексами (антиген + антитело), куда включаются последовательно субком­поненты (Clq, Clr, Cls), С4, С2 и СЗ. Комплекс С4, С2 и СЗ обес­печивает фиксацию на клеточной мембране активированного С5 компонента комплемента, а затем включаются через ряд реакций С6 и С7, которые способствуют фиксации С8 и С9. В результате происходит повреждение клеточной стенки или лизис бактериаль­ной клетки.

При а л ь т е р н а т и в н о м пути активации комплемента активаторами служат непосредственно сами вирусы, бактерии или экзотоксины. В альтернативном пути активации не участвуют компоненты С1, С4 и С2. Активация начинается со стадии СЗ, куда включается группа белков: Р (пропердин), В (проактиватор), конвертаза проактиватора СЗ и ингибиторы j и Н. Пропердин в реакции стабилизирует конвертазы СЗ и С5, поэтому этот путь ак­тивации называют также системой пропердина. Реакция начина­ется с присоединения фактора В к СЗ, в результате ряда последо­вательных реакций в комплекс (конвертаза СЗ) встраивается Р (пропердин), который воздействует как фермент на СЗ и С5,"и на­чинается каскад активации комплемента с С6, С7, С8 и С9, что приводит к повреждению клеточной стенки или лизису клетки.

Таким образом, система комплемента служит эффективным механизмом защиты организма, которая активируется в результате иммунных реакций или при непосредственном контакте с микро­бами или токсинами. Отметим некоторые биологические функ­ции активированных компонентов комплемента: участвуют в ре­гуляции процесса переключения иммунологических реакций с клеточных на гуморальные и наоборот; С4, связанный с клеткой, способствует иммунному прикреплению; СЗ и С4 усиливают фа­гоцитоз; С1 и С4, связываясь с поверхностью вируса, блокируют рецепторы, ответственные за внедрение вируса в клетку; СЗа и С5а идентичны анафилактоксинам, они воздействуют на нейтрофильные гранулоциты, последние выделяют лизосомные ферменты, разрушающие чужеродные антигены, обеспечивают направлен­ную миграцию макрофагов, вызывают сокращение гладких мышц, усиливают воспаление.

Установлено, что макрофаги синтезируют С1, С2, СЗ, С4 и С5; гепатоциты - СЗ, Со, С8; клетки паренхимы печени - СЗ, С5 и С9.

И н т е р ф е р о н. Выделен в 1957г. английскими вирусоло­гами А. Айзексом и И. Линдерманом. Интерферон первоначально рассматривался как фактор противовирусной защиты. В даль­нейшем выяснилось, что это группа белковых веществ, функция которых заключается в обеспечении генетического гомеостаза клетки. В качестве индукторов образования интерферона, поми­мо вирусов, выступают бактерии, бактериальные токсины, мито-гены и др. В зависимости от клеточного происхождения интер­ферона и индуцирующих его синтез факторов различают а-ин-терферон, или лейкоцитарный, который продуцируют лейкоциты, обработанные вирусами и другими агентами; (3-интерферон, или фибробластный, который продуцируют фибробласты, обработан­ные вирусами или другими агентами. Оба эти интерферона отне­сены к типу I. Иммунный интерферон, или у-интерферон, проду­цируют лимфоциты и макрофаги, активированные невирусными индукторами.

Интерферон принимает участие в регуляции различных меха­низмов иммунного ответа: усиливает цитотоксическое действие сенсибилизированных лимфоцитов и К-клеток, оказывает анти-пролиферативное и противоопухолевое действие и др. Интерфе­рон обладает видотканевой специфичностью, т. е. более активен в той биологической системе, в которой выработан, защищает клет­ки от вирусной инфекции лишь в том случае, если воздействует на них до контакта с вирусом.

Процесс взаимодействия интерферона с чувствительными клет­ками включает в себя несколько этапов: адсорбция интерферона на клеточных рецепторах; индукция антивирусного состояния; разви­тие вирусной резистентности (наполнение интерферониндуцированных РНК и белков); выраженная резистентность к вирусному инфицированию. Следовательно, интерферон не вступает в прямое взаимодействие с вирусом, а препятствует проникновению вируса и ингибирует синтез вирусных белков на клеточных рибосомах в пе­риод репликации вирусных нуклеиновых кислот. У интерферона также установлены радиационно-защитные свойства.

И н г и б и т о р ы. Неспецифические противовирусные ве­щества белковой природы, присутствуют в нормальной нативной сыворотке крови, секретах эпителия слизистых оболочек дыха­тельного и пищеварительного трактов, в экстрактах органов и тка­ней. Обладают способностью подавлять активность вирусов в кро­ви и жидкостях вне чувствительной клетки. Ингибиторы подраз­деляют на термолабильные (теряют свою активность при прогревании вании сыворотки крови до 6О...62°С в течение 1 ч) и термоста­бильные (выдерживают нагревание до 100 °С). Ингибиторы обла­дают универсальной вируснейтрализующей и антигемагглютинирующей активностью в отношении многих вирусов.

Ингибиторы тканей, секретов и экскретов животных оказались активными в отношении многих вирусов: например, секреторные ингибиторы респираторного тракта обладают антигемагглютинирующей и вируснейтрализующей активностью.

Бактерицидная активность сыворотки крови (БАС). Свежая сы­воротка крови человека и животных обладает выраженными бактериостатическими свойствами в отношении ряда возбудителей инфекционных болезней. Основные компоненты, подавляющие рост и развитие микроорганизмов, - это нормальные антитела, лизоцим, пропердин, комплемент, монокины, лейкины и другие вещества. Поэтому БАС является интегрированным выражением противомикробных свойств гуморальных факторов неспецифи­ческой защиты. БАС зависит от состояния здоровья животных, условий их содержания и кормления: при плохом содержании и кормлении активность сыворотки значительно снижается.

На всем пути эволюции человек контактирует с огром­ным количеством угрожающих ему болезнетворных агентов. Для того чтобы противостоять им, сформировалось два типа защитных реакций: 1) естественная или неспецифическая ре­зистентность, 2) специфические факторы защиты или имму­нитет (от лат.

Immunitas - свободный от чего-либо).

Неспецифическая резистентность обусловлена различны­ми факторами. Наиболее важными из них являются: 1) физи­ологические барьеры, 2) клеточные факторы, 3) воспаление, 4) гуморальные факторы.

Физиологические барьеры. Могут быть разделены на внешние и внутренние барьеры.

Внешние барьеры. Неповрежденная кожа непро­ницаема для подавляющего большинства инфекционных аген­тов. Постоянное слущивание верхних слоев эпителия, секреты сальных и потовых желез способствуют удалению микроорганизмов с поверхности кожи. При нарушении целостности кожного покрова, напри­мер, при ожогах, инфекция становится главной проблемой. Помимо того, что кожа служит механическим препятствием для бактерий, она содержит ряд бактерицидных веществ (молочная и жирные кислоты, лизоцим, ферменты, выделяемые потовыми и сальными железами). Поэтому микроорганизмы, не входящие в состав нормальной микрофлоры кожи, быстро исчезают с ее поверхности.

Слизистые оболочки также являются механическим барь­ером для бактерий, но они более проницаемы. Многие пато­генные микроорганизмы могут проникать даже через не­поврежденные слизистые.

Слизь, выделяемая стенками внутренних органов, дей­ствует как защитный барьер, препятствующий "прикрепле­нию" бактерий к клеткам эпителия. Микробы и другие чуже­родные частицы, захваченные слизью, удаляются механичес­ким путем - за счет движения ресничек эпителия, с кашлем и чиханием.

К другим механическим факторам, способствующим за­щите поверхности эпителия, можно отнести вымывающее дей­ствие слез, слюны, мочи. Во многих жидкостях, секретируемых организмом, содержатся бактерицидные компоненты (соляная кислота в желудочном соке, лактопероксидаза в грудном молоке, лизоцим в слезной жидкости, слюне, носо­вой слизи и т.д.).

