Дать характеристику химического элемента алюминия. Химические и физические свойства алюминия

Тип урока . Комбинированный.

Задачи:

Образовательные:

1. Актуализировать знания учащихся о строении атома, физических смыслах порядкового номера, номера группы, номера периода на примере алюминия.

2. Сформировать у учащихся знания о том, что алюминию в свободном состоянии присущи особые, характерные физические и химические свойства.

Развивающие:

1. Возбудить интерес к изучению науки путем предоставления кратких исторических и научных сообщений о прошлом, настоящем и будущем алюминия.

2. Продолжить формирование исследовательских навыков учащихся при работе с литературой, выполнением лабораторной работы.

3. Расширить понятие амфотерности раскрытием электронного строения алюминия, химических свойств его соединений.

Воспитательные:

1. Воспитывать бережное отношение к окружающей среде, предоставляя сведения о возможном использовании алюминия вчера, сегодня, завтра.

2. Формировать умения работать коллективом у каждого учащегося, считаться с мнением всей группы и отстаивать свое корректно, выполняя лабораторную работу.

3. Знакомить учащихся с научной этикой, честностью и порядочностью естествоиспытателей прошлого, предоставляя сведения о борьбе за право быть первооткрывателем алюминия.

ПОВТОРЕНИЕ ПРОЙДЕННОГО МАТЕРИАЛЛА по темам щелочные и щелочноземельные М (ПОВТОРЕНИЕ):

    Какое количество электронов на внешнем энергетическом уровне щелочных и щелочноземельных М?

    Какие продукты образуются при взаимодействии с кислородом натрия или калия? (пероксид), способен ли литий в реакции с кислородом давать пероксид? (нет, в результате реакции образуется оксид лития.)

    Как получают оксиды натрия и калия? (прокаливанием пероксидов с соответствующими Ме, Пр: 2Na+Na 2 O 2 =2Na 2 O).

    Проявляют ли щелочные и щелочноземельные металлы отрицательные степени окисления? (нет, не имеют, так как являются сильными восстановителями.).

    Как изменяется радиус атома в главных подгруппах (сверху вниз) Переодической системы? (увеличивается), с чем это связано? (с увеличением числа энергетических уровней).

    Какие из изученных нами групп металлов легче воды? (у щелочных).

    При каких условиях идет образование гидридов у щелочноземельных металлов? (при высоких температурах).

    Какое вещество кальций или магний активнее реагирует с водой? (более активно реагирует кальций. Магний активно реагирует с водой только при нагревании ее до 100 0 С).

    Как изменяется растворимость гидроксидов щелочноземельных металлов в воде, в ряду от кальция до бария? (растворимость в воде увеличивается).

    Расскажите про особенности хранения щелочных и щелочноземельных металлов, почему их хранят именно так? (т.к. данные металлы очень реакциоспособны, то их хранят в таре под слоем керосина).

КОНТРОЛЬНАЯ РАБОТА по темам щелочные и щелочноземельные М:

КОНСПЕКТ УРОКА (ИЗУЧЕНЕ НОВОГО МАТЕРИАЛА):

Учитель: Здравствуйте ребята, сегодня мы с вами переходим к изучению IIIА подгруппы. Перечислите элементы расположенные в IIIА подгруппе?

Обучаемые: Она включает в себя такие элементы как бор, алюминий, галлий, индий и таллий.

Учитель: Какое число электронов они содержат на внешнем энергетическом уровне, степени окисления?

Обучаемые: Три электрона, степень окисления +3, хотя для таллия более устойчивой является степень окисления +1.

Учитель: Металлические свойства элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Бор является неМ. В дальнейшем внутри подгруппы с возрастанием заряда ядра М свойства усиливаются. А l – уже М, но не типичный. Его гидроксид обладает амфотерными свойствами.

Из М главной подгруппы III группы наибольшее значение имеет алюминий, свойства которого мы изучим подробно. Он интересен нам потому, что является переходным элементом.

ОПРЕДЕЛЕНИЕ

Алюминий расположен в третьем периоде, III группе главной (A) подгруппе Периодической таблицы. Это первый p-элемент 3-го периода.

Металл. Обозначение - Al. Порядковый номер - 13. Относительная атомная масса - 26,981 а.е.м.

Электронное строение атома алюминия

Атом алюминия состоит из положительно заряженного ядра (+13), внутри которого находится 13 протонов и 14 нейтронов. Ядро окружено тремя оболочками, по которым движутся 13 электронов.

Рис. 1. Схематическое изображение строения атома алюминия.

Распределение электронов по орбиталям выглядит следующим образом:

13Al) 2) 8) 3 ;

1s 2 2s 2 2p 6 3s 2 3p 1 .

На внешнем энергетическом уровне алюминия находится три электрона, все электроны 3-го подуровня. Энергетическая диаграмма принимает следующий вид:

Теоретически возможно возбужденное состояние для атома алюминия за счет наличия вакантной 3d -орбитали. Однако распаривания электронов 3s -подуровня на деле не происходит.

Примеры решения задач

ПРИМЕР 1

Химический элемент III группы переодической системы Менделеева.

Латинское название — Aluminium.

Обозначение — Al.

Атомный номер — 13.

Атомная масса — 26,98154.

Плотность — 2,6989 г/см 3 .

Температура плавления — 660 °С.

Простой, лёгкий, парамагнитный металл светло-серого или серебристо-белого цвета. Обладает высокой теплопроводностью и электрической проводимостью, стойкостью к коррозии. Распространение в земной коре — 8,8 % по массе — он является самым распространённым металлом и третьим по распространённости химическим элементом.

Используется как конструкционный материал в строительстве зданий, авиа- и судостроении, для изготовления токопроводящих изделий в электротехнике, химической аппаратуре, товаров народного потребления, получения других металлов с помощью алюминотермии, как компонент твёрдого ракетного топлива, пиротехнических составов и тому подобное.

Металлический алюминий впервые получил датский физик Ханс Кристиан Эрстед.

В природе встречается исключительно в виде соединений, так как обладает высокой химической активностью. Образует прочную химическую связь с кислородом. В силу реакционной способности, получить металл из руды весьма сложно. Сейчас применяется метод Холла— Эру, требующий больших затрат электроэнергии.

Алюминий образует сплавы почти со всеми металлами. Самыми известными являются дюралиминий (сплав с медью и магнием) и силумин (сплав с кремнием). В обычных условиях алюминий покрыт прочной оксидной плёнкой, поэтому не вступает в реакцию с классическими окислителями водой (H 2 O), кислородом (O 2) и азотной кислотой (HNO 3). Благодаря этому практически не подвержен коррозии, что обеспечило его востребованность в промышленности.

Название происходит от латинского «alumen», что в переводе означает «квасцы».

Применение алюминия в медицине

Традиционная медицина

Роль алюминия в организме изучена не до конца. Известно, что его наличие стимулирует рост костной ткани, развитие эпителия и соединительных тканей. Под его влиянием возрастает активность пищеварительных ферментов. Алюминий имеет отношение к восстановительным и регенерационным процессам организма.

Алюминий считается токсичным элементом для человеческого иммунитета, но тем не менее, он входит в состав клеток. При этом имеет вид положительно заряженных ионов (Al3+), которые оказывают воздействие на околощитовидные железы. В разных видах клеток наблюдается разное количество алюминия, но точно известно, что клетки печени, мозга и костей накапливают его быстрее остальных.

Лекарственные препараты с алюминием имеют обезболивающий и обволакивающий эффекты, антацидным и адсорбирующим действиями. Последнее означает, что при взаимодействии с соляной кислотой лекарства могут снизить кислотность желудочного сока. Алюминий назначают и для наружного применения: при лечении ран, трофических язв, острых конъюктивитов.

Токсичность алюминия проявляется в замещении им магния в активных центрах ряда ферметов. Так же играет роль его конкурентные отношения с фосфором, кальцием и железом.

При недостатке алюминия наблюдается слабость в конечностях. Но такое явление в современном мире почти исключено, так как металл поступает с водой, пищей и через загрязнённый воздух.

При избыточном содержании алюминия в организме начинаются изменения в лёгких, судороги, анемия, дезориентация в пространстве, апатия, потеря памяти.

Аюрведа

Считается, что алюминий ядовит, поэтому применять для лечения его не следует. Равно как не следует использовать алюминиевую посуду для приготовлений отваров или хранения трав.

Применение алюминия в магии

В силу сложности получения чистого элемента, металл использовался в магии наравне с , из него делали ювелирные украшения. Когда же процесс получения упростился, то мода на алюминивые поделки сразу прошла.

Защитная магия

Используется только алюминиевая фольга, обладающая свойствами экранировать энергетические потоки, не давая им возможности распространяться. Поэтому в неё, как правило, оборачивают предметы, способные распространять вокруг себя негативную энергию. Очень часто в фольгу оборачивают сомнительные магические подарки — жезлы, маски, кинжалы, особенно привезённые из Африки или Египта.

Аналогично поступают и с подброшенными неизвестными предметами, обнаруженными во дворе или под дверью. Вместо того, чтобы поднимать его руками или через ткань, лучше накрыть фольгой, не касаясь самого подкинутого предмета.

Иногда фольгу используют как защитный экран для амулетов и талисманов, которые в настоящий момент не нужны, но могут потребоваться в дальнейшем.

Алюминий в астрологии

Знак зодиака : Козерог.

Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий химик нагрел безводный хлорид элемента с металлическим калием. Произошло это во 2-ой половине 19-го века. До 20-го столетия кг алюминия стоил дороже .

Новый металл позволяли себе лишь богачи и государственные . Причина высокой стоимости – сложность отделения алюминия от других веществ. Метод добычи элемента в промышленных масштабах предложил Чарльз Холл.

В 1886-ом году он растворил оксид в расплаве криолита. Немец заключил смесь в гранитный сосуд и подключил к нему электрический ток. На дно емкости осели бляшки чистого металла.

Химические и физические свойства алюминия

Какой алюминий? Серебристо-белый, блестящий. Поэтому, Фридрих Велер сравнивал полученные им гранулы металла с . Но, была оговорка, — алюминий значительно легче.

Пластичность же приближена к драгоценным и . Алюминий – вещество , без проблем вытягивающееся в тонкую проволоку и листы. Достаточно вспомнить фольгу. Она делается на основе 13-го элемента.

Алюминий легок за счет небольшой плотности. Она втрое меньше, чем у и железа. При этом в прочности 13-ый элемент почти не уступает.

Такое сочетание сделало серебристый металл незаменимым в промышленности, к примеру, производстве деталей для автомобилей. Речь идет и о кустарном производстве, ведь сварка алюминия возможна даже в домашних условиях.

Формула алюминия позволяет активно отражать световые, но и тепловые лучи. Высока и электропроводность элемента. Главное, излишне не нагревать его. При 660-ти градусах расплавится. Поднимись температура чуть выше – сгорит.

Металл исчезнет, останется лишь оксид алюминия . Он образуется и в стандартных условиях, но лишь в виде поверхностной пленки. Она защищает металл. Поэтому, он неплохо противостоит коррозии, ведь доступ кислорода блокирован.

Оксидная пленка защищает металл и от воды. Если удалить с поверхности алюминия налет, запустится реакция с Н 2 О. Выделение газов водорода произойдет даже при комнатной температуре. Так что, алюминиевая лодка не превращается в дым лишь за счет оксидной пленки и защитной краски, нанесенной на корпус судна.

Наиболее активно взаимодействие алюминия с неметаллами. Реакции с бромом и хлором проходят даже при обычны условиях. В итоге, образуются соли алюминия . Соли водорода получаются, если соединить 13-ый элемент с растворами кислот. Реакция состоится и со щелочами, но лишь после удаления оксидной пленки. Выделится чистый водород.

Применение алюминия

Металл напыляют на зеркала. Пригождаются высокие показатели отражения света. Процесс проходит в условиях вакуума. Изготавливают не только стандартные зеркала, но предметы с зеркальными поверхностями. Таковыми становятся: керамическая плитка, бытовая техника, светильники.

Дуэт алюминий-медь – основа дюралюминий. Попросту его называют дюраль. В качестве добавляют . Состав прочнее чистого алюминия в 7 раз, поэтому, подходит для области машиностроения и авиаконструирования.

Медь придает 13-му элементу прочность, но не тяжесть. Дюраль остается в 3 раза легче железа. Небольшая масса алюминия – залог легкости авто, самолетов, кораблей. Это упрощает перевозку, эксплуатацию, снижает цену продукции.

Купить алюминий автопромышленники стремятся еще и потому, что на его сплавы легко наносятся защитные и декоративные составы. Краска ложится быстрее и ровнее, чем на сталь, пластик.

При этом, сплавы податливы, просто обрабатываются. Это ценно, учитывая массу изгибов и конструктивных переходов на современных моделях автомобилей.

13-ый элемент не только легко красится, но и сам может выступать в роли красителя. В текстильной промышленности закупается сульфат алюминия . Он же пригождается в печатном деле, где требуются нерастворимые пигменты.

Интересно, что раствор сульфата алюминия применяют еще и для очистки воды. В присутствии «агента» вредные примеси выпадают в осадок, нейтрализуются.

Нейтрализует 13-ый элемент и кислоты. Особенно хорошо с этой ролью справляется гидроксид алюминия . Его ценят в фармакологии, медицине, добавляя в лекарства от изжоги.

Выписывают гидроксид и при язвах, воспалительных процессах кишечного тракта. Так что в аптечных препарата тоже есть алюминий. Кислота в желудке – повод узнать о таких лекарствах побольше.

В СССР и бронзы с 11-процентной добавкой алюминия чеканили . Достоинство знаков – 1, 2 и 5 копеек. Начали выпускать в 1926-ом, закончили в 1957-ом году. А вот производство алюминиевых банок для консервов не прекратили.

Тушенку, сайру и прочие завтраки туристов до си пор упаковывают в тару на основе 13-го элемента. Такие банки не вступают в реакцию с продуктами питания, при этом, легки и дешевы.

Порошок алюминия входит в состав многих взрывчатых смесей, в том числе и пиротехники. В промышленности применяют подрывные механизмы на основе тринитротолуола и измельченного 13-го элемента. Мощная взрывчатка получается и при добавлении к алюминию аммиачной селитры.

В нефтяной отрасли необходим хлорид алюминия . Он играет роль катализатора при разложении органики на фракции. У нефти есть свойство выделять газообразные, легкие углеводороды бензинового типа, взаимодействуя с хлоридом 13-го металла. Реагент должен быть безводным. После добавления хлорида, смесь прогревают до 280-ти градусов Цельсия.

В строительстве нередко смешиваю натрий и алюминий . Получается присадка к бетону. Алюминат натрия ускоряет его затвердение за счет убыстрения гидратации.

Повышается скорость микрокристаллизации, значит, увеличивается прочность и твердость бетона. К тому же, алюминат натрия спасает арматуру, уложенную в раствор, от коррозии.

Добыча алюминия

Металл замыкает тройку самых распространенных на земле. Это объясняет его доступность и широкое применение. Однако, в чистом виде природа элемент человеку не дает. Алюминий приходится выделять из различных соединений. Больше всего 13-го элемента в бокситах. Это глиноподобные породы, сосредоточенные, в основном, в тропическом поясе.

Бокситы дробят, потом сушат, снова дробят и перемалывают в присутствии небольшого объема воды. Получается густая масса. Ее нагревают паром. При этом большая часть , коим бокситы тоже не бедны, испаряется. Остается оксид 13-го металла.

Его помещают в промышленные ванны. В них уже находится расплавленный криолит. Температура держится на отметке 950 градусов Цельсия. Нужен и электрический ток силой минимум в 400 кА. То есть, используется электролиз, как и 200 лет назад, когда элемент выделял Чарльз Холл.

Проходя через раскаленный раствор, ток разрывает связи между металлом и кислородом. В итоге, на дне ванн остается чистый алюминий. Реакции окончены. Завершает процесс отливание из осадка и их отправка потребителю, или же, использование для формирования различных сплавов.

Основные производства алюминия находятся там же, где и залежи бокситов. В передовика – Гвинея. В ее недрах скрыто почти 8 000 000 тонн 13-го элемента. На 2-ом месте Австралия с показателем в 6 000 000. В Бразилии алюминия уже в 2 раза меньше. Общемировые же запасы оцениваются в 29 000 000 тонн.

Цена алюминия

За тонну алюминия просят почти 1 500 долларов США. Таковы данные бирж цветных металлов на 20 января 2016-го. Стоимость устанавливается, в основном, промышленниками. Точнее, на цену алюминия влияет их спрос на сырье. Влияет на запросы поставщиков и стоимость электроэнергии, ведь производство 13-го элемента энергоемко.

Иные цены установлены на алюминия. Он идет на переплавку. Стоимость оглашается за килограмм, причем, имеет значение характер сдаваемого материала.

Так, за электротехнический металл дают примерно 70 рублей. За пищевой алюминий можно получить на 5-10 рублей меньше. Столько же платят за моторный металл. Если сдается разносортица, ее цена – 50-55 рублей за килограмм.

Самый дешевый вид лома – стружка алюминия. За нее удается выручить лишь 15-20 рублей. Чуть больше дадут за из 13-го элемента. Имеется в виду тара из-под напитков, консервов.

Невысоко ценят и алюминиевые радиаторы. Цена за килограмм лома – около 30-ти рублей. Это усредненные показатели. В разных регионах, на разных точках алюминий принимают дороже, либо дешевле. Нередко стоимость материалов зависит от сдаваемых объемов.

Характеристика алюминия

алюминий металл качество промышленность

Алюминий - самый распространенный металл в земной коре. Его содержание оценивают в 7.45% (больше, чем железа, которого только 4.2%). Алюминий как элемент открыт недавно-в 1825 г., когда были получены первые небольшие комочки этого металла. Начало его промышленного освоения относится к концу прошлого столетия. Толчком к этому послужила разработка в 1886 г. способа его получения путем электролиза глинозема, растворенного в криолите. Принцип способа лежит в основе современного промышленного извлечения алюминия из глинозема во всех странах мира.

По внешнему виду алюминий представляет собой блестящий серебристый белый металл. На воздухе он быстро окисляется, покрываясь тонкой белой матовой пленкой AlO. Эта пленка обладает высокими защитными свойствами, поэтому, будучи покрытым такой пленкой, алюминий является коррозионностойким.

Алюминий достаточно легко разрушается растворами едких щелочей, соляной и серной кислот. В концентрированной азотной кислоте и органических кислотах он обладает высокой стойкостью.

Наиболее характерными физическими свойствами алюминия является его малая относительная плотность, равная 2.7, а также сравнительно высокие тепло- и электропроводность. При 0C удельная электропроводность алюминия, т.е. электропроводность алюминиевой проволоки сечением 1 мм и длиной 1 м равна 37 1 ом.

Коррозионная стойкость и особенно электропроводность алюминия тем выше, чем он чище, чем меньше в нем примесей.

Температура плавления алюминия невысокая, она равна приблизительно 660C. Однако скрытая теплота плавления его очень большая - около 100 кал г, поэтому для расплавления алюминия требуется большой расход тепла, чем для расплавления такого же количества, например, тугоплавкой меди, у которой температура плавления 1083 C, скрытая теплота плавления 43 кал г.

Для механических свойств алюминия характерна большая пластичность и малая прочность. Прокатанный и отожженный алюминий имеет =10 кГ мм, а твердость НВ25, =80% и =35%.

Кристаллическая решетка алюминия представляет собой гранецентрированный куб, имеющий при 20 C параметр (размер стороны) 4.04. Аллотропических превращений алюминий не имеет.

В природе алюминий находится в виде алюминиевых руд: бокситов, нефелинов, алунитов и каолинов. Важнейшей рудой, на которой базируется большая часть мировой алюминиевой промышленности, являются бокситы.

Получение алюминия из руд состоит из двух последовательно проводимых этапов-сначала производят глинозем (AlO), а затем из него получают алюминий.

Известные в настоящее время методы получения глинозема можно разбить на три группы: щелочные, кислотные и электротермические. Наиболее широкое применение получили щелочные методы.

В одних разновидностях щелочных методов боксит, обезвоженный при 1000 C, измельчают в шаровых мельницах, смешивают в определенных пропорциях с мелом и содой и спекают для получения растворимого в воде твердого алюмината натрия по реакции

Al O + Na CO = Al O Na O + CO

Спекшуюся массу измельчают и выщелачивают водой, алюминат натрия при этом переходит в раствор.

В других разновидностях щелочного метода глинозем, содержащийся в боксите, связывают в алюминат натрия путем непосредственной обработки руды щелочами. При этом сразу получается раствор алюмината в воде.

В обоих случаях образование водного раствора алюмината натрия приводит к отделению его от нерастворимых компонентов руды, представляющих собой в основном окиси и гидроокиси кремния, железа и титана. Отделение раствора от нерастворимого осадка, называемого красным шламом, осуществляют в отстойниках.

В полученный раствор при 125 C и давлении 5 ам добавляют известь, что приводит к обескремниванию - CaSiO уходит в осадок, образуя белый шлам. Очищенный от кремния раствор после отделения его от белого шлама обрабатывают углекислым газом при 60-80 C, в результате чего в осадок выпадает кристаллический гидрат окиси алюминия:

AlONaO + 3H2O + CO = 2Al(OH) + Na CO.

Его промывают, просушивают и прокаливают. Прокаливание приводит к образованию глинозема:

2Al(OH) = AlO + 3H2O.

Описанный способ обеспечивает довольно полное извлечение глинозема из боксита - около 80%.

Получение металлического алюминия из глинозема заключается в его электролитическом разложении на составные части - на алюминий и кислород. Электролитом в этом процессе является раствор глинозема в криолите (AlF 3NaF). Криолит, обладая способностью растворять глинозем, одновременно снижает его температуру плавления. Глинозем плавится при температуре около 2000 C, а температура плавления раствора, состоящего, например, из 85% криолита и 15% глинозема, равна 935 C.

Схема электролиза глинозема достаточно проста, но технологически этот процесс сложный и требует больших затрат электроэнергии.

В поду ванны с хорошей теплоизоляцией 1 и угольной набивкой 2 заложены катодные шины 3, соединенные с отрицательным полюсом источника электрического тока. К анодной шине 4 присоединены электроды 5. Перед началом электролиза на дно ванны насыпают тонкий слой кокса, электроды опускают до соприкосновения с ним и включают ток. Когда угольная набивка накалится, постепенно вводят криолит. При толщине слоя расплавленного криолита, равной 200-300 мм, загружают глинозем из расчета 15% к количеству криолита. Процесс происходит при 950-1000 C.

Под действием электрического тока глинозем разлагается алюминий и кислород. Жидкий алюминий 6 скапливается на угольной подине (дно угольной ванны), являющейся катодом, а кислород соединяется с углеродом анодов, постепенно сжигая их. Криолит расходуется незначительно. Глинозем периодически добавляют, электроды для компенсации сгоревшей части постепенно опускают вниз, а накопившийся жидкий алюминий через определенные промежутки времени выпускают в ковш 8.

При электролизе на 1 т алюминия расходуется около 2 т глинозема, 0.6 т угольных электродов, служащих анодами, 0.1 т криолита и от 17000 до 18000 квт ч электроэнергии.

Полученный при электролизе глинозема алюминий-сырец содержит металлические примеси (железо, кремний, титан и натрий), растворенные газы, главным из которых является водород, и неметаллические включения, представляющие собой частицы глинозема, угля и криолита. В таком состоянии он непригоден для применения, так как имеет низкие свойства, поэтому его обязательно подвергают рафинированию. Неметаллические и газообразные примеси удаляют путем переплавки и продувки металла хлором. Металлические примеси можно удалить только сложными электролитическими способами.

После рафинирования получают торговые сорта алюминия.

Чистота алюминия является решающим показателем, влияющим на все его свойства, поэтому химический состав положен в основу классификации алюминия.

Неизбежными примесями, получающимися при производстве алюминия, являются железо и кремний. Обе они в алюминии вредны. Железо не растворяется в алюминии, а образует с ним хрупкие химические соединения FeAl и Fe2Al. С кремнием алюминий образует эвтектическую механическую смесь при 11.7% Si. Поскольку растворимость кремния при комнатной температуре очень мала (0.05%), то даже при его незначительном количестве он образует эвтектику Fe+Si и включения очень твердых (НВ 800) хрупких кристалликов кремния, которые снижают пластичность алюминия. При совместном присутствии кремния и железа образуется тройное химическое соединение и тройная эвтектика, тоже понижающие пластичность.

Контролируемыми примесями в алюминии являются железо, кремний, медь и титан.

Алюминий всех марок содержит более 99% Al. Количественное же превышение этой величины в сотых или десятых долях процента указывают в названии марки после начальной буквы А. Так, в марке А85 содержится 99.85% Al. Исключение из этого принципа маркировки составляют марки А АЕ, в которых содержание алюминия такое же, как в марках А0 и А5, но другое соотношение входящих в состав примесей железа и кремния.

Буква Е в марке АЕ означает, что алюминий данной марки предназначается для производства электропроводов. Дополнительным требованием к свойствам алюминия является низкое электросопротивление, которое для проволоки, изготовленной из него, должно быть не более 0.0280 ом мм м при 20 C.

Алюминий применяют для производства из него изделий и сплавов на его основе, свойства которых требуют большой степени его чистоты.

В зависимости от назначения алюминий можно производить в различном виде. Алюминий всех марок (высокой и технической чистоты), предназначенный для переплавки, отливают в виде чушек массой 5; 15 и 1000 кг. Их предельные величины следующие: высота от 60 до 600 мм, ширина от 93 до 800 мм и длина от 415 до 1000 мм.

Если же алюминий предназначается для проката листа и ленты, то непрерывным или полунепрерывным методом отливают плоские слитки семнадцати размеров. Толщина их колеблется в пределах от 140 до 400 мм, ширина-от 560 до 2025 мм, а масса 1 м длины слитка-от 210 до 2190 кг. Длину слитка согласовывают с заказчиком.

Основным видом контроля алюминия как в чушках, так и в плоских слитках, является проверка химического состава и его соответствие марочному. К чушкам и слиткам, предназначенным для обработки давлением, предъявляют дополнительные требования, такие, например, как отсутствие раковин, газовых пузырей, трещин, шлаковых и других посторонних включений.

Для раскисления стали в процессе ее выплавки, а также для производства ферросплавов и для алюмотермии можно применять более дешевый алюминий меньшей чистоты, чем это указано таблице «Чистота алюминия разных марок». Для этой цели промышленность выпускает шесть марок алюминия в чушках массой от 3 до 16.5 кг, содержащих от 98.0 до 87.0% Al. В них содержание железа достигает 2.5%, а кремния и меди до 5% каждого.

Применение алюминия обусловлено особенностью его свойств. Сочетание легкости с достаточно высокой электропроводностью позволяет применять алюминий как проводник электрического тока, заменяя им более дорогую медь. Разницу в электропроводности меди (631 ом) и алюминия (371 ом) компенсируют увеличением сечения алюминиевого провода. Малая масса алюминиевых проводов делает возможным осуществлять их подвеску при значительно большем, чем в случае медных проводов, расстоянии между опорами, не опасаясь обрыва проводов под влиянием собственного веса. Из него изготовляют также кабели, шины, конденсаторы, выпрямители. Высокая коррозионная стойкость алюминия делает его в ряде случаев незаменимым материалом в химическом машиностроении, например для изготовления аппаратуры, применяющейся при производстве, хранении и перевозке азотной кислоты и ее производных.

Широко его применяют также в пищевой промышленности-из него изготовляют разнообразную посуду для приготовления пищи. При этом используют не только его стойкость к действию органических кислот, но также и высокую теплопроводность.

Высокая пластичность позволяет раскатывать алюминий в фольгу, которая в настоящее время полностью заменила применявшуюся ранее более дорогую оловянную фольгу. Фольга служит упаковкой для самых разнообразных пищевых продуктов: чая, шоколада, табака, сыра и др.

Алюминий применяют так же, как антикоррозионное покрытие других металлов и сплавов. Его можно наносить плакированием, диффузионной металлизацией и другими способами, включая покраску алюминий содержащими красками и лаками. Особенно сильно распространено плакирование алюминием плоского проката из менее коррозионно устойчивых алюминиевых сплавов.

Химическую активность алюминия по отношению к кислороду используют для раскисления при производстве полуспокойной и спокойной стали и для получения трудно восстановимых металлов путем вытеснения алюминием из их кислородных соединений.

Алюминий применяют как легирующий элемент в самых различных сталях и сплавах. Он придает им специфические свойства. Так например, он повышает жаростойкость сплавов на основе железа, меди, титана и некоторых других металлов.

Можно назвать и иные области применения алюминия различной степени чистоты, но самое большое его количество расходуют на получение различных легких сплавов на его основе. Сведения о главных из них приведены ниже.

В целом применение алюминия в различных отраслях хозяйства на примере развитых капстран оценивают следующими цифрами: транспортное машиностроение 20-23% (в том числе автомобилестроение 15%), строительство 17-18%, электротехника 10-12%, производство упаковочных материалов 9-10%, производство потребительских товаров длительного пользования 9-10%, общее машиностроение 8-10%.

Алюминий завоевывает все новые области применения, несмотря на конкуренцию других материалов и особенно пластмасс.

Основными промышленными рудами, содержащими алюминий, являются боксит, нефелин, алунит и каолин.

Качество этих руд оценивают по содержанию в них глинозема Al O, который содержит 53% Al. Из других показателей качества алюминиевых руд наиболее важным является состав примесей, вредность и полезность которых определяются применением руды.

Боксит является лучшим и во всем мире основным сырьем для получения алюминия. Его используют также для производства искусственного корунда, высокоогнеупорных изделий и для других назначений. По химическому составу эта осадочная горная порода представляет собой смесь гидратов глинозема AlO nH2O с окислами железа, кремния, титана и других элементов. Наиболее распространенными гидратами глинозема, входящими в состав бокситов, являются минералы: диаспор, бемит и гидраргеллит. Содержание глинозема в боксите даже в одном месторождении колеблется в очень широких пределах-от 35 до 70%.

Входящие в состав боксита минералы образуют очень тонкую смесь, что затрудняет обогащение. В промышленности в основном применяют сырую руду. Процесс извлечения алюминия из руды сложный, очень энергоемкий и состоит из двух стадий: сначала извлекают глинозем, а затем из него получают алюминий.

Предметом мировой торговли является как сам боксит, так и извлеченный из него или других руд глинозем.

На территории СНГ залежи бокситов распределены неравномерно, и бокситы разных месторождений неравноценны по качеству. Месторождения наиболее высококачественных бокситов находятся на Урале. Большие запасы бокситов имеются также в Европейской части СНГ и в Западном Казахстане.

Из индустриально развитых стран ныне практически обеспечена лишь Франция, где впервые началась его разработка. Его достоверные и вероятные запасы в этой группе государств в 1975 г. оценивались в 4.8 млрд. т (в том числе в Австралии 4.6 млрд. т), тогда как в развивающихся странах в 12.5 млрд. т, в основном в Африке и Латинской Америке (самые богатые-Гвинея, Камерун, Бразилия, Ямайка).

За послевоенное время резко расширился круг стран, где ведется добыча боксита и производится первичный алюминий. В 1950 г. боксит добывали лишь в 11 странах, не считая СССР, в том числе в трех в количестве свыше 1 млн. т (Суринам, Гайяна, США) и в четырех более по 0.1 млн. т (Франция, Индонезия, Италия, Гана). К 1977 г. объем добычи возрос в 12 раз и резко изменилась ее география (более половины добычи капиталистического мира приходилось на развивающиеся страны).

В отличие от развивающихся стран, богатая топливом Австралия большую часть добываемых бокситов (в основном на полуострове Иорк-в крупнейшем бокситовом месторождении мира) перерабатывает в глинозем, играя решающую роль в его мировом экспорте. Не пример ей, страны бассейна Карибского моря и западноафриканские вывозят преимущественно боксит. В этом сказывается как причины политического характера (мировым алюминиевым монополиям предпочтительнее производство глинозема за пределами бокситодобывающих, зависимых от них стран), так и чисто экономические: бокситы, в отличие от руд тяжелых цветных металлов, транспортабельны (содержат 35-65% двуокиси алюминия), а глиноземное производство требует значительных удельных расходов, которым не располагает подавляющая часть бокситодобывающих стран.

Стремясь противостоять диктату мировых алюминиевых монополий бокситоэкспортирующие страны в 1973 г. создали организацию «Международная ассоциация бокситодобывающих стран» (МАБС). В нее вошли Австралия, Гвинея, Гайана, Ямайка, а также Югославия; позднее к ней присоединились Доминиканская республика, Гаити, Гана, Сьерра-Леоне, Суринам, а Греция и Индия стали странами-наблюдателями. На год создания на долю этих государств приходилось примерно 85% добычи бокситов в несоциалистических государствах.

Для алюминиевой промышленности характерен территориальный разрыв как между добычей боксита и производством глинозема, так и между последним и выплавкой первичного алюминия. Крупнейшие производства глинозема (до 1-1.3 млн. т год) локализованы как при алюминиевых заводах (например, при канадском заводе в Арвида в Квебеке, занимающем по производственной мощности-0.4 млн. т алюминия в год), так и в бокситоэкспортирующих портах (например, Паранам в Суринаме), а также на путях следования боксита от вторых к первым - например в США на побережье Мексиканского залива (Корпус-Кристи, Пойнт-Комфорт).

У нас в стране все добываемые бокситы разделены на десять марок. Основное различие между бокситами разных марок состоит в том, что они содержат разное количество основного извлекаемого компонента-глинозема и имеют разную величину кремниевого модуля, т.е. разное содержание глинозема к содержанию вредной в бокситах примеси кремнезема (AlO SiO). Кремниевый модуль является очень важным показателем качества бокситов, от него в сильной мере зависят их применение и технология переработки.

Содержание влаги в бокситах любых марок установлено в зависимости от их месторождения: наименьшая влажность (не более 7%) установлена для бокситов южно-уральских месторождений, а для северо-уральских, каменск-уральских и тихвинских-соответственно не более 12, 16 и 22%. Показатель влажности не является браковочным признаком и служит только для расчетов с потребителем.

Боксит поставляют в кусках размером не более 500 мм. Перевозят его навалом на платформах или в гондолах.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека