Види трикутників, кути та сторони. Властивості трикутника

Сьогодні ми вирушаємо до країни Геометрія, де познайомимося із різними видами трикутників.

Розгляньте геометричні фігури та знайдіть серед них «зайву» (рис. 1).

Мал. 1. Ілюстрація наприклад

Ми бачимо, що фігури № 1, 2, 3, 5 – чотирикутники. Кожна їх має свою назву (рис. 2).

Мал. 2. Чотирикутники

Значить, зайвою фігурою є трикутник (рис. 3).

Мал. 3. Ілюстрація наприклад

Трикутником називається фігура, яка складається з трьох точок, що не лежать на одній прямій, і трьох відрізків, які попарно з'єднують ці точки.

Крапки називаються вершинами трикутника, відрізки - його сторонами. Сторони трикутника утворюють у вершинах трикутника три кути.

Основними ознаками трикутника є три сторони та три кути.За величиною кута трикутники бувають гострокутні, прямокутні та тупокутні.

Трикутник називається гострокутним, якщо всі три кути його гострі, тобто менше 90° (рис. 4).

Мал. 4. Гострокутний трикутник

Трикутник називається прямокутним, якщо один із його кутів дорівнює 90° (рис. 5).

Мал. 5. Прямокутний трикутник

Трикутник називається тупокутним, якщо один із його кутів тупий, тобто більше 90° (рис. 6).

Мал. 6. Тупокутний трикутник

За кількістю рівних сторін трикутники бувають рівносторонні, рівностегнові, різнобічні.

Рівностегновим називається трикутник, у якого дві сторони рівні (рис. 7).

Мал. 7. Рівностегновий трикутник

Ці сторони називаються бічними, третя сторона - основою. У рівнобедреному трикутнику кути при основі рівні.

Рівностегнові трикутники бувають гострокутними та тупокутними(Рис. 8) .

Мал. 8. Гострокутний та тупокутний рівнобедрені трикутники

Рівностороннім називається трикутник, у якого всі три сторони рівні (рис. 9).

Мал. 9. Рівносторонній трикутник

У рівносторонньому трикутнику всі кути рівні. Рівносторонні трикутникизавжди гострокутні.

Різностороннім називається трикутник, у якого всі три сторони мають різну довжину (рис. 10).

Мал. 10. Різносторонній трикутник

Виконайте завдання. Розподіліть дані трикутники на три групи (рис. 11).

Мал. 11. Ілюстрація до завдання

Спочатку розподілимо за величиною кутів.

Гострокутні трикутники: №1, №3.

Прямокутні трикутники: №2, №6.

Тупокутні трикутники: №4, №5.

Ці трикутники розподілимо на групи за кількістю рівних сторін.

Різносторонні трикутники: №4, №6.

Рівностегнові трикутники: №2, №3, №5.

Рівносторонній трикутник: №1.

Розгляньте малюнки.

Подумайте, з якого шматка дроту зробили кожен трикутник (рис. 12).

Мал. 12. Ілюстрація до завдання

Можна міркувати так.

Перший шматок дроту розділений три рівні частини, тому з нього можна зробити рівносторонній трикутник. На малюнку він зображений третім.

Другий шматок дроту розділений три різні частини, тому з нього можна зробити різнобічний трикутник. На малюнку він зображений першим.

Третій шматок дроту розділений три частини, де дві частини мають однакову довжину, отже, з нього можна зробити рівнобедрений трикутник. На малюнку він зображений другим.

Сьогодні на уроці ми познайомилися із різними видами трикутників.

Список літератури

  1. М.І. Моро, М.А. Бантова та ін. Математика: Підручник. 3 клас: у 2-х частинах, частина 1. – М.: «Освіта», 2012.
  2. М.І. Моро, М.А. Бантова та ін. Математика: Підручник. 3 клас: у 2-х частинах, частина 2. – М.: «Освіта», 2012.
  3. М.І. Море. Уроки математики: Методичні поради для вчителя. 3 клас. - М: Просвітництво, 2012.
  4. Нормативно-правовий документ. Контроль та оцінка результатів навчання. – К.: «Освіта», 2011.
  5. "Школа Росії": Програми для початкової школи. – К.: «Освіта», 2011.
  6. С.І. Волкова. Математика: Перевірочні роботи. 3 клас. - М: Просвітництво, 2012.
  7. В.М. Рудницька. Тести. – К.: «Іспит», 2012.
  1. Nsportal.ru().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнє завдання

1. Закінчіть фрази.

а) Трикутником називається фігура, яка складається з …, що не лежать на одній прямій, та …, які попарно з'єднують ці точки.

б) Точки називаються , відрізки - його . Сторони трикутника утворюють у вершинах трикутника ….

в) За величиною кута трикутники бувають …, …, ….

г) За кількістю рівних сторін трикутники бувають …, …, ….

2. Накресліть

а) прямокутний трикутник;

б) гострокутний трикутник;

в) тупокутний трикутник;

г) рівносторонній трикутник;

д) різносторонній трикутник;

е) рівнобедрений трикутник.

3. Складіть завдання на тему уроку для своїх товаришів.

Найпростіший багатокутник, який вивчається у школі – це трикутник. Він зрозуміліший для учнів і зустрічає менше труднощів. Незважаючи на те, що існують різні види трикутників, у яких є особливі властивості.

Яка постать називається трикутником?

Утворена трьома точками та відрізками. Перші називаються вершинами, другі - сторонами. Причому всі три відрізки мають бути з'єднані, щоб між ними утворювалися кути. Звідси і назва фігури "трикутник".

Відмінності в назвах за кутами

Оскільки вони можуть бути гострими, тупими та прямими, то й види трикутників визначаються за цими назвами. Відповідно, груп таких постатей три.

  • Перший. Якщо всі кути трикутника гострі, то він матиме назву гострокутного. Все логічно.
  • Друга. Один із кутів тупий, отже трикутник тупокутний. Простіше нікуди.
  • Третій. Є кут, що дорівнює 90 градусам, який називається прямим. Трикутник стає прямокутним.

Відмінності в назвах на всі боки

Залежно від особливостей сторін виділяють такі види трикутників:

    загальний випадок - різнобічний, у якому всі сторони мають довільну довжину;

    рівнобедрений, у двох сторін якого є однакові числові значення;

    рівносторонній, довжини всіх сторін однакові.

Якщо задачі не вказано конкретний вид трикутника, потрібно креслити довільний. У якого всі кути гострі, а сторони мають різну довжину.

Властивості, загальні всім трикутників

  1. Якщо скласти всі кути трикутника, то вийде число 180º. І неважливо, якого він вигляду. Це правило діє завжди.
  2. Числове значення будь-якої сторони трикутника менше, ніж складені разом дві інші. При цьому вона ж більша, ніж їхня різниця.
  3. Кожен зовнішній кут має значення, яке виходить при складанні двох внутрішніх, не суміжних із ним. Причому він завжди більший, ніж суміжний із ним внутрішній.
  4. Навпроти меншої сторони трикутника завжди лежить найменший кут. І навпаки, якщо сторона велика, то й кут буде найбільшим.

Ці властивості справедливі завжди, які види трикутників не розглядалися в задачах. Всі інші випливають із конкретних особливостей.

Властивості рівнобедреного трикутника

  • Кути, які прилягають до основи, рівні.
  • Висота, яка проведена до основи, є також медіаною та бісектрисою.
  • Висоти, медіани та бісектриси, які побудовані до бокових сторін трикутника, відповідно дорівнюють один одному.

Властивості рівностороннього трикутника

Якщо є така фігура, то будуть вірні всі властивості, описані трохи вище. Тому що рівносторонній завжди буде рівнобедреним. Але не навпаки, рівнобедрений трикутник не обов'язково буде рівностороннім.

  • Усі його кути дорівнюють один одному і мають значення 60º.
  • Будь-яка медіана рівностороннього трикутника є його висотою та бісектрисою. Причому всі вони рівні один одному. Для визначення їх значень існує формула, що складається з добутку на квадратний корінь із 3, поділеного на 2.

Властивості прямокутного трикутника

  • Два гострі кути дають у сумі значення 90º.
  • Довжина гіпотенузи завжди більша, ніж у будь-якого з катетів.
  • Числове значення медіани, проведеної до гіпотенузи, дорівнює її половині.
  • Цьому ж значення дорівнює катет, якщо він лежить навпроти кута в 30º.
  • Висота, проведена з вершини зі значенням 90º, має певну математичну залежність від катетів: 1/н ​​2 = 1/а 2 + 1/в 2 . Тут: а, в – катети, н – висота.

Завдання з різними видами трикутників

№1. Дано рівнобедрений трикутник. Його периметр відомий і дорівнює 90 см. Потрібно впізнати його сторони. Як додаткова умова: бічна сторона менша за основу в 1,2 рази.

Значення периметра безпосередньо залежить від величин, які потрібно знайти. Сума всіх трьох сторін і дасть 90 см. Тепер слід згадати ознаку трикутника, за яким він є рівнобедреним. Тобто дві сторони рівні. Можна скласти рівняння з двома невідомими: 2а + в = 90. Тут а – бічна сторона, в – основа.

Настала черга додаткової умови. Наслідуючи його, виходить друге рівняння: в = 1,2а. Можна виконати підстановку цього виразу перше. Вийде: 2а + 1,2а = 90. Після перетворень: 3,2а = 90. Звідси а = 28,125 (см). Тепер неважко дізнатися про основу. Найкраще це зробити з другої умови: = 1,2 * 28,125 = 33,75 (см).

Для перевірки можна скласти три значення: 28,125*2+33,75=90 (см). Все вірно.

Відповідь: сторони трикутника дорівнюють 28,125 см, 28,125 см, 33,75 см.

№2. Сторона рівностороннього трикутника дорівнює 12 см. Потрібно обчислити його висоту.

Рішення. Для пошуку відповіді достатньо повернутися на той момент, де були описані властивості трикутника. Так зазначено формулу для знаходження висоти, медіани та бісектриси рівностороннього трикутника.

н = а * √3/2, де н – висота, а – сторона.

Підстановка та обчислення дають такий результат: н = 6 √3 (см).

Цю формулу необов'язково запам'ятовувати. Досить, що висота ділить трикутник на два прямокутних. Причому вона виявляється катетом, а гіпотенуза в ньому це сторона вихідного, другий катет - половина відомої сторони. Тепер потрібно записати теорему Піфагора та вивести формулу для висоти.

Відповідь: висота дорівнює 6 √3 см.

№3. Дан МКР - трикутник, 90 градусів у якому становить кут К. Відомі сторони МР і КР, вони рівні відповідно 30 і 15 см. Потрібно дізнатися значення кута Р.

Рішення. Якщо зробити креслення, стає ясно, що МР — гіпотенуза. Причому вона вдвічі більша за катет КР. Знову слід звернутися до властивостей. Одне з них пов'язане з кутами. З нього зрозуміло, що кут КМР дорівнює 30 º. Значить шуканий кут Р дорівнюватиме 60º. Це випливає з іншої властивості, яка стверджує, що сума двох гострих кутів має дорівнювати 90 º.

Відповідь: кут Р дорівнює 60 º.

№4. Потрібно знайти всі кути рівнобедреного трикутника. Про нього відомо, що зовнішній кут від кута на підставі дорівнює 110º.

Рішення. Оскільки даний лише зовнішній кут, то цим і потрібно скористатися. Він утворює з внутрішнім кутом розгорнутий. Значить у сумі вони дадуть 180 º. Тобто кут при основі трикутника дорівнюватиме 70º. Так як він рівнобедрений, то другий кут має таке саме значення. Залишилося вирахувати третій кут. За якістю, загальною всім трикутників, сума кутів дорівнює 180º. Отже, третій визначиться як 180 º - 70 º - 70 º = 40 º.

Відповідь: кути дорівнюють 70º, 70º, 40º.

№5. Відомо, що в рівнобедреному трикутнику кут, що лежить навпроти основи, дорівнює 90º. На підставі зазначено крапку. Відрізок, що з'єднує її з прямим кутом, ділить його щодо 1 до 4. Потрібно дізнатися про всі кути меншого трикутника.

Рішення. Один із кутів можна визначити відразу. Оскільки трикутник прямокутний та рівнобедрений, то ті, що лежать біля його основи, будуть по 45º, тобто по 90º/2.

Другий із них допоможе знайти відоме в умові ставлення. Оскільки воно дорівнює 1 до 4, то частин, на які він ділиться, виходить всього 5. Значить, щоб дізнатися менший кут трикутника потрібно 90º/5 = 18º. Залишилось дізнатися третій. Для цього від 180º (суми всіх кутів трикутника) потрібно відняти 45º та 18º. Обчислення нескладні і вийде: 117º.

Сьогодні ми вирушаємо до країни Геометрія, де познайомимося із різними видами трикутників.

Розгляньте геометричні фігури та знайдіть серед них «зайву» (рис. 1).

Мал. 1. Ілюстрація наприклад

Ми бачимо, що фігури № 1, 2, 3, 5 – чотирикутники. Кожна їх має свою назву (рис. 2).

Мал. 2. Чотирикутники

Значить, зайвою фігурою є трикутник (рис. 3).

Мал. 3. Ілюстрація наприклад

Трикутником називається фігура, яка складається з трьох точок, що не лежать на одній прямій, і трьох відрізків, які попарно з'єднують ці точки.

Крапки називаються вершинами трикутника, відрізки - його сторонами. Сторони трикутника утворюють у вершинах трикутника три кути.

Основними ознаками трикутника є три сторони та три кути.За величиною кута трикутники бувають гострокутні, прямокутні та тупокутні.

Трикутник називається гострокутним, якщо всі три кути його гострі, тобто менше 90° (рис. 4).

Мал. 4. Гострокутний трикутник

Трикутник називається прямокутним, якщо один із його кутів дорівнює 90° (рис. 5).

Мал. 5. Прямокутний трикутник

Трикутник називається тупокутним, якщо один із його кутів тупий, тобто більше 90° (рис. 6).

Мал. 6. Тупокутний трикутник

За кількістю рівних сторін трикутники бувають рівносторонні, рівностегнові, різнобічні.

Рівностегновим називається трикутник, у якого дві сторони рівні (рис. 7).

Мал. 7. Рівностегновий трикутник

Ці сторони називаються бічними, третя сторона - основою. У рівнобедреному трикутнику кути при основі рівні.

Рівностегнові трикутники бувають гострокутними та тупокутними(Рис. 8) .

Мал. 8. Гострокутний та тупокутний рівнобедрені трикутники

Рівностороннім називається трикутник, у якого всі три сторони рівні (рис. 9).

Мал. 9. Рівносторонній трикутник

У рівносторонньому трикутнику всі кути рівні. Рівносторонні трикутникизавжди гострокутні.

Різностороннім називається трикутник, у якого всі три сторони мають різну довжину (рис. 10).

Мал. 10. Різносторонній трикутник

Виконайте завдання. Розподіліть дані трикутники на три групи (рис. 11).

Мал. 11. Ілюстрація до завдання

Спочатку розподілимо за величиною кутів.

Гострокутні трикутники: №1, №3.

Прямокутні трикутники: №2, №6.

Тупокутні трикутники: №4, №5.

Ці трикутники розподілимо на групи за кількістю рівних сторін.

Різносторонні трикутники: №4, №6.

Рівностегнові трикутники: №2, №3, №5.

Рівносторонній трикутник: №1.

Розгляньте малюнки.

Подумайте, з якого шматка дроту зробили кожен трикутник (рис. 12).

Мал. 12. Ілюстрація до завдання

Можна міркувати так.

Перший шматок дроту розділений три рівні частини, тому з нього можна зробити рівносторонній трикутник. На малюнку він зображений третім.

Другий шматок дроту розділений три різні частини, тому з нього можна зробити різнобічний трикутник. На малюнку він зображений першим.

Третій шматок дроту розділений три частини, де дві частини мають однакову довжину, отже, з нього можна зробити рівнобедрений трикутник. На малюнку він зображений другим.

Сьогодні на уроці ми познайомилися із різними видами трикутників.

Список літератури

  1. М.І. Моро, М.А. Бантова та ін. Математика: Підручник. 3 клас: у 2-х частинах, частина 1. – М.: «Освіта», 2012.
  2. М.І. Моро, М.А. Бантова та ін. Математика: Підручник. 3 клас: у 2-х частинах, частина 2. – М.: «Освіта», 2012.
  3. М.І. Море. Уроки математики: Методичні поради для вчителя. 3 клас. - М: Просвітництво, 2012.
  4. Нормативно-правовий документ. Контроль та оцінка результатів навчання. – К.: «Освіта», 2011.
  5. "Школа Росії": Програми для початкової школи. – К.: «Освіта», 2011.
  6. С.І. Волкова. Математика: Перевірочні роботи. 3 клас. - М: Просвітництво, 2012.
  7. В.М. Рудницька. Тести. – К.: «Іспит», 2012.
  1. Nsportal.ru().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнє завдання

1. Закінчіть фрази.

а) Трикутником називається фігура, яка складається з …, що не лежать на одній прямій, та …, які попарно з'єднують ці точки.

б) Точки називаються , відрізки - його . Сторони трикутника утворюють у вершинах трикутника ….

в) За величиною кута трикутники бувають …, …, ….

г) За кількістю рівних сторін трикутники бувають …, …, ….

2. Накресліть

а) прямокутний трикутник;

б) гострокутний трикутник;

в) тупокутний трикутник;

г) рівносторонній трикутник;

д) різносторонній трикутник;

е) рівнобедрений трикутник.

3. Складіть завдання на тему уроку для своїх товаришів.

Стандартні позначення

Трикутник з вершинами A, Bі Cпозначається як (див. мал.). Трикутник має три сторони:

Довжини сторін трикутника позначаються малими латинськими літерами (a, b, c):

Трикутник має такі кути:

Величини кутів за відповідних вершин традиційно позначаються грецькими літерами (α, β, γ).

Ознаки рівності трикутників

Трикутник на евклідовій площині однозначно (з точністю до конгруентності) можна визначити за такими трійками основних елементів:

  1. a, b, γ (рівність з двох сторін і куту, що лежить між ними);
  2. a, β, γ (рівність по стороні та двом прилеглим кутам);
  3. a, b, c (рівність з трьох сторін).

Ознаки рівності прямокутних трикутників:

  1. по катету та гіпотенузі;
  2. за двома катетами;
  3. по катету та гострому куту;
  4. з гіпотенузи та гострого кута.

Деякі точки у трикутнику – «парні». Наприклад, існує дві точки, з яких всі сторони видно або під кутом 60°, або під кутом 120°. Вони називаються точками Торрічеллі. Також існує дві точки, проекції яких сторони лежать у вершинах правильного трикутника. Це - точки Аполлонія. Крапки і такі, що називаються точками Брокара.

Прямі

У будь-якому трикутнику центр ваги, ортоцентр і центр описаного кола лежать на одній прямій, званій прямий Ейлера.

Пряма, що проходить через центр описаного кола та точку Лемуана, називається віссю Брокара. На ній лежать точки Аполлонія. Також на одній прямій лежать точки Торрічеллі та точка Лемуана. Основи зовнішніх бісектрис кутів трикутника лежать на одній прямій, званій віссю зовнішніх бісектрис. На одній прямій лежать також точки перетину прямих, що містять сторони ортотрикутника, з прямими сторонами трикутника, що містять. Ця пряма називається ортоцентричною віссю, вона перпендикулярна до прямої Ейлера.

Якщо на описаному колі трикутника взяти крапку, то її проекції на сторони трикутника лежатимуть на одній прямій, званій прямий Сімсонацієї точки. Прямі Сімсона діаметрально протилежних точок перпендикулярні.

Трикутники

  • Трикутник з вершинами в основах чевіан, проведених через дану точку, називається чевіанним трикутникомцієї точки.
  • Трикутник з вершинами в проекціях даної точки на сторони називається подернимабо педальним трикутникомцієї точки.
  • Трикутник у вершинах у других точках перетину прямих, проведених через вершини і дану точку, з описаним колом, називають окружно-чевіанним трикутником. Окружно-чевіанний трикутник подібний до подерного.

Кола

  • Вписане коло- Коло , Що стосується всіх трьох сторін трикутника. Вона єдина. Центр вписаного кола називається інцентром.
  • Описане коло- Коло, що проходить через всі три вершини трикутника. Описане коло також єдине.
  • Вписане коло- коло, що стосується однієї сторони трикутника та продовження двох інших сторін. Таких кіл у трикутнику три. Їхній радикальний центр - центр вписаного кола серединного трикутника, званий точкою Шпікера.

Середини трьох сторін трикутника, основи трьох його висот і середини трьох відрізків, що з'єднують його вершини з ортоцентром, лежать на одному колі, що називається коло дев'яти точокабо колом Ейлера. Центр кола дев'яти точок лежить на прямій Ейлера. Окружність дев'яти точок стосується вписаного кола і трьох вписаних. Точка торкання вписаного кола та кола дев'яти точок називається точкою Фейєрбаха. Якщо від кожної вершини відкласти назовні трикутника на прямих, що містять сторони, ортезки, рівні по довжині протилежним сторонам, то шість точок, що виходять, лежать на одному колі - кола Конвею. У будь-який трикутник можна вписати три кола таким чином, що кожна з них стосується двох сторін трикутника та двох інших кіл. Такі кола називаються коло Мальфатті. Центри описаних кіл шести трикутників, на які трикутник розбивається медіанами, лежать на одному колі, яке називається коло Ламуна.

У трикутнику є три кола, які стосуються двох сторін трикутника та описаного кола. Такі кола називають напіввписанимиабо колами Верр'єра. Відрізки, що з'єднують точки дотику кіл Верр'єра з описаним колом, перетинаються в одній точці, званій точкою Верр'єра. Вона служить центром гомотетії, яка переводить описане коло у вписане. Точки торкання кіл Верр'єра зі сторонами лежать на прямій, яка проходить через центр вписаного кола.

Відрізки, що з'єднують точки торкання вписаного кола з вершинами, перетинаються в одній точці, яка називається точкою Жергона, а відрізки, що з'єднують вершини з точками дотику до вписаних кіл - в точці Нагеля.

Еліпси, параболи та гіперболи

Вписана коніка (еліпс) та її перспектор

У трикутник можна вписати нескінченно багато кузнечиків (еліпсів, парабол або гіпербол). Якщо в трикутник вписати довільну коніку і з'єднати точки дотику з протилежними вершинами, то прямі перетнуться в одній точці, званій перспекторомконики. Для будь-якої точки площини, що не лежить на боці або її продовженні існує вписана коніка з перспективою в цій точці.

Описаний еліпс Штейнера та чевіани, що проходять через його фокуси

У трикутник можна вписати еліпс, що стосується сторін у серединах. Такий еліпс називається вписаним еліпсом Штейнера(Його перспективником буде центроїд трикутника). Описаний еліпс, що стосується прямих, що проходять через вершини паралельно сторонам, називається описаним еліпсом Штейнера. Якщо афінним перетворенням («перекосом») перевести трикутник у правильний, його вписаний і описаний еліпс Штейнера перейдуть у вписану і описану окружности. Чевіани, проведені через фокуси описаного еліпса Штейнер (точки Скутіна), рівні (теорема Скутіна). З усіх описаних еліпсів описаний еліпс Штейнер має найменшу площу, а з усіх вписаних найбільшу площу має вписаний еліпс Штейнера.

Еліпс Брокара та його перспектор - точка Лемуана

Еліпс з фокусами в точках Брокара називається еліпсом Брокара. Його перспективою є точка Лемуана.

Властивості вписаної параболи

Парабола Кіперта

Перспектори вписаних парабол лежать на описаному еліпсі Штейнера. Фокус вписаної параболи лежить на описаному колі, а директриса проходить через ортоцентр. Парабола, вписана в трикутник, що має директрису пряму Ейлера, називається параболою Кіперта. Її перспектор - четверта точка перетину описаного кола та описаного еліпса Штейнера, звана точкою Штейнера.

Гіпербола Кіперта

Якщо описана гіпербола проходить через точку перетину висот, вона рівностороння (тобто її асимптоти перпендикулярні). Точка перетину асимптот рівносторонньої гіперболи лежить на колі дев'яти точок.

Перетворення

Якщо прямі, що проходять через вершини та деяку точку, що не лежить на сторонах та їх продовженнях, відобразити щодо відповідних бісектрис, то їх образи також перетнуться в одній точці, яка називається ізогонально сполученоївихідної (якщо точка лежала на описаному колі, то прямі будуть паралельні). Ізогонально сполученими є багато пар чудових точок: центр описаного кола і ортоцентр, центроїд і точка Лемуана, точки Брокара. Крапки Аполлонія ізгонально пов'язані точкам Торрічеллі, а центр вписаного кола ізогонально пов'язаний сам собі. Під дією ізогонального сполучення прямі переходять в описані коніки, а описані коніки - у прямі. Так, ізогонально пов'язані гіпербола Кіперта і вісь Брокара, гіпербола Енжабека і пряма Ейлера, гіпербола Фейєрбаха та лінія центрів, вписаних про описані кола. Описані кола подерних трикутників ізгонально сполучених точок збігаються. Фокуси вписаних еліпсів ізгонально пов'язані.

Якщо замість симетричної чевіани брати чевіану, основа якої віддалена від середини сторони так само, як і основа вихідної, такі чевіани також перетнуться в одній точці. Перетворення, що вийшло, називається ізотомічним сполученням. Воно також переводить прямі описані коніки. Ізотомічно пов'язані точки Жергона та Нагеля. При афінних перетвореннях ізотомічно сполучені точки переходять в ізотомічно сполучені. При ізотомічному поєднанні в нескінченно віддалену пряму перейде описаний еліпс Штейнера.

Якщо сегменти, що відсікаються сторонами трикутника від описаного кола, вписати кола, що стосуються сторін в підставах чевіан, проведених через деяку точку, а потім з'єднати точки торкання цих кіл з описаним колом з протилежними вершинами, такі прямі перетинаються в одній точці. Перетворення площини, що співставляє вихідній точці, називається ізоциркулярним перетворенням. Композиція ізогонального та ізотомічного сполучення є композицією ізоциркулярного перетворення з самим собою. Ця композиція - проективне перетворення, яке сторони трикутника залишає на місці, а вісь зовнішніх бісектрис переводить у нескінченно віддалену пряму.

Якщо продовжити сторони чевіанного трикутника деякої точки і взяти їх точки перетину з відповідними сторонами, то отримані точки перетину лежатимуть на одній прямій, званій трилінійною поляроювихідної точки. Ортоцентрична вісь – трилінійна поляра ортоцентру; Трилінійною полярною центру вписаного кола служить вісь зовнішніх бісектрис. Трилінійні поляри точок, що лежать на описаній коніці, перетинаються в одній точці (для описаного кола це точка Лемуана, для описаного еліпса Штейнер - центроїд). Композиція ізогонального (або ізотомічного) сполучення і трилінійної поляри є перетворенням двоїстості (якщо точка, ізогонально (ізотомічно) сполучена точці , лежить на трилінійній полярі точки , то трилінійна поляра точки, ізогонально (ізотомічно) спряженої точки).

Кубики

Співвідношення у трикутнику

Примітка:у цьому розділі , , - це довжини трьох сторін трикутника, і , , - це кути, що лежать відповідно навпроти цих трьох сторін (протилежні кути).

Нерівність трикутника

У невиродженому трикутнику сума довжин двох сторін більше довжини третьої сторони, у виродженому - дорівнює. Інакше висловлюючись, довжини сторін трикутника пов'язані наступними нерівностями:

Нерівність трикутника є однією з аксіом метрики.

Теорема про суму кутів трикутника

Теорема синусів

,

де R - радіус кола, описаного навколо трикутника. З теореми випливає, що якщо a< b < c, то α < β < γ.

Теорема косінусів

Теорема тангенсів

Інші співвідношення

Метричні співвідношення в трикутнику наведені для:

Рішення трикутників

Обчислення невідомих сторін та кутів трикутника, виходячи з відомих, історично отримало назву «рішення трикутників» . При цьому використовуються наведені загальні тригонометричні теореми.

Площа трикутника

Частини випадків Позначення

Для площі справедливі нерівності:

Обчислення площі трикутника у просторі за допомогою векторів

Нехай вершини трикутника перебувають у точках , , .

Введемо вектор площі. Довжина цього вектора дорівнює площі трикутника, а спрямований по нормалі до площини трикутника:

Покладемо , де , - проекції трикутника на координатні площини. При цьому

та аналогічно

Площа трикутника дорівнює.

Альтернативою служить обчислення довжин сторін (за теоремою Піфагора) і далі за формулою Герона.

Теореми про трикутники

Теорема ДезаргуЯкщо два трикутники перспективні (прямі, що проходять через відповідні вершини трикутників, перетинаються в одній точці), то їх відповідні сторони перетинаються на одній прямій.

Теорема Сонда: якщо два трикутники перспективні і ортологічні (перпендикуляри, опущені з вершин одного трикутника на сторони, протилежні відповідним вершинам трикутника, і навпаки), то обидва центри ортології (точки перетину цих перпендикулярів) і центр перспективи лежать на одній прямій, перпендикулярній з теореми Дезарга).

КАТЕГОРІЇ

ПОПУЛЯРНІ СТАТТІ

2023 «kingad.ru» - УЗД дослідження органів людини