Защитные функции кожи и слизистых оболочек не ограничиваются неспецифическими механизмами. На поверхности слизистых, в секретах кожных, молочных и других желез присутствуют секреторные иммуноглобулины, обладающие бактерицидными свойствами и активирующие местные фагоцитирующие клетки. Кожа и слизистые принимают активное участие в антиген-специфических реакциях приобретенного иммунитета. Их относят к самостоятельным компонентам иммунной системы.

Один из важнейших физиологических барьеров - нор­мальная микрофлора тела человека, угнетающая рост и раз­множение многих потенциально патогенных микроорганиз­мов.

Внутренние барьеры. К внутренним барьерам относится система лимфатических сосудов и лимфатических узлов. Микроорганизмы и другие чужеродные частицы, проникшие в ткани, фагоцитируются на месте или доставляются фагоцитами в лимфатические узлы или другие лимфатические образования, где развивается воспалительный процесс, направленный на уничтожение возбудителя. Если местная реакция оказывается недостаточной, процесс распространяется на следующие регионарные лимфоидные образования, представляющие собой новый барьер для проникновения возбудителя.

Существуют функциональные гистогематические барьеры, препятствующие проникновению возбудителей из крови в головной мозг, репродуктивную систему, глаз.

Мембрана каждой клетки также служит барьером для проникновения в нее чужеродных частиц и молекул.

Клеточные факторы. Среди клеточных факторов неспе­цифической защиты важнейшим является фагоцитоз - погло­щение и переваривание посторонних частиц, в т.ч. и микро­организмов. Фагоцитоз осуществляют две популяции клеток:

I. микрофаги (полиморфноядерные нейтрофилы, базофилы, эозинофилы), 2. макрофаги (моноциты крови, свободные и фиксированные макрофаги селезенки, лимфатических узлов, серозных полостей, купферовские клетки печени, гистиоциты).

По отношению к микроорганизмам фагоцитоз может быть завершенным, когда бактериальные клетки полностью перевариваются фагоцитом, или незавершенным, который характерен для таких заболеваний, как менингит, гонорея, туберкулез, кандидоз и др. В этом случае возбудители в тече­ние длительного времени сохраняют жизнеспособность внут­ри фагоцитов, а иногда и размножаются в них.

В организме существует популяция лимфоцитоподобных клеток, обладающих естественной цитотоксичностью по отношению к клеткам-“мишеням”. Они получили название естественных киллеров (ЕК).

Морфологически ЕК представляют собой большие гранулосодержащие лимфоциты, они не обладают фагоцитарной активностью. Среди лимфоцитов крови человека содержание ЕК составляет 2 – 12%.

Воспаление. При внедрении микроорганизма в ткани воз­никает воспалительный процесс. Происходящее при этом пов­реждение клеток ткани ведет к освобождению гистамина, что увеличивает проницаемость сосудистой стенки. Усиливается миграция макрофагов, возникает отек. В воспалительном очаге повышается температура, развивается ацидоз. Все это созда­ет неблагоприятные условия для бактерий и вирусов.

Гуморальные защитные факторы. Как показывает само название, гуморальные факторы защиты, содержатся в жид­костях организма (сыворотка крови, грудное молоко, слезы, слюна). К ним относятся: комплемент, лизоцим, бета-лизины, белки острой фазы, интерфероны и т.д.

Комплемент - сложный комплекс белков сыворотки кро­ви (9 фракций), которые, так же как и белки свертывающей системы крови, формируют каскадные системы взаимодейст­вия.

Система комплемента обладает несколькими биологи­ческими функциями: усиливает фагоцитоз, вызывает лизис бактерий и т.д.

Лизоцим (мурамидаза) - фермент, расщепляющий гликозидные связи в молекуле пептидогликана, входящего в состав клеточной стенки бактерий. Содержание пептидогликана у грамположительных бактерий выше, чем у грамотрицательных, поэтому лизоцим более эффективен в отношении Грамположительных бактерий. Лизоцим обнаруживается у челове­ка в слезной жидкости, слюне, мокроте, носовой слизи и т.д.

Бета-лизины найдены в сыворотке крови человека и мно­гих видов животных, их происхождение связано с тромбоци­тами. Они губительно действуют прежде всего на грамположительные бактерии, в частности на антракоид.

Белки острой фазы - общее название некоторых белков плазмы крови. Их содержание резко увеличивается в ответ на инфекцию или повреждение тканей. К этим белкам относятся: С-реактивный белок, сывороточный амилоид А, сывороточный амилоид Р, альфа1-антитрипсин, альфа 2-макроглобулин, фибриноген и др.

Другую группу белков острой фазы составляют белки, связывающие железо – гаптоглобин, гемопексин, трансферрин – и тем самым препятствующие размножению микроорганизмов, нуждающихся в этом элементе.

В процессе инфекции продукты жизнедеятельности мик­робов (например эндотоксины) стимулируют выработку ин­терлейкина-1, который представляет собой эндогенный пироген. Кроме того, интерлейкин-1 действует на печень, усили­вая секрецию С-реактивного белка до такой степени, что его концентрация в плазме крови может увеличиваться в 1000 раз. Важное свойство С-реактивного белка - способность связываться при участии кальция с некоторыми микроорга­низмами, что активирует систему комплемента и способству­ет фагоцитозу.

Интерфероны (ИФ) - низкомолекулярные белки, вырабатыва­емые клетками в ответ на проникновение вирусов. Затем были выявлены их иммунорегулирующие свойства. Существует три разновидности ИФ: альфа, бета, относящиеся к первому классу, и гамма-интерферон, принадлежащий ко второму классу.

Альфа-интерферон, продуцируемый лейкоцитами, оказывает противовирусное, противоопухолевое и антипролиферативное действие. Бета-ИФ, выделяемый фибробластами, обладает преимущественно противоопухолевым, а также противовирусным действием. Гамма-ИФ – продукт Т-хелперов и CD8+ Т-лимфоцитов – именуется лимфоцитарным или иммунным. Он оказывает иммуномодулирующее и слабое противовирусное действие.

Противовирусный эффект ИФ обусловлен способностью активировать в клетках синтез ингибиторов и ферментов, блокирующих репликацию вирусной ДНК и РНК, что приводит к подавлению репродукции вируса. Аналогичен механизм антипролиферативного и противоопухолевого действия. Гамма-ИФ – полифункциональный иммуномодулирующий лимфокин, оказывающий влияние на рост, дифференцировку и активность клеток разных типов. Интерфе­роны ингибируют репродукцию вирусов. В настоящее время установлено, что интерфероны обладают и антибактериаль­ной активностью.

Таким образом, гуморальные факторы неспецифической защиты довольно многообразны. В организме они действуют сочетание, оказывая бактерицидное и ингибирующее дейст­вие на различные микробы и вирусы.

Все указанные защитные факторы являются неспецифи­ческими, поскольку не происходит специфического реагиро­вания на проникновение патогенных микроорганизмов.

Специфические или иммунные факторы защиты представляют собой сложный комплекс реакций, поддержи­вающих постоянство внутренней среды организма.

Согласно современным представлениям, иммунитет мож­но определить "как способ защиты организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации" (Р.В. Петров).

В понятие "живых тел и веществ, несущих на себе при­знаки генетически чужеродной информации" или антигенов могут быть включены белки, полисахариды, их комплексы с липидами, высокополимерные препараты нуклеиновых кис­лот. Из этих веществ состоит все живое, поэтому свойствами антигенов обладают животные клетки, элементы тканей и органов, биологические жидкости (кровь, сыворотка крови), микроорганизмы (бактерии, простейшие, грибы, вирусы), экзо- и эндотоксины бактерий, гельминты, раковые клетки и т.д.

Иммунологическую функцию выполняет специализиро­ванная система клеток тканей и органов. Это такая же само­стоятельная система, как, например, пищеварительная или сер­дечно-сосудистая. Иммунная система представляет собой со­вокупность всех лимфоидных органов и клеток организма.

Иммунная система состоит из центральных и перифери­ческих органов. К центральным органам относятся тимус (вилочковая или зобная железа), сумка Фабрициуса у птиц, костный мозг и, возможно, пейеровы бляшки.

К периферическим лимфоидным органам принадлежат лимфатические узлы, селезенка, аппендикс, миндалины, кровь.

Центральной фигурой иммунной системы является лим­фоцит, его еще называют иммунокомпетентной клеткой.

У человека иммунная система состоит из двух частей, сотрудничающих друг с другом: Т-система и В-система. Т-система осуществляет иммунный ответ клеточного типа с на­коплением сенсибилизированных лимфоцитов. В-система от­ветственна за выработку антител, т.е. за гуморальный ответ. У млекопитающих и человека не найден орган, который был бы функциональным аналогом фабрициевой сумки у птиц.

Предполагают, что эту роль выполняет совокупность пейеровых бляшек тонкого кишечника. Если не подтвердится пред­положение, что пейеровы бляшки являются аналогом сумки Фабрициуса, то эти лимфоидные образования придется от­нести к периферическим лимфоидным органам.

Возможно, что у млекопитающих вообще отсутствует аналог сумки Фабрициуса, и эту роль выполняет костный мозг, который поставляет стволовые клетки для всех ростков кроветворения. Стволовые клетки выходят из костного моз­га в кровоток, попадают в тимус и другие лимфоидные орга­ны, где осуществляется их дифференцировка.

Клетки иммунной системы (иммуноциты) могут быть разделены на три группы:

1) Иммунокомпетентные клетки, способные к специфическому ответу на действие чужеродных антигенов. Таким свойством обладают исключительно лимфоциты, изначально обладающие рецепторами для какого-либо антигена.

2) Антигенпредставляющие клетки (АПК) – способны дифференцировать собственные и чужеродные антигены и представлять последние иммунокомпетентным клеткам.

3) Клетки антиген-неспецифической защиты, обладающие способностью отличать собственные антигены от чужеродных (в первую очередь – от микроорганизмов) и уничтожать чужеродные антигены с помощью фагоцитоза или цитотоксического воздействия.

1.Иммунокомпетентные клетки

Лимфоциты. Предшественником лимфоцитов, как и другихклеток иммунной системы, является полипотентная стволовая клетка костного мозга. В ходе дифференцировки стволовых клеток формируется две основные группы лимфоцитов: Т- и В-лимфоциты.

Морфологически лимфоцит представляет собой клетку сферической формы с крупным ядром и узким слоем базофильной цитоплазмы. В процессе дифференцировки образуются большие, средние и малые лимфоциты. В лимфе и периферической крови преобладают наиболее зрелые малые лимфоциты, способные к амебоидным движениям. Они постоянно рециркулируют в кровотоке, накапливаются в лимфоидных тканях, где участвуют в иммунологических реакциях.

Т- и В-лимфоциты не дифференцируются с помощью световой микроскопии, но четко отличаются друг от друга по поверхностным структурам и функциональной активности. В-лимфоциты осуществляют гуморальный иммунный ответ, Т-лимфоциты – клеточный, а также участвуют в регуляции обеих форм иммунного ответа.

Т-лимфоциты созревают и дифференцируются в тимусе. Они составляют около 80% всех лимфоцитов крови, лимфатических узлов, содержатся во всех тканях организма.

Все Т-лимфоциты имеют поверхностные антигены CD2 и CD3. CD2 молекулы адгезии обусловливают контакт Т-лимфоцитов с другими клетками. Молекулы CD3 входят в состав рецепторов лимфоцитов для антигенов. На поверхности каждого Т-лимфоцита имеется несколько сотен таких молекул.

Созревающие в тимусе Т-лимфоциты дифференцируются на две популяции, маркерами которых являются поверхностные антигены CD4 и CD8.

CD4 составляют более половины всех лимфоцитов крови, они обладают способностью стимулировать другие клетки иммунной системы (отсюда их название – Т-хелперы – от англ. Help – помощь).

Иммунологические функции CD4+ -лимфоцитов начинаются с представления им антигена антигенпредставляющими клетками (АПК). Рецепторы CD4+ -клеток воспринимают антиген только в том случае, если одновременно на поверхности АПК находится собственный антиген этой клетки (антиген главного комплекса тканевой совместимости второго класса). Такое “двойное распознавание” служит дополнительной гарантией от возникновения аутоиммунного процесса.

Тх после воздействия антигена пролиферируют на две субпопуляции: Тх1 и Тх2.

Тх1 участвуют главным образом в клеточных иммунных реакциях и воспалении. Тх2 способствуют формированию гуморального иммунитета. В ходе пролиферации Тх1 и Тх2 часть из них превращается в клетки иммунологической памяти.

CD8+-лимфоциты – основной тип клеток, обладающих цитотоксическим действием. Они составляют 22 – 24% всех лимфоцитов крови; их соотношение с CD4+-клетками равно 1:1,9 – 1: 2,4. Антигенраспознающие рецепторы CD8+-лимфоцитов воспринимают антиген от презентирующей клетки в комплексе с антигеном МНС первого класса. Антигены МНС второго класса имеются только на АПК, а антигены первого класса практически на всех клетках, CD8+-лимфоциты могут взаимодействовать с любыми клетками организма. Поскольку основной функцией CD8+-клеток является цитотоксичность, они играют ведущую роль в противовирусном, противоопухолевом и трансплантационном иммунитете.

CD8+-лимфоциты могут играть роль супрессорных клеток, однако в последнее время установлено, что подавлять активность клеток иммунной системы могут многие виды клеток, поэтому CD8+-клетки перестали называть супрессорами.

Цитотоксическое действие CD8+-лимфоцита начинается с установления контакта с клеткой – “мишенью” и поступления в мембрану клетки белков-цитолизинов (перфоринов). Вследствие этого в мембране клетки-“мишени” появляются отверстия диаметром 5 – 16 нм, через которые приникают ферменты (гранзимы). Гранзимы и другие ферменты лимфоцита наносят клетке-“мишени” летальный удар, что приводит к гибели клетки вследствие резкого подъема внутриклеточного уровня Са2+, ативации эндонуклеаз и разрушения ДНК клетки. Лимфоцит после этого сохраняет способность атаковать другие клетки-“мишени”.

К цитотоксическим лимфоцитам по своему происхождению и функциональной активности близки естественные киллеры (ЕК), днако они не попадают в тимус и не подвергаются дифференцировке и селекции, не участвуют в специфических реакциях приобретенного иммунитета.

В-лимфоциты составляют 10 – 15% лимфоцитов крови, 20 – 25% клеток лимфатических узлов. Они обеспечивают образование антител и участвуют в представлении антигена Т-лимфоцитам.

Защита организма от антигенов осуществляется двумя группами факторов:

1. Факторами, обеспечивающими неспецифическую резистентность (устойчивость) организма к антигенам независимо от их происхождения.

2. Специфическими факторами иммунитета, которые направлены против конкретных антигенов.

К факторам неспецифической резистентности относятся:

1. механические

2. физико-химические

3. иммунобиологические барьеры.

1) Механические барьеры, создаваемые кожей и слизистыми оболочками, механически защищают организм от проникновения в него антигенов (бактерий, вирусов, макромолекул). Эту же роль выполняют слизь и реснитчатый эпителий верхних дыхательных путей (освобождающие слизистые оболочки от попавших на них инородных частичек).

2) Физико-химическим барьером, разрушающим попадающие в организм антигены, являются ферменты, хлористоводородная (соляная) кислота желудочного сока, альдегиды и жирные кислоты потовых и сальных желез кожи. На чистой и неповреждённой коже мало микробов, т.к. потовые и сальные железы постоянно выделяют на поверхности кожи вещества, обладающие бактерицидным действием (уксусная, муравьиная, молочная кислота).

Желудок – барьер для проникающих перорально бактерий, вирусов, антигенов, т.к. они инактивируются и разрушают под влиянием кислого содержимого желудка (pH 1,5-2,5) и ферментов. В кишечнике факторами служат ферменты, бактериоцины, образуемые нормальной микрофлорой кишечника, а также трипсин, панкреатин, липаза, амилаза и желчь.

3) Иммунобиологическую защиту осуществляют фагоцитирующие клетки, поглощающие и переваривающие микрочастицы с антигенными свойствами, а также система комплемента, интерферон, защитные белки крови.

I. Фагоцитоз открытый и изученный И.И. Мечниковым, является одним из основных мощных факторов, обеспечивающих резистентность организма, защиту от чужеродных и инородных веществ, в том числе микробов.

К фагоцитирующим клеткам И.И. Мечников отнес макрофаги и микрофаги.

В настоящее время существует единая мононуклеарная фагоцитирующая система .

В неё входят:

1. тканевые макрофаги (альвеолярные, перитонеальные и др.)

2. клетки Лангерганса (белые отростчатые эпидермоциты) и Гранштейна (эпидермоциты кожи)

3. клетки Купфера (звездчатые ретикулоэндотелиоциты).

4. эпителиодные клетки.

5. нейтрофилы и эозинофилы крови и др.

Процесс фагоцитоза имеет несколько стадий :

1) приближение фагоцита к объекту (хемотаксис)

2) адсорбция объекта на поверхности фагоцита

3) поглощение объекта

4) переваривание объекта.

Поглощение фагоцитируемого объекта (микроб, антигены, макромолекулы) осуществляется путём инвагинации клеточной мембраны с образованием в цитоплазме фагосомы, содержащей объект. Затем происходит слияние фагосомы с лизосомой клетки с образованием фаголизосомы, в которой объект переваривается с помощью ферментов.

В том случае, если проходят все стадии и процесс заканчивается перевариванием микробов, фагоцитоз называется завершенным .

Если же поглощенные микробы не погибают, а иногда даже размножаются в фагоцитах, то такой фагоцитоз называется незавершенным .

Активность фагоцитов характеризуется:

1. Фагоцитарные показатели оцениваются по числу бактерий, поглощенных или переваренных одним фагоцитом в единицу времени.

2. Опсонофагоцитарный индекс представляет собой отношение фагоцитарных показателей, полученных с сывороткой, содержащей опсонины, и контролем.

II. Гуморальные факторы защиты:

1) Тромбоциты– гуморальные факторы защиты играют важную роль в иммунитете, выделяя биологически активные вещества

(гистамин, лизоцим, лизины, Лейкины, простагландины и др.), которые участвуют в процессах иммунитета и воспаления.

2) Система комплемента – сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и

активирующийся при образовании комплекса «антиген-антитело».

Функции комплемента многообразны, он является составной частью многих иммунологических реакций, направленных на освобождение организма от микробов и других чужеродных клеток и антигенов.

3) Лизоцим – протеолитический фермент, который синтезируется макрофагами, нейтрофилами и другими фагоцитирующими клетками. Фермент содержится в крови, лимфе, слезах, молоке,

сперме, на слизистых оболочках урогенитального тракта, дыхательных путей и ЖКТ. Лизоцим разрушает клеточную стенку бактерий, что приводит к их лизису и способствует фагоцитозу.

4) Интерферон – белок, который синтезируется клетками иммунной системы и соединительной ткани.

Различают три его вида:

Интерфероны синтезируются клетками постоянно. Их продукция резко возрастает при инфицировании организма вирусами, а также

при воздействии индукторов интерферона (интерфероногенов).

Интерферон широко применяется как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и иммунодефицитах.

5) Защитные белки сыворотки крови – это белки острой фазы, опсонины, пропердин, b-лизин, фибронектин.

К белкам острой фазы относятся:

a) С – реактивный

b) Пропердин - глобулин нормальной сыворотки крови, который способствует активации комплемента и таким образом участвует во многих иммунологических реакциях.

c) Фибронектин – универсальный белок плазмы крови и тканевых жидкостей, синтезирует макрофаги и обеспечивающий опсонизацию антигенов и связывание клеток с чужеродными веществами.

d) лизин – белки сыворотки крови, которые синтезируются тромбоцитами и повреждают цитоплазматическую мембрану бактерий.

Специфическая защита, направленная против конкретного антигена, осуществляется комплексом специальных форм реагирования иммунной системы:

1. антителообразованием

2. иммунный фагоцитоз

3. киллерная функция лимфоцитов

4. аллергические реакции, протекающие в виде гиперчувствительности немедленного типа (ГНТ) и

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека