Чему равен минутный объем дыхания в покое. Внешнее дыхание и объемы легких


Легочные объемы и емкости

В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции оп­ределяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого явля­ется частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. При этом легочной емкостью называется сумма двух и более объемов.

Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыха­тельных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Легочные объемы . Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических инди­видуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) - объем воздуха, который вды­хает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РОвд) - максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд составляет 1,5-1,8 л.

Резервный объем выдоха (РОвыд) - максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОвыд ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0-1,4 л.

Остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0-1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес и их, описание выходит за рамки курса нормальной физиологии.

Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, ре­зервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд составляет в среднем 2,0-2,3 л.

Функциональная остаточная емкость (ФОЕ) - объ­ем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или разведения газов, и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизон­тальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растя­жимости грудной клетки.

Общая емкость легких (ОЕЛ) - объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ - ОО + ЖЕЛ или ОЕЛ - ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей обычно производят методами спирометрии, пневмотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких).

Для сопоставимости результатов измерений газовых объемов и емкостей полученные данные должны соотноситься с условиями в легких, где температура альвеолярного воздуха соответствует температуре тела, воздух находится при определенном давлении и насыщен водяными парами. Это состояние называется стандар­тным и обозначается буквами BTPS (body temperature, pressure, saturated).

Для оценки качества работы легких исследует дыхательные объемы (с помощью специальных приборов – спирометров).

Дыхательный объем (ДО) – количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании за один цикл. В норме = 400-500 мл.

Минутный объем дыхания (МОД) – объем воздуха, проходящий через легкие за 1 минуту (МОД=ДО х ЧДД). В норме = 8-9 литров в минуту; около 500 л в час; 12000-13000 л в сутки. При увеличении физической нагрузки МОД увеличивается.

Не весь вдыхаемый воздух участвует в вентиляции альвеол (газообмене), т.к. часть его не доходит до ацинусов и остается в дыхательных путях, где отсутствует возможность для диффузии. Объем таких воздухоносных путей называется «дыхательное мертвое пространство». В норме у взрослого = 140-150 мл, т.е. 1/3 ДО.

Резервный объем вдоха (РОВд) – количество воздуха, которое человек может вдохнуть при самом сильном максимальном вдохе после спокойного вдоха, т.е. сверх ДО. В норме = 1500-3000 мл.

Резервный объем выдоха (РОВыд) – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха. В норме = 700-1000 мл.

Жизненная емкость легких (ЖЕЛ) – количество воздуха, которое человек может максимально выдохнуть после самого глубокого вдоха (ЖЕЛ=ДО+РОВд+РОВыд = 3500-4500 мл).

Остаточный объем легких (ООЛ) – количество воздуха, остающееся в легких после максимального выдоха. В норме = 100-1500 мл.

Общая емкость легких (ОЕЛ) – максимальное количество воздуха, которое может находится в легких. ОЕЛ=ЖЕЛ+ООЛ = 4500-6000 мл.

ДИФФУЗИЯ ГАЗОВ

Состав вдыхаемого воздуха: кислород- 21 %, углекислый газ – 0,03 %.

Состав выдыхаемого воздуха: кислород-17 %, углекислый газ – 4 %.

Состав воздуха, содержащегося в альвеолах: кислород-14 %, углекислый газ –5,6 %о.

По мере выдоха альвеолярный воздух смешивается в воздухом, находящимся в дыхательных путях (в «мертвом пространстве»), что обусловливает указанную разницу состава воздуха.

Переход газов через аэрогематический барьер обусловлен разностью концентраций по обе стороны мембраны.

Парциальное давление – та часть давления, которая приходится на данный газ. При атмосферном давлении 760 мм рт.ст., парц.давление кислорода составляет 160 мм рт.ст. (т.е. 21 % от 760), в альвеолярном воздухе парц.давление кислорода – 100 мм рт.ст., а углекислого газа - 40 мм рт.ст.

Напряжение газа – парциальное давление в жидкости. Напряжение кислорода в венозной крови - 40 мм рт.ст. За счет градиента давления между альвеолярным воздухом и кровью – 60 мм рт.ст. (100 мм рт.ст. и 40 мм рт.ст.) происходит диффузия кислорода в кровь, где он связывается с гемоглобином, превращая его в оксигемоглобин. Кровь, содержащая большое количество оксигемоглобина называется артериальной. В 100 мл артериальной крови содержится 20 мл кислорода, в 100 мл венозной крови – 13-15 мл кислорода. Также по градиенту давления углекислый газ попадает в кровь (т.к. в тканях он содержится в больших количествах) и образуется карбгемоглобин. Кроме этого, углекислый газ вступает в реакцию с водой, образуя угольную кислоту (катализатор реакции – фермент карбоангидраза, находящийся в эритроцитах), которая распадается на протон водорода и бикарбонат-ион. Напряжение СО 2 в венозной крови – 46 мм рт.ст.; в альвеолярном воздухе – 40 мм рт.ст. (градиент давления = 6 мм рт.ст.). Диффузия СО 2 происходит из крови во внешнюю среду.

ИВЛ! Если его понять — это равноценно появлению, как в фильмах, у супергероя (доктор) супер оружия (если доктор понимает тонкости ИВЛ) против смерти пациента.

Чтобы понять ИВЛ нужно базовые знания: физиология = патофизиология(обструкция или рестрикция) дыхания; основные части, строение аппарата ИВЛ; обеспечение газами(кислород, атмосферный воздух, сжатый газ) и дозирование газов; адсорберы; элиминация газов; дыхательные клапана; дыхательные шланги; дыхательный мешок; система увлажнения; дыхательный контур(полузакрытый, закрытый, полуоткрытый, открытый) и т.д.

Все аппараты ИВЛ проводят вентиляцию по объему или по давлению (как бы они не назывались; в зависимости какой режим установил доктор). В основном доктор устанавливает режим ИВЛ при обструктивных заболеваниях легких (или во время наркоза) по объему , при рестрикции по давлению .

Основные типы ИВЛ обозначаются так:

CMV (Continuous mandatory ventilation) — Управляемая (искусственная) вентиляция легких

VCV (Volume controlled ventilation) — ИВЛ, управляемая по объему

PCV (Pressure controlled ventilation) — ИВЛ, управляемая по давлению

IPPV (Intermittent positive pressure ventilation) — ИВЛ с перемежающимся положительным давлением на вдохе

ZEEP (Zero endexpiratory pressure) — ИВЛ с давлением в конце выдоха, равным атмосферному

PEEP (Positive endexpiratory pressure) — Положительное давление в конце выдоха (ПДКВ)

CPPV (Continuous positive pressure ventilation) — ИВЛ с ПДКВ

IRV (Inversed ratio ventilation) — ИВЛ с обратным (инверсированным) отношением вдох:выдох (от 2:1 до 4:1)

SIMV (Synchronized intermittent mandatory ventilation) — Синхронизированная перемежающаяся принудительная вентиляция легких = Сочетание спонтанного и аппаратного дыхания, когда при уменьшении частоты спонтанного дыхания до определенной величины, при сохраняющихся попытках вдоха, преодолевая уровень установленного триггера синхронно подключается аппаратное дыхание

Всегда нужно смотреть на буквы..P.. или..V.. Если Р (Рressure) значит по далению, если V (Volume) по объему.

  1. Vt – дыхательный объем,
  2. f – частоту дыхания, MV – минутную вентиляцию
  3. PEEP – ПДКВ=положительное давление в конце выдоха
  4. Tinsp – время вдоха;
  5. Pmax — давления вдоха или максимальное давление дыхательных путях.
  6. Газоток кислорода и воздуха.
  1. Дыхательный объем (Vt, ДО) устанавливаем от 5мл до 10 мл/кг (в зависимости от патологии, в норме 7-8 мл на кг ) = сколько пациент должен вдохнуть объема за раз. Но для этого надо узнать идеальную(должную, предсказанную) массу тела данного пациента по формуле (NB! запомнить):

Мужчины: ИМТ(кг)=50+0,91·(рост, см – 152,4)

Женщины: ИМТ (кг)=45,5+0,91·(рост, см – 152,4).

Пример: мужчина 150 кг весить. Это не значить что мы должны установить дыхательный объем 150кг·10мл=1500 мл. Сперва, рассчитываем ИМТ=50+0,91·(165см-152,4)=50+0,91·12,6=50+11,466=61,466 кг должен весить наш пациент. Представляете, ой аллай десейші! Для мужчины с весом 150 кг и ростом 165 см, мы должны установить дыхательный объем(ДО) от 5мл/кг (61,466·5=307,33 мл) до 10мл/кг (61,466·10=614,66 мл) в зависимости от патологии и растяжимости легких.

2. Второй параметр, который доктор должен установить, это частота дыхания (f). В норме частота дыхания от 12 до 18 в минуту в покое. И мы не знаем, какую частоту установить 12 или 15, 18 или 13? Для этого мы должны рассчитать должный МОД (MV). Синонимы минутного объема дыхания(МОД)=минутная вентиляция легких (МВЛ), может еще как то… Это значить, сколько нужно пациенту воздуха (мл, л) в минуту.

МОД=ИМТ кг:10+1

по формуле Дарбиняна (устаревшая формула, приводит часто к гипервентиляции).

Или современный расчет: МОД=ИМТкг·100.

(100%, или 120%-150% в зависимости от температуры тела пациента.., от основного обмена короче).

Пример: Пациент женщина, весит 82 кг, рост при этом 176 см. ИМТ=45,5+0,91·(рост, см – 152,4)=45,5+0,91·(176 см-152,4)=45,5+0,91·23,6=45,5+21,476=66,976 кг должна весит. МОД=67(сразу округлил)·100=6700 мл или 6,7 литров в минуту. Теперь только после этих расчетов можем узнать частоту дыхания. f =МОД:ДО=6700 мл: 536 мл=12,5 раз в минуту, значит 12 или 13 раз.

3. Устанавливаем РЕЕР . В норме (раньше) 3-5 mbar. Сейчас можно 8-10 mbar у пациентов с нормальными легкими.

4. Время вдоха в секундах устанавливаем по соотношению вдоха к выдоху: I : E =1:1,5-2 . В этом параметре пригодятся знания про дыхательный цикл, вентиляционно-перфузионное соотношение и т.д.

5. Pmax, Рinsp пиковое давление устанавливаем чтобы не нанести баротравму или не разорвать легкие. В норме думаю 16-25 mbar, в зависимости от эластичности легких, веса пациента, от растяжимости грудной клетки и т.д. По-моему знанию легкие могут разорватся при Рinsp более 35-45 mbar.

6. Фракция вдыхаемого кислорода(FiO 2) должна быть не более 55% во вдыхаемой дыхательной смеси.

Все расчеты и знания нужны для того, чтобы у пациента были такие показатели: РаО 2 =80-100 мм рт.ст.; РаСО 2 =35-40 мм рт.ст. Всего лишь, ой аллай десейші!

Частота дыхания - количество вдохов и выдохов за единицу времени. Взрослый человек делает в среднем 15-17 дыхательных движений в минуту. Большое значение имеет тренировка. У тренированных людей дыхательные движения совершаются более медленно и составляют 6-8 дыханий в минуту. Так, у новорожденных ЧД зависит от ряда факторов. При стоянии ЧД больше, чем при сидении или лежании. Во время сна дыхание более редкое (приблизительно на 1 / 5).

При мышечной работе дыхание учащается в 2-3 раза, доходя при некоторых видах спортивных упражнений до 40-45 циклов в минуту и более. На частоту дыхания влияет температура окружающей среды, эмоции, умственная работа.

Глубина дыхания или дыхательный объем - количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Во время каждого дыхательного движения обменивается 300-800 мл воздуха, находящегося в легких. Дыхательный объем (ДО) падает с увеличением частоты дыхания.

Минутный объем дыхания - количество воздуха, которое проходит через легкие в минуту. Он определяется произведением величины вдыхаемого воздуха на число дыхательных движений за 1 мин: МОД = ДО х ЧД.

У взрослого человека МОД составляет 5-6 л. Возрастные изменения показателей внешнего дыхания представлены в табл. 27.

Табл. 27.Показатели внешнего дыхания (по: Хрипкова , 1990)

Дыхание новорожденного ребенка частое и поверхностное и подвержено значительным колебаниям. С возрастом происходит урежение частоты дыхания, увеличение дыхательного объема и легочной вентиляции. За счет большей частоты дыхания у детей значительно выше, чем у взрослых, минутный объем дыхания (в пересчете на 1 кг массы).

Вентиляция легких может меняться в зависимости от поведения ребенка. В первые месяцы жизни беспокойство, плач, крик увеличивают вентиляцию в 2-3 раза главным образом за счет увеличения глубины дыхания.

Мышечная работа повышает минутный объем дыхания пропорционально величине нагрузки. Чем старше дети, тем более интенсивную мышечную работу они могут выполнять и тем больше у них увеличивается вентиляция легких. Однако под влиянием тренировки одну и ту же работу можно выполнять при меньшем увеличении вентиляции легких. В то же время тренированные дети способны увеличить свой минутный объем дыхания при работе до более высокого уровня, чем их сверстники, не занимающиеся физическими упражнениями (цит. по: Маркосян , 1969). С возрастом эффект тренировки сказывается больше, и у подростков 14-15 лет тренировка вызывает столь же значительные сдвиги легочной вентиляции, как и у взрослых людей.

Жизненная емкость легких - наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Жизненная емкость легких (ЖЕЛ) является важной функциональной характеристикой дыхания и слагается из дыхательного объема, резервного объема вдоха и резервного объема выдоха.

В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Поэтому человек может как вдохнуть, так и выдохнуть большой дополнительный объем. Резервный объем вдоха (РО вд) - количество воздуха, которое человек может дополнительно вдохнуть после нормального вдоха и составляет 1500-2000 мл. Резервный объем выдоха (РО выд) - количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха; его величина 1000-1500 мл.

Даже после самого глубокого выдоха в альвеолах и воздухоносных путях легких остается некоторое количество воздуха - это остаточный объем (ОО). Однако при спокойном дыхании в легких остается значительно больше воздуха, чем остаточный объем. Количество воздуха, остающееся в легких после спокойного выдоха, называется функциональной остаточной емкостью (ФОЕ). Она состоит из остаточного объема легких и резервного объема выдоха.

Наибольшее количество воздуха, которое полностью заполняет легкие, называется общей емкостью легких (ОЕЛ). Она включает остаточный объем воздуха и жизненную емкость легких. Соотношение между объемами и емкостями легких представлено на рис. 8 (Атл., с. 169). Жизненная емкость меняется с возрастом (табл. 28). Так как измерение жизненной емкости легких требует активного и сознательного участия самого ребенка, то ее измеряют у детей с 4-5 лет.

К 16-17 годам жизненная емкость легких достигает величин, характерных для взрослого человека. Жизненная емкость легких является важным показателем физического развития.

Табл. 28. Средняя величина жизненной емкости легких, мл (по: Хрипкова , 1990)

С детского возраста и до 18-19 лет жизненная емкость легких увеличивается, с 18 до 35 лет она сохраняется на постоянном уровне, а после 40 уменьшается. Это связано со снижением эластичности легких и подвижности грудной клетки.

Жизненная емкость легких зависит от ряда факторов, в частности от длины тела, веса и пола. Для оценки ЖЕЛ рассчитывают должную величину с использованием специальных формул:

для мужчин:

ЖЕЛ должн = [(рост, см ∙ 0,052)] - [(возраст, лет ∙ 0,022)] - 3,60;

для женщин:

ЖЕЛ должн = [(рост, см ∙ 0,041)] - [(возраст, лет ∙ 0,018)] - 2,68;

для мальчиков 8-10 лет:

ЖЕЛ должн = [(рост, см ∙ 0,052)] - [(возраст, лет ∙ 0,022)] - 4,6;

для мальчиков 13-16 лет:

ЖЕЛ должн = [(рост, см ∙ 0,052)] - [(возраст, лет ∙ 0,022)] - 4,2

для девочек 8-16 лет:

ЖЕЛ должн = [(рост, см ∙ 0,041)] - [(возраст, лет ∙ 0,018)] - 3,7

У женщин ЖЕЛ на 25% меньше, чем у мужчин; у людей тренированных она больше, чем у нетренированных. Особенно она велика при занятиях такими видами спорта, как плавание, бег, лыжи, гребля и т. д. Так, например, у гребцов она составляет 5 500 мл, у пловцов - 4 900 мл, гимнастов - 4 300 мл, футболистов - 4 200 мл, штангистов - около 4 000 мл. Для определения жизненной емкости легких используется прибор спирометр (метод спирометрии). Он состоит из сосуда с водой и помещенного в него вверх дном другого сосуда емкостью не менее 6 л, в котором находится воздух. Ко дну этого второго сосуда подведена система трубок. Через эти трубки испытуемый дышит, так что воздух в его легких и в сосуде составляет единую систему.

Газообмен

Содержание газов в альвеолах . Во время акта вдоха и выдоха человек постоянно вентилирует легкие, поддерживая в альвеолах газовый состав. Вдыхает человек атмосферный воздух с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%). В выдыхаемом воздухе содержится 16,3% кислорода, а углекислого - 4%. При вдохе из 450 мл вдыхаемого атмосферного воздуха в легкие попадает лишь около 300 мл, а приблизительно 150 мл остается в воздухоносных путях и в газообмене не участвует. При выдохе, который следует за вдохом, этот воздух выводится наружу неизменным, то есть не отличается по своему составу от атмосферного. Поэтому его называют воздухом мертвого, или вредного, пространства. Воздух, достигший легких, смешивается здесь с 3000 мл воздуха, уже находящегося в альвеолах. Газовая смесь в альвеолах, участвующая в газообмене, называется альвеолярным воздухом . Поступившая порция воздуха невелика по сравнению с объемом, к которому она добавляется, поэтому полное обновление всего находящегося в легких воздуха - процесс медленный и прерывистый. Обмен между атмосферным и альвеолярным воздухом незначительно сказывается на альвеолярном воздухе, и его состав практически остается постоянным, что видно из табл. 29.

Табл. 29. Состав вдыхаемого, альвеолярного и выдыхаемого воздуха, в %

При сравнении состава альвеолярного воздуха с составом вдыхаемого и выдыхаемого видно, что одну пятую часть поступающего кислорода организм удерживает для своих нужд, в то время как количество СО 2 в выдыхаемом воздухе в 100 раз больше того количества, которое поступает в организм при вдохе. По сравнению с вдыхаемым воздухом он содержит меньше кислорода, но больше СО 2 . Альвеолярный воздух вступает в тесный контакт с кровью, и от его состава зависит газовый состав артериальной крови.

У детей иной состав как выдыхаемого, так и альвеолярного воздуха: чем моложе дети, тем меньше у них процент углекислого газа и тем больше процент кислорода в выдыхаемом и альвеолярном воздухе, соответственно меньше процент использования кислорода (табл. 30). Следовательно, у детей низкая эффективность легочной вентиляции. Поэтому ребенку на один и тот же объем потребленного кислорода и выделяемого углекислого газа нужно больше вентилировать легкие, чем взрослым.

Табл. 30. Состав выдыхаемого и альвеолярного воздуха
(средние данные по: Шалков , 1957; сост. по: Маркосян , 1969)

Поскольку у маленьких детей дыхание частое и поверхностное, то большую долю дыхательного объема составляет объем «мертвого» пространства. В результате этого выдыхаемый воздух состоит в большей степени из атмосферного воздуха, и в нем меньше процент углекислого газа и процент использования кислорода из данного объема дыхания. Вследствие этого низка эффективность вентиляции у детей. Несмотря на повышенный, по сравнению со взрослыми процент кислорода в альвеолярном воздухе у детей не имеет существенного значения, так как для полного насыщения гемоглобина крови достаточно 14-15% кислорода в альвеолах. Больше кислорода, чем его связывается гемоглобином, в артериальную кровь перейти не может. Низкий уровень содержания углекислого газа в альвеолярном воздухе у детей свидетельствует о его более низком содержании в артериальной крови по сравнению со взрослыми.

Обмен газов в легких . Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух. Диффузия происходит вследствие разности парциального давления этих газов в альвеолярном воздухе и их насыщения в крови.

Парциальное давление - это часть общего давления, которое приходится на долю данного газа в газовой смеси. Парциальное давление кислорода в альвеолах (100 мм рт. ст.) значительно выше, чем напряжение О 2 в венозной крови, поступающей в капилляры легких (40 мм рт. ст.). Параметры парциального давления для СО 2 имеют обратное значение - 46 мм рт. ст. в начале легочных капилляров и 40 мм рт. ст. в альвеолах. Парциальное давление и напряжение кислорода и углекислого газа в легких приведены в табл. 31.

Табл. 31. Парциальное давление и напряжение кислорода и углекислого газа в легких, в мм рт. ст.

Эти градиенты (разность) давлений являются движущей силой диффузии О 2 и СО 2 , то есть газообмена в легких.

Диффузионная способность легких для кислорода очень велика. Это обусловлено большим количеством альвеол (сотни миллионов), большой их газообменной поверхностью (около 100 м 2), а также малой толщиной (около 1 мкм) альвеолярной мембраны. Диффузионная способность легких для кислорода у человека равна около 25 мл/мин в расчете на 1 мм рт. ст. Для углекислого газа вследствие его высокой растворимости в легочной мембране диффузионная способность в 24 раза выше.

Диффузия кислорода обеспечивается разностью парциальных давлений, равной около 60 мм рт. ст., а углекислого газа - всего лишь около 6 мм рт. ст. Времени на протекание крови через капилляры малого круга (около 0,8 с) достаточно для полного выравнивания парциального давления и напряжения газов: кислород растворяется в крови, а углекислый газ переходит в альвеолярный воздух. Переход углекислого газа в альвеолярный воздух при относительно небольшой разнице давлений объясняется высокой диффузионной способностью для этого газа (Атл., рис. 7, с. 168).

Таким образом, в легочных капиллярах совершается постоянный обмен: кислорода и углекислого газа. В результате этого обмена кровь насыщается кислородом и освобождается от углекислого газа.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека