Причины повышения и понижения Т-лимфоцитов-хелперов (CD4). Почему лимфоциты в крови понижены, о чем это говорит? Cd3 cd8 повышены цитотоксические лимфоциты

Основная задача T-лимфоцитов - распознавание чужеродных или изменённых собственных антигенов в составе комплекса с молекулами MHC. Если на поверхности своих клеток будут представлены чужеродные или изменённые свои молекулы, T-лимфоцит запускает их уничтожение.

В отличие от B-лимфоцитов, T-лимфоциты не продуцируют растворимых форм антигенраспознающих молекул. Более того, большинство T-лимфоцитов не способны распознавать и связывать растворимые антигены.

Для того чтобы T-лимфоцит «обратил на антиген своё внимание», другие клетки должны каким-то образом «пропустить» антиген через себя и выставить его на своей мембране в комплексе с MHC-I или MHC-II. Это и есть феномен презентации антигена T-лимфоциту. Распознавание такого комплекса T-лимфоцитом - двойное распознавание, или MHC-рестрикция T-лимфоцитов.

АНТИГЕНРАСПОЗНАЮЩИЙ РЕЦЕПТОР T-ЛИМФОЦИТОВ

Антигенраспознающие рецепторы T-клеток - TCR состоят из цепей, принадлежащих к суперсемейству иммуноглобулинов (см. рис. 5-1). Выступающий над поверхностью клетки антигенраспознающий участок TCR - гетеродимер, т.е. состоит из двух разных полипептидных цепей. Известны два варианта TCR, обозначаемые как αβTCR и γδTCR. Эти варианты различаются составом полипептидных цепей антигенраспознающего участка. Каждый T-лимфоцит экспрессирует только 1 вариант рецептора. αβT-клетки были открыты раньше и изучены подробнее, чем γδT-лимфоциты. В связи с этим строение антигенраспознающего рецептора T-лимфоцитов удобнее описывать на примере αβTCR. Трансмембранно расположенный комплекс TCR состоит из 8 полипептидных

Рис. 6-1. Схема Т-клеточного рецептора и связанных с ним молекул

цепей (гетеродимера α- и β-цепей собственно TCR, двух вспомогательных цепей ζ, а также по одному гетеродимеру ε/δ- и ε/ γ-цепей молекулы СD3) (рис. 6-1).

. Трансмембранные цепи α и β TCR. Это 2 примерно одинаковые по размеру полипептидные цепи - α (молекулярная масса 40-60 кДа, кислый гликопротеин) и β (молекулярная масса 40-50 кДа, нейтральный или основный гликопротеин). Каждая из этих цепей содержит по 2 гликозилированных домена во внеклеточной части рецептора, гидрофобную (положительно заряженную за счёт остатков лизина и аргинина) трансмембранную часть и короткий (из 5-12 остатков аминокислот) цитоплазматический участок. Внеклеточные части обеих цепей соединены одной дисульфидной связью.

- V-область. Наружные внеклеточные (дистальные) домены обеих цепей имеют вариабельный аминокислотный состав. Они гомологичны V-области молекул иммуноглобулинов и составляют V-область TCR. Именно V-области α- и β-цепей вступают в связь с комплексом MHC-пептид.

-C-область. Проксимальные домены обеих цепей гомологичны константным областям иммуноглобулинов; это C-области TCR.

Короткий цитоплазматический участок (как α-, так и β-цепи) не может самостоятельно обеспечить проведение сигнала внутрь клетки. Для этого служат 6 дополнительных полипептидных цепей: γ, δ, 2ε и 2ζ.

.Комплекс CD3. Цепи γ, δ, ε между собой образуют гетеродимеры γε и δε (вместе их называют комплекс CD3). Этот комплекс необходим для экспрессии α- и β-цепей, их стабилизации и проведения сигнала внутрь клетки. Этот комплекс состоит из внеклеточной, трансмембранной (отрицательно заряженной и потому электростатически связанной с трансмембранными участками α- и β-цепей) и цитоплазматической частей. Важно не путать цепи CD3-комплекса с γδ-цепями димера TCR.

.ζ-Цепи соединены между собой дисульфидным мостиком. Большая часть этих цепей расположена в цитоплазме. ζ-Цепи осуществляют проведение сигнала внутрь клетки.

.ITAM-последовательности. Цитоплазматические участки полипептидных цепей γ, δ, ε и ζ содержат 10 последовательностей ITAM (1 последовательность в каждой γ-, ε- и δ-цепях и 3 - в каждой ζ-цепи), взаимодействующих с Fyn - тирозинкиназой цитозоля, активация которой инициирует начало биохимических реакций по проведению сигнала (см. рис. 6-1).

В связывании антигена участвуют ионные, водородные, ван-дерваальсовы и гидрофобные силы; конформация рецептора при этом существенно изменяется. Теоретически каждый TCR способен связывать порядка 10 5 разных антигенов, причём не только родственных по строению (перекрёстно реагирующих), но и не гомологичных по структуре. Однако в реальности полиспецифичность TCR ограничивается распознаванием всего лишь нескольких структурно схожих антигенных пептидов. Структурной основой этого феномена является особенность одновременного распознавания TCR комплекса «МНС-пептид».

Корецепторные молекулы CD4 и CD8

Помимо самого TCR каждый зрелый T-лимфоцит экспрессирует одну из так называемых корецепторных молекул - CD4 или CD8, которые также взаимодействуют с молекулами MHC на АПК или клеткахмишенях. Каждая из них имеет цитоплазматический участок, связанный

с тирозинкиназой Lck, и, вероятно, вносит свой вклад в проведение сигнала внутрь клетки при распознавании антигена.

.CD4 (β2-доменом) молекулы MHC-II (принадлежит к суперсемейству иммуноглобулинов, см. рис. 5-1, б). CD4 имеет молекулярную массу 55 кДа и 4 домена во внеклеточной части. При активации T-лимфоцита одну молекулу TCR «обслуживают» 2 молекулы CD4: вероятно, происходит димеризация молекул CD4.

.CD8 связывается с инвариантной частью (αЗ-доменом) молекулы MHC-I (принадлежит к суперсемейству иммуноглобулинов, см. рис. 5-1, а). CD8 - гетеродимер цепей α и β , соединённых дисульфидной связью. В некоторых случаях обнаруживают гомодимер из двух α-цепей, который также может взаимодействовать с MHC-I. Во внеклеточной части каждая из цепей имеет по одному иммуноглобулиноподобному домену.

Гены T-клеточного рецептора

Гены α-, β-, γ- и δ-цепей (рис. 6-2, также см. рис. 5-4) гомологичны генам иммуноглобулинов и претерпевают при дифференцировке T-лимфоцитов рекомбинацию ДНК, что теоретически обеспечивает генерацию порядка 10 16 -10 18 вариантов антигенсвязывающих рецепторов (реально это разнообразие ограничено числом лимфоцитов в организме до 10 9).

.Гены α-цепи имеют ~54 V-сегмента, 61 J- и 1 C-сегмент.

.Гены β-цепи содержат ~65 V-сегментов, 2 D-сегмента, 13 J-сегментов и 2 C-сегмента.

.Гены δ-цепи. Между V- и J-сегментами α-цепи расположены гены D-(3), J-(4) и C-(1) сегментов δ-цепи γδTCR. V-сегменты δ-цепи «вкраплены» среди V-сегментов α-цепи.

.Гены γ-цепи γδTCR имеют 2 C-сегмента, 3 J-сегмента перед первым C-сегментом и 2 J-сегмента перед вторым C-сегментом, 15 V-сегментов.

Перестройка генов

.Рекомбинация ДНК происходит при объединении V-, D- и J-сегментов и катализируется тем же комплексом рекомбиназ, что и при дифференцировке B-лимфоцитов.

.После перестройки VJ в генах α-цепи и VDJ в генах β-цепи, а также после присоединения некодируемых N- и P-нуклеотидов с ДНК

Рис. 6-2. Гены α- и β-цепей антигенраспознающего рецептора T-лимфоцитов человека

транскрибируется РНК. Объединение с C-сегментом и удаление лишних (неиспользуемых) J-сегментов происходит при сплайсинге первичного транскрипта.

. Гены α-цепи могут перестраиваться неоднократно при уже правильно перестроенных и экспрессированных генах β-цепи. Именно поэтому есть некоторая вероятность того, что одна клетка может нести более одного варианта TCR.

. Соматическому гипермутагенезу гены TCR не подвергаются.

ПРОВЕДЕНИЕ СИГНАЛА С АНТИГЕНРАСПОЗНАЮЩИХ РЕЦЕПТОРОВ ЛИМФОЦИТОВ

TCR и BCR имеют ряд общих закономерностей регистрации и проведения в клетку активационных сигналов (см. рис. 5-11).

. Кластеризация рецепторов. Для активации лимфоцита необходима кластеризация антигенраспознающих рецепторов и корецепторов, т.е. «сшивка» нескольких рецепторов одним антигеном.

. Тирозинкиназы. В проведении сигнала играют значительную роль процессы фосфорилирования/дефосфорилирования белков по остатку тирозина под действием тирозинкиназ и тирозинфосфатаз,

ведущие к активации или инактивации этих белков. Эти процессы легко обратимы и «удобны» для быстрых и гибких реакций клетки на внешние сигналы.

. Киназы Src. Богатые тирозином ITAM-последовательности цитоплазматических участков иммунорецепторов подвергаются фосфорилированию под действием нерецепторных (цитоплазматических) тирозинкиназ семейства Src (Fyn, Blk, Lyn в B-лимфоцитах, Lck и Fyn - в T-лимфоцитах).

. Киназы ZAP-70 (в T-лимфоцитах) или Syk (в B-лимфоцитах), связываясь с фосфорилированными ITAM-последовательностями, активируются и начинают фосфорилировать адапторные белки: LAT (Linker for Activation of T cells) (киназой ZAP-70), SLP-76 (киназой ZAP-70) или SLP-65 (киназой Syk).

. Адапторные белки рекрутируют фосфоинозитид-3-киназу (PI3K). Эта киназа в свою очередь активирует серин/треониновую протеинкиназу Akt, вызывая усиление белкового биосинтеза, что способствует ускоренному росту клеток.

. Фосфолипаза C γ(см. рис. 4-8). Киназы семейства Tec (Btk - в B-лимфоцитах, Itk - в T-лимфоцитах) связывают адапторные белки и активируют фосфолипазу Cγ(PLCγ).

PLCγрасщепляет фосфатидилинозитдифосфат (PIP 2) клеточной мембраны на инозит-1,4,5-трифосфат (IP 3) и диацилглицерин

(DAG).

DAG остаётся в мембране и активирует протеинкиназу С (PKC) - серин/треониновую киназу, которая активирует эволюционно «древний» фактор транскрипции NFκB.

IP 3 связывается со своим рецептором в эндоплазматическом ретикулуме и высвобождает ионы кальция из депо в цитозоль.

Свободный кальций активирует кальцийсвязывающие белки - кальмодулин, регулирующий активность ряда других белков, и кальциневрин, дефосфорилирующий и тем самым активирующий ядерный фактор активированных T-лимфоцитов NFAT (Nuclear Factor of Activated T cells).

. Ras и другие малые G-белки в неактивном состоянии связаны с ГДФ, но адапторные белки заменяют последний на ГТФ, чем переводят Ras в активное состояние.

Ras обладает собственной ГТФазной активностью и быстро отщепляет третий фосфат, чем возвращает себя в неактивное состояние (самоинактивируется).

В состоянии кратковременной активации Ras успевает активировать очередной каскад киназ, называемых MAPK (MitogenActivated Protein Kinase), которые в итоге активируют фактор транскрипции AP-1 в ядре клетки. На рис. 6-3 схематично представлены основные пути передачи сигналов с TCR. Активационный сигнал включается при связывании TCR с лигандом (комплексом молекула МНС-пептид) при участии корецептора (CD4 или CD8) и костимулирующей молекулы CD28. Это приводит к активации киназ Fyn и Lck. Красным цветом отмечены участки ITAM в цитоплазматических частях полипептидных цепей CD3. Отражена роль Src-киназ, связанных с рецептором, в фосфорилировании белков: как рецепторных, так и сигнальных. Обращает на себя внимание чрезвычайно широкий спектр эффектов киназы Lck, связанной с корецепторами; роль киназы Fyn установлена с меньшей определённостью (отражено в прерывистом характере линий).

Рис. 6-3. Источники и направление пусковых активационных сигналов при стимуляции Т-лимфоцитов. Обозначения: ZAP-70 (ζ-associated proteinkinase, мол. масса 70 кДа) - протеинкиназа р70, связанная с ζ-цепью; PLCγ (Phospholipase С γ) - фосфолипаза С, изоформа γ; PI3K (Phosphatidyl Inositol 3-kinase) - фосфатидилинозитол 3-киназа; Lck, Fyn -тирозинкиназы; LAT, Grb, SLP, GADD, Vav - адапторные белки

Ключевую роль в посредничестве между рецепторными киназами и адапторными молекулами и ферментами играет тирозинкиназа ZAP-70. Она активирует (через фосфорилирование) адапторные молекулы SLP-76 и LAT, а последняя передаёт активационный сигнал другим адапторным белкам GADD, GRB и активирует у-изоформу фосфолипазы С (PLCy). До этого этапа в передачу сигнала вовлекаются исключительно факторы, связанные с клеточной мембраной. Важный вклад во включение сигнальных путей вносит костимулирующая молекула CD28, реализующая своё действие через связанную с ней липидную киназу PI3K (Phosphatidyl Inositol 3-kinase). Основной мишенью киназы PI3K служит фактор Vav, связанный с цитоскелетом.

В результате формирования сигнала и передачи его от рецептора Т-клетки к ядру образуются 3 транскрипционных фактора - NFAT, AP-1 и NF-kB, индуцирующие экспрессию генов, контролирующих процесс активации Т-лимфоцитов (рис. 6-4). К образованию NFAT приводит сигнальный путь, не зависящий от костимуляции, который включается благодаря активации фосфолипазы С и реализуется с участием ионов

Рис. 6-4. Схема сигнальных путей при активации Т-клеток. NFAT (Nuclear factor of activated T cells), AP-1 (Activation protein-1), NF-κB (Nuclear factor of к -gene of B cells) - факторы транскрипции

Са 2+ . Этот путь вызывает активацию кальциневрина, который, обладая активностью фосфатазы, дефосфорилирует цитозольный фактор NFAT-Р. Благодаря этому NFAT-Р приобретает способность мигрировать в ядро и связываться с промоторами активационных генов. Фактор АР-1 формируется как гетеродимер из белков с-Fos и с-Jun, образование которых индуцируется благодаря активации соответствующих генов под влиянием факторов, образующихся в результате реализации трёх компонентов МАР-каскада. Эти пути включаются при участии коротких ГТФ-связывающих белков Ras и Rac. Значительный вклад в реализацию МАР-каскада вносят сигналы, зависящие от костимуляции через молекулу CD28. Третий транскрипционный фактор, NF-kB, известен как основной транскрипционный фактор клеток врождённого иммунитета. Он активируется в результате расщепления блокирующей субъединицы IkB киназой IKK, которая в Т-клетках активируется в ходе передачи сигнала, зависимого от изоформы ϴ протеинкиназы С (PKC9). Основной вклад во включение этого сигнального пути вносят костимулирующие сигналы от CD28. Сформировавшиеся транскрипционные факторы, связавшись с промоторными участками генов, индуцируют их экспрессию. Для начальных этапов реакции Т-клеток на стимуляцию особенно важна экспрессия генов IL2 и IL2R, что обусловливает выработку ростового фактора Т-клеток ИЛ-2 и экспрессию его высокоаффинного рецептора на Т-лимфоцитах. В результате ИЛ-2 выступает как аутокринный ростовой фактор, обусловливающий пролиферативную экспансию Т-клеток клонов, вовлечённых в реакцию на антиген.

ДИФФЕРЕНЦИРОВКА T-ЛИМФОЦИТОВ

В основе выделения этапов развития Т-лимфоцитов лежит состояние рецепторных V-генов и экспрессии TCR, а также корецепторов и других мембранных молекул. Схема дифференцировки Т-лимфоцитов (рис. 6-5) аналогична приведённой выше схеме развития В-лимфоцитов (см. рис. 5-13). Приведены ключевые характеристики фенотипа и ростовых факторов развивающихся Т-клеток. Принятые обозначения стадий развития Т-клеток определяются экспрессией корецепторов: DN (от Double-Negative, CD4CD8) - двойные отрицательные, DP (от Double-Positive, CD4 + CD8 +) - двойные положительные, SP (от Single-Positive, CD4 + CD8 - и CD4CD8 +) - одинарно положительные. Деление DNтимоцитов на стадии DN1, DN2, DN3 и DN4 основывается на характере

Рис. 6-5. Развитие Т-лимфоцитов

экспрессии молекул CD44 и CD25. Другие условные обозначения: SCF (от Stem Cell Factor) - фактор стволовых клеток, lo (low; метка индекса) - низкий уровень экспрессии. Стадии реаранжировки: D-J - предварительный этап, соединение сегментов D и J (только в генах β- и δ-цепей TCR, см. рис. 6-2), V-DJ - завершающий этап, соединение зародышевого V-гена с объединённым сегментом DJ.

.Тимоциты дифференцируются из общей клетки-предшественника, которая ещё вне тимуса экспрессирует такие мембранные маркёры, как CD7, CD2, CD34 и цитоплазматическую форму CD3.

.Коммитированные к дифференцировке в T-лимфоциты клеткипредшественники мигрируют из костного мозга в субкапсулярную зону коры тимуса, где примерно в течение одной недели медленно пролиферируют. На тимоцитах появляются новые мембранные молекулы CD44 и CD25.

.Затем клетки перемещаются вглубь коры тимуса, молекулы CD44 и CD25 исчезают с их мембраны. В этой стадии начинается перестройка генов β -, γ- и δ-цепей TCR. Если гены γ- и δ-цепей успевают продуктивно, т.е. без сдвига рамки считывания, перестроиться раньше, чем гены β-цепи, то лимфоцит дифференцируется далее как γδT. В противном случае происходит экспрессия β-цепи на мембране в комплексе с pT α (инвариантной суррогатной цепью, заменяющей на этом этапе настоящую α-цепь) и CD3. Это служит

сигналом к прекращению перестройки генов γ- и δ-цепей. Клетки начинают пролиферировать и экспрессировать одновременно CD4 и CD8 - дважды позитивные тимоциты. При этом накапливается масса клеток с уже готовой β-цепью, но с ещё не перестроенными генами α-цепи, что вносит свой вклад в разнообразие αβ-гетеродимеров.

.На следующем этапе клетки перестают делиться и начинают перестраивать Vα-гены, причём несколько раз в течение 3-4 сут. Перестройка генов α-цепи приводит к необратимой делеции δ-локуса, расположенного между сегментами генов α-цепи.

.Происходят экспрессия TCR с каждым новым вариантом α-цепи и отбор (селекция) тимоцитов по силе связывания с комплексом MHC-пептид на мембранах эпителиальных клеток тимуса.

Позитивная селекция: погибают тимоциты, не связавшие ни одного из доступных комплексов MHC-пептид. В результате позитивной селекции в тимусе погибает около 90% тимоцитов.

Негативная селекция уничтожает клоны тимоцитов, связывающих комплексы MHC-пептид со слишком высокой аффинностью. Негативная селекция элиминирует от 10 до 70% клеток, прошедших позитивную селекцию.

Тимоциты, связавшие какой-либо из комплексов MHC-пептид с правильной, т.е. средней по силе, аффинностью, получают сигнал к выживанию и продолжают дифференцировку.

.На короткое время с мембраны тимоцитов исчезают обе корецепторные молекулы, а затем экспрессируется одна из них: тимоциты, распознавшие пептид в комплексе с MHC-I, экспрессируют корецептор CD8, а с MHC-II - корецептор CD4. Соответственно на периферию выходят (в соотношении около 2:1) T-лимфоциты двух типов: CD8 + и CD4 + , функции которых в предстоящих иммунных ответах различны.

-CD8 + T-клетки играют роль цитотоксических T-лимфоцитов (ЦТЛ) - они распознают и непосредственно убивают клетки, модифицированные вирусом, опухолевые и другие «изменённые» клетки (рис. 6-6).

-CD4 + T-клетки. Функциональная специализация CD4 + T-лимфоцитов более разнообразна. Значительная часть CD4 + T-лимфоцитов в процессе развития иммунного ответа становится T-хелперами (помощниками), взаимодействующими с В-лимфоцитами, Т-лимфоцитами и другими клетками при

Рис. 6-6. Механизм воздействия цитотоксического T-лимфоцита на клеткумишень. В Т-киллере в ответ на увеличение концентрации Са 2+ гранулы с перфорином (фиолетовые овалы) и гранзимами (жёлтые кружочки) сливаются с клеточной мембраной. Освободившийся перфорин встраивается в мембрану клетки-мишени с последующим образованием пор, проницаемых для гранзимов, воды и ионов. В результате клетка-мишень лизируется

прямом контакте или через растворимые факторы (цитокины). В определённых случаях из них могут развиться CD4 + ЦТЛ: в частности, такие T-лимфоциты обнаружены в значительных количествах в коже больных с синдромом Лайелла.

Субпопуляции T-хелперов

С конца 80-х годов XX века было принято выделять 2 субпопуляции T-хелперов (в зависимости от того, какой набор цитокинов они продуцируют) - Th1 и Th2. В последние годы спектр субпопуляций CD4 + Т-клеток продолжает расширяться. Обнаружены такие субпопуляции, как: Th17, T-регуляторы, Tr1, Th3, Tfh и др.

Основные субпопуляции CD4 + Т-клеток:

. Th0 - CD4 + Т-лимфоциты на ранних стадиях развития иммунного ответа, они продуцируют только ИЛ-2 (митоген для всех лимфоцитов).

.Th1 - дифференцированная субпопуляция CD4 + Т-лимфоцитов, специализирующаяся на продукции ИФН γ, ФНО β и ИЛ-2. Эта субпопуляция осуществляет регуляцию многих реакций клеточного иммунитета, включая гиперчувствительность замедленного типа (ГЗТ) и активацию ЦТЛ. Кроме того, Th1 стимулируют продукцию В-лимфоцитами опсонизирующих антител класса IgG, запускающих каскад активации комплемента. Развитие избыточного воспаления с последующим повреждением тканей напрямую связано с активностью Th1-субпопуляции.

.Th2 - дифференцированная субпопуляция CD4 + Т-лимфоцитов, специализирующаяся на выработке ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10 и ИЛ-13. Эта субпопуляция участвует в активации В-лимфоцитов и способствует секреции ими больших количеств антител разных классов, особенно IgE. Кроме того, Th2-субпопуляция участвует в активации эозинофилов и развитии аллергических реакций.

.Th17 - субпопуляция CD4 + Т-лимфоцитов, специализирующаяся на образовании ИЛ-17. Эти клетки осуществляют противогрибковую и антимикробную защиту эпителиальных и слизистых барьеров, а также играют ключевую роль в патологии аутоиммунных заболеваний.

.Т-регуляторы - CD4 + Т-лимфоциты, подавляющие активность других клеток иммунной системы посредством секреции иммуносупрессорных цитокинов - ИЛ-10 (ингибитора активности макрофагов и Th1-клеток) и ТФРβ - ингибитора пролиферации лимфоцитов. Ингибиторный эффект может также достигаться при непосредственном межклеточном взаимодействии, поскольку на мембране некоторых Т-регуляторов экспрессированы индукторы апоптоза активированных и «отработавших» лимфоцитов - FasL (Fas-лиганд). Существует несколько популяций CD4 + регуляторных Т-лимфоцитов: естественные (Treg), созревающие в тимусе (CD4 + CD25 + , экспрессируют фактор транскрипции Foxp3), и индуцированные - локализованные преимущественно в слизистых оболочках пищеварительного тракта и переключившиеся на образование ТФРβ (Th3) или ИЛ-10 (Tr1). Нормальное функционирование Т-регуляторов необходимо для поддержания гомеостаза иммунной системы и предотвращения развития аутоиммунных заболеваний.

.Дополнительные хелперные популяции. В последнее время появляется описание всё новых популяций CD4 + Т-лимфоцитов, клас-

сифицированных по типу преимущественно продуцируемого ими цитокина. Так, как оказалось, одной из важнейших популяций являются Tfh (от англ. follicular helper - фолликулярный хелпер). Эта популяция CD4 + Т-лимфоцитов преимущественно расположена в лимфоидных фолликулах и осуществляет хелперную функцию для В-лимфоцитов посредством продукции ИЛ-21, вызывая их созревание и терминальную дифференцировку в плазматические клетки. Кроме ИЛ-21 Tfh могут также продуцировать ИЛ-6 и ИЛ-10, необходимые для дифференцировки В-лимфоцитов. Нарушение функций этой популяции приводит к развитию аутоиммунных заболеваний или иммунодефицитов. Другой «новоявленной» популяцией являются Th9 - продуценты ИЛ-9. По-видимому, это Th2, переключившиеся на секрецию ИЛ-9, способного вызывать пролиферацию Т-хелперных клеток при отсутствии антигенной стимуляции, а также усиливать секрецию В-лимфоцитами IgM, IgG и IgE.

Основные субпопуляции Т-хелперов представлены на рис. 6-7. На рисунке суммированы современные представления об адаптивных субпопуляциях CD4 + Т-клеток, т.е. субпопуляций, формирующих-

Рис. 6-7. Адаптивные субпопуляции CD4 + Т-клеток (цитокины, дифференцировочные факторы, хемокиновые рецепторы)

ся при иммунном ответе, а не в ходе естественного развития клеток. Для всех разновидностей Т-хелперов указаны цитокины-индукторы (на стрелках, ведущих к кружкам, символизирующим клетки), транскрипционные факторы (внутри кружков), хемокиновые рецепторы, направляющие миграцию (около линий, отходящих от «поверхности клетки»), и продуцируемые цитокины (в прямоугольниках, на которые направлены стрелки, отходящие от кружков).

Расширение семейства адаптивных субпопуляций CD4 + Т-клеток потребовало решения вопроса о природе клеток, с которыми взаимодействуют эти субпопуляции (кому они оказывают «помощь» в соответствии со своей функцией хелперов). Эти представления отражены на рис. 6-8. Здесь же представлен уточнённый взгляд на функции этих субпопуляций (участие в защите от определённых групп патогенов), а также о патологических последствиях несбалансированного усиления активности этих клеток.

Рис. 6-8. Адаптивные субпопуляции Т-клеток (клетки-партнёры, физиологические и патологические эффекты)

γ δT-лимфоциты

Подавляющее большинство (99%) T-лимфоцитов, проходящих лимфопоэз в тимусе, составляют αβT-клетки; менее 1% - γδT-клетки. Последние в большинстве дифференцируются вне тимуса, в первую очередь в слизистых оболочках пищеварительного тракта. В коже, лёгких, пищеварительном и репродуктивном трактах они являются доминирующей субпопуляцией внутриэпителиальных лимфоцитов. Среди всех T-лимфоцитов организма γδT-клетки составляют от 10 до 50%. В эмбриогенезе γδT-клетки появляются раньше αβT-клеток.

.γδT-клетки не экспрессируют CD4. Молекула CD8 экспрессирована на части γδT-клеток, но не в виде ap-гетеродимера, как на CD8 + apT-клетках, а в виде гомодимера из двух a-цепей.

.Антигенраспознающие свойства: γδTCR в большей степени напоминают иммуноглобулины, чем αβTCR, т.е. способны связывать нативные антигены независимо от классических молекул MHC - для γδT-клеток не обязателен или вовсе не нужен предварительный процессинг антигена АПК.

.Разнообразие γδTCR меньше, чем αβTCR или иммуноглобулинов, хотя в целом γδT-клетки способны распознавать широкий спектр антигенов (в основном это фосфолипидные антигены микобактерий, углеводы, белки теплового шока).

.Функции γδT-клеток ещё до конца не изучены, хотя становится преобладающим мнение, что они служат одним из связующих компонентов между врождённым и приобретённым иммунитетом. γδT-клетки - один из первых барьеров на пути патогенов. Кроме того, эти клетки, секретируя цитокины, играют важную иммунорегуляторную роль и способны дифференцироваться в ЦТЛ.

NKT-лимфоциты

Естественные киллерные Т-клетки (NKT-клетки) представляют особую субпопуляцию лимфоцитов, занимающую промежуточное положение между клетками врождённого и адаптивного иммунитета. Эти клетки имеют черты как NK-, так и Т-лимфоцитов. NKT-клетки экспрессируют αβTCR и характерный для NK-клеток рецептор NK1.1, принадлежащий к суперсемье лектиновых гликопротеинов С-типа. Однако TCR-рецептор NKT-клеток имеет существенные отличия от TCR-рецептора обычных клеток. У мышей большинство NKTклеток экспрессирует инвариантный V-домен a-цепи, состоящий из

сегментов Vα14-Jα18, иногда обозначаемый как Jα281. У человека V-домен α-цепи состоит из сегментов Vα24-JαQ. У мышей α-цепь инвариантного TCR преимущественно комплексируется с Vβ8.2, у человека - с Vβ11. Из-за особенностей строения цепей TCR NKTклеток называют инвариантным - iTCR. Развитие NKT-клеток зависит от молекулы CD1d, которая имеет сходство с молекулами МНС-I. В отличие от классических молекул МНС-I, презентирующих Т-клеткам пептиды, CD1d презентирует Т-клеткам только гликолипиды. Хотя считается, что печень является местом развития NKT-клеток, имеются строгие доказательства роли тимуса в их развитии. NKT-клетки играют важную роль в регуляции иммунитета. У мышей и людей с различными аутоиммунными процессами функциональная активность NKT-клеток сильно нарушена. Полной картины значимости таких нарушений в патогенезе аутоиммунных процессов нет. При некоторых аутоиммунных процессах NKT-клетки могут играть супрессорную роль.

Помимо контроля аутоиммунных и аллергических реакций, NKTклетки участвуют в иммунном надзоре, вызывая при повышении функциональной активности отторжение опухолей. Велика их роль в противомикробной защите, особенно на ранних этапах развития инфекционного процесса. NKT-клетки вовлекаются в различные воспалительные инфекционные процессы, особенно при вирусных поражениях печени. В целом NKT-клетки - многофункциональная популяция лимфоцитов, несущая ещё много научных загадок.

На рис. 6-9 обобщены данные о дифференцировке Т-лимфоцитов на функциональные субпопуляции. Представлены несколько уровней бифуркации: γ δТ/ αβТ, далее для αβТ-клеток - NKT/ остальные Т-лимфоциты, для последних - CD4 + /CD8 + , для CD4 + Т-клеток - Th/Treg, для CD8 + Т-лимфоцитов - CD8αβ/CD8αα. Показаны также дифференцировочные транскрипционные факторы, ответственные за все линии развития.

Рис. 6-9. Естественные субпопуляции Т-лимфоцитов и их дифференцировочные факторы

Общее количество Т-лимфоцитов в крови у взрослых в норме - 58-76 %, абсолютное количество - 1,1-1,7-10"/л.

Зрелые Т-лимфоциты «отвечают» за реакции клеточного иммунитета и осуществляют иммунологический надзор за антигенным гомеостазом в организме. Они образуются в кост­ном мозге, а получают дифференцировку в вилочковой железе, где разделяются на эффек-торные (Т-лимфоциты-киллеры, Т-лимфоциты гиперчувствительности замедленного типа) и регуляторные (Т-лимфоциты-хелперы, Т-лимфоциты-супрессоры) клетки. В соответствии с этим Т-лимфоциты выполняют в организме две важные функции: эффекторную и регуля-торную. Эффекторная функция Т-лимфоцитов - специфическая цитотоксичность по отно­шению к чужеродным клеткам. Регуляторная функция (система Т-хелперы - Т-супрессоры) состоит в контроле за интенсивностью развития специфической реакции иммунной системы на чужеродные антигены. Снижение абсолютного количества Т-лимфоцитов в крови свиде­тельствует о недостаточности клеточного иммунитета, повышение - о гиперактивности им­мунитета и наличии иммунопролиферативных заболеваний.

Развитие любого воспалительного процесса сопровождается практически на всем его про­тяжении снижением содержания Т-лимфоцитов. Это наблюдается при воспалениях самой раз­нообразной этиологии: различных инфекциях, неспецифических воспалительных процессах, при разрушении поврежденных тканей и клеток после операции, травмы, ожогов, инфаркта, разрушении клеток злокачественных опухолей, трофических разрушениях и т.д. Снижение ко­личества Т-лимфоцитов определяется интенсивностью воспалительного процесса, однако такая закономерность наблюдается не всегда. Т-лимфоциты наиболее быстро из всех иммуно-компетентных клеток реагируют на начало воспалительного процесса. Эта реакция проявляет­ся еще до развития клинической картины заболевания. Повышение количества Т-лимфоцитов в течение воспалительного процесса является благоприятным признаком, а высокий уровень Т-лимфоцитов при резко выраженных клинических проявлениях такого процесса, напро­тив, - неблагоприятный признак, указывающий на вялое течение воспалительного процесса с тенденцией к хронизации. Полное завершение воспалительного процесса сопровождается нормализацией количества Т-лимфоцитов. Повышение относительного количества Т-лимфо­цитов не имеет для клиники большого значения. Однако увеличение абсолютного количества Т-лимфоцитов в крови очень важно для диагностики лейкозов. Заболевания и состояния, при­водящие к изменению количества Т-лимфоцитов в крови, представлены в табл. 7.19.



Таблица 7.19. Заболевания и состояния, приводящие к изменению количества

Т-лимфоцитов (CD3) в крови


Продолжение табл.7.19

Т-лимфоциты-хелперы (CD4) в крови

Количество Т-лимфоцитов-хелперов в крови у взрослых в норме - 36-55 %, абсолютное

Количество - 0,4-1,110"/л-

Т-лимфоциты - помощники (индукторы) иммунного ответа, клетки, регулирующие силу иммунного ответа организма на чужеродный антиген, контролирующие постоянство внутренней среды организма (антигенный гомеостаз) и обусловливающие повышенную вы­работку антител. Увеличение количества Т-лимфоцитов-хелперов свидетельствует о гиперак­тивности иммунитета, снижение - об иммунологической недостаточности.

Ведущее значение в оценке состояния иммунной системы имеет соотношение Т-хелпе-ров и Т-супрессоров в периферической крови, так как от этого зависит интенсивность им­мунного ответа. В норме цитотоксических клеток и антител должно вырабатываться столько, сколько их необходимо для выведения того или иного антигена. Недостаточная активность Т-супрессоров ведет к преобладанию влияния Т-хелперов, что способствует более сильному иммунному ответу (выраженной антителопродукции и/или длительной активации Т-эффек-торов). Избыточная активность Т-супрессоров, напротив, приводит к быстрому подавлению и абортивному течению иммунного ответа и даже явлениям иммунологической толерантнос­ти (иммунологический ответ на антиген не развивается). При сильном иммунном ответе воз­можно развитие аутоиммунных и аллергических процессов. Высокая функциональная актив­ность Т-супрессоров при таком ответе не позволяет развиться адекватному иммунному отве­ту, в связи с чем в клинической картине иммунодефицитов преобладают инфекции и пред­расположенность к злокачественному росту. Индекс CD4/CD8 1,5-2,5 соответствует нор-мергическому состоянию, более 2,5 - гиперактивности, менее 1,0 - иммунодефициту. При тяжелом течении воспалительного процесса соотношение CD4/CD8 может быть меньше 1. Принципиальное значение это соотношение имеет при оценке иммунной системы у боль­ных СПИДом. При данном заболевании вирус иммунодефицита человека избирательно по­ражает и разрушает СО4-лимфоциты, в результате чего соотношение CD4/CD8 понижается до значений, значительно меньше 1.

Повышение соотношения CD4/CD8 (до 3) нередко отмечается в острой фазе раз­личных воспалительных заболеваний за счет повышения уровня Т-хелперов и снижения Т-супрессоров. В середине воспалительного заболевания отмечается медленное снижение Т-хелперов и повышение Т-супрессоров. При стихании воспалительного процесса эти по­казатели и их соотношение нормализуются. Повышение соотношения CD4/CD8 характер­но практически для всех аутоиммунных заболеваний: гемолитической анемии, иммунной тромбоцитопении, тиреоидита Хашимото, пернициозной анемии, синдрома Гудпасчера, системной красной волчанки, ревматоидного артрита. Увеличение соотношения CD4/CD8 за счет снижения уровня CD8 при перечисленных заболеваниях выявляется обычно в раз­гаре обострения при большой активности процесса. Снижение соотношения CD4/CD8 вследствие роста уровня CD8 характерно для ряда опухолей, в частности саркомы Капоши. Заболевания и состояния, приводящие к изменению количества CD4 в крови, представле­ны в табл. 7.20.

Таблица 7.20. Заболевания и состояния, приводящие к изменению количества CD4 в крови


Продолжение табл. 7.20

Лимфоциты — это клетки лейкоцитарного звена крови, выполняющие ряд важнейших функций. Снижение или повышение уровня данных клеток может говорить о развитии патологического процесса в организме.

Процесс образования и функции лимфоцитов

Лимфоциты вырабатываются в костном мозге, после мигрируют в вилочковую железу (тимус), где под воздействием гормонов и эпителиальных клеток они претерпевают изменения и дифференцируются на подгруппы с различными функциям. В организме человека имеются и вторичные лимфоидные органы, к ним относятся лимфатические узлы, селезенка. Селезенка также является местом гибели лимфоцитов.

Различают Т и В лимфоциты. 10-15% всех лимфоцитов в лимфатических узлах трансформируется в В-лимфоциты. Благодаря именно этим клеткам организм человека приобретает пожизненный иммунитет к перенесенным заболеваниям — при первом контакте с чужеродным агентом (вирус, бактерия, химическое соединение) В-лимфоциты вырабатывают антитела к нему, запоминают болезнетворный элемент и при повторном взаимодействии мобилизуют иммунитет на его уничтожение. Также за счет наличия В-лимфоцитов в плазме крови достигается эффект от вакцинации.

В вилочковой железе около 80% лимфоцитов преобразуются в Т-лимфоциты (CD3 — общий маркер клеток). Рецепторы Т-лимфоцитов выявляют и связывают антигены. Т-клетки, в свою очередь, подразделяются на три подвида: Т-киллеры, Т-хелперы, Т-супрессоры. Каждый из видов Т-лимфоцитов принимает непосредственное участие в устранении чужеродного агента.

Т-киллеры уничтожают и расщепляют клетки, пораженные бактериями и вирусами, раковые клетки. Т-киллеры являются основным элементом антивирусного иммунитета. Функция Т-хелперов состоит в усилении адаптивного иммунного ответа, такие Т-клетки выделяют специальные вещества, активизирующие реакцию Т-киллеров.

Т-киллеры и Т-хелперы — это эффекторные Т-лимфоциты, функция которых состоит в обеспечении иммунного ответа. Есть также Т-супрессоры — регуляторные Т-лимфоциты, регулирующие активность эффекторных Т-клеток. Контролируя интенсивность иммунного ответа, регуляторные Т-лимфоциты предотвращают уничтожение здоровых клеток организма и предупреждают возникновение аутоиммунных процессов.

Нормальные показатели лимфоцитов

Нормальные значения лимфоцитов различны для каждого возраста - обусловлено это особенностями развития иммунной системы.

С возрастом уменьшается объем вилочковой железы, в которой созревает основная часть лимфоцитов. До 6-и лет в крови преобладают именно лимфоциты, по мере взросления человека ведущими становятся нейтрофилы.

  • новорожденные дети — 12-36% от общего числа лейкоцитов;
  • 1 месяц жизни — 40-76%;
  • в 6 месяцев — 42-74%;
  • в 12 месяцев — 38-72%;
  • до 6 лет — 26-60%;
  • до 12 лет — 24-54%;
  • 13-15 лет — 22-50%;
  • взрослый человек — 19-37%.

Для определения количества лимфоцитов проводят общий (клинический) анализ крови. С помощью такого исследования можно определить общее количество лимфоцитов в составе крови (данный показатель выражается, как правило, в процентном соотношении). Для получения абсолютных значений при расчете необходимо учитывать общее содержание лейкоцитов.

Детальное определение концентрации лимфоцитов проводят при осуществлении иммунологического исследования. В иммунограмме отражаются показатели В и Т лимфоцитов. Норма Т-лимфоцитов — 50-70%, (50,4±3,14)*0,6-2,5 тыс. Нормальный показатель В-лимфоцитов — 6-20%, 0,1-0,9 тыс. Соотношение между Т-хелперами и Т-супрессорами в норме составляет 1,5-2,0.

Повышение и снижение уровня Т-лимфоцитов

Увеличение Т-лимфоцитов в иммунограмме указывает на гиперактивность иммунной системы и наличие иммунопролиферативных нарушений. Снижение уровня Т-лимфоцитов говорит о недостаточности клеточного иммунитета.

При любом воспалительном процессе уровень Т-лимфоцитов снижен. На степень снижения концентрации Т-клеток оказывает влияние интенсивность воспаления, однако не во всех случаях прослеживается такая закономерность. Если в динамике воспалительного процесса Т-лимфоциты повышены, это является благоприятным признаком. Однако повышенный уровень Т-клеток на фоне выраженной клинической симптоматики, наоборот, является неблагоприятным признаком, который свидетельствует о переходе заболевания в хроническую форму. После полного устранения воспаления уровень Т-лимфоцитов достигает нормальных значений.

Причиной увеличения уровня Т-лимфоцитов могут быть такие нарушения, как:

  • лимфолейкоз (острый, хронический);
  • синдром Сезари;
  • гиперактивность иммунитета.

Т-лимфоциты понижены могут быть при следующих патологиях:

  • хронические инфекционные заболевания (ВИЧ, туберкулез, гнойные процессы);
  • снижение выработки лимфоцитов;
  • генетические нарушения, вызывающие иммунодефицит;
  • опухоли лимфоидной ткани (лимфосаркома, лимфогранулематоз);
  • почечная и сердечная недостаточность последней стадии;
  • разрушение лимфоцитов под воздействием определенных медикаментов (кортикостероидов, цитостатиков) или лучевой терапии;
  • Т-клеточная лимфома.

Уровень Т-лимфоцитов необходимо оценивать в комплексе с остальными элементами крови, учитывая при этом симптомы и жалобы пациента. Поэтому интерпретировать результаты исследования крови должен исключительно квалифицированный специалист.

Клетки, экспрессирующие антиген CD8, представлены основными двумя субпопуляциями - цитотоксическими Т-клетками и Т-лимфоцитами с супрессорной активностью.

Со временем стало известно, что CD8 экспрессируют не только эти субпопуляции лимфоцитов, но и отдельные клоны других клеток: макрофаги, естественные киллеры (ЕК) , тучные клетки, дендритные клетки (ДК) ; основные лиганды CD8 - а2- и а3-домены антигенов I класса главного комплекса гистосовместимости (ГКГ) .

Из этого следует, что CD8 - неспецифический маркер цитотоксических лимфоцитов (ЦТЛ) и Т-супрессорных лимфоцитов, но рассматривается как один из основных фенотипических признаков этих клеток.

Именно поэтому при объективной оценке уровня супрессии Т-лимфоцитов необходимо обязательно изучать супрессорную активность клеток, экспрессируюших CD8, с использованием разработанного для этой цели метода, так как только определение CD8 не дает оснований говорить ни о цитотоксической, ни о супрессорной активности Т-лимфоцитов, имеющих общий маркер CD8.

Общие представления о СD8+СD28-Т-лимфоцитах

Общее представление о супрессорных Т-лимфоцитах начало формироваться уже в 70-х годах прошлого столетия и к середине 80-х годов стало известно, что эти клетки представлены различными клонами, отличающимися условиями возникновения, кинетикой формирования, особенностями действия, разнообразием свойств, секретируемыми медиаторами и др.

Тем не менее уже тогда Б.Д. Брондзом было сформулировано, что они имеют общие особенности, которые состоят в способности блокировать дифференцировку и активность других лимфоидных клеток и это принципиально отличает их от ЦТЛ. К отличиям Т-супрессоров от других Т-лимфоцитов следует также отнести их нестабильность, высокую чувствительность к различным воздействиям, короткий период жизни и др.

Благодаря исследованиям многих известных иммунологов того времени были идентифицированы (с помощью методических возможностей того периода) некоторые поверхностные маркеры этих клеток, установлены их отличия от других клеток, выявлены некоторые этапы и механизмы активации Т-супрессоров.

В результате было сделано заключение, что Т-супрессоры и их различные клоны представляют собой регуляторные клетки, которые и осуществляют контроль соотношения между клеточным и гуморальным иммунитетом и во многом определяют интенсивность ответа к опухолям, трансплантатам, вирусам. К этому следует добавить, что указанное представление не претерпело принципиальных изменений и по настоящее время.

Со временем изучение СD8+Т-лимфоцитов дало возможность установить, что для СD8+Т-лимфоцитов с супрессорной активностью характерно отсутствие экспрессии молекул CD28, поэтому их фенотип был определен как CD8+CD28-.

При исследовании этих клеток в различных системах (особенно часто использовали смешанную культуру лимфоцитов) было показано, что они обладают множеством ингибирующих эффектов: ингибиция пролиферации СD4+Т-лимфоцитов, стимулированных аллогенными клетками, ингибиция рецепторов, связанных преимущественно с активацией клеток (рецепторы IL-2 и трансферина), подавление экспрессии ко-стимулирующих молекул антигенпрезентирующими клетками, что препятствует их оптимальному взаимодействию с СD4+Т-лимфоцитами, неспособность поддерживать секрецию цитокинов и др.

Было подтверждено, что при осуществлении своих ингибиторных влияний СD8+СD28-Т-лимфоциты распознают комплекс антигены I класса ГКГ - пептиды с участием TCR этих клеток. Установлено также, что СD8+СD28-Т-лимфоциты - гетерогенная субпопуляция.

В общей характеристике клеток этого типа важное значение имеет то, что они характеризуются снижением пролиферации в ответ на стимулы, ингибируют цитотоксичность, отличаются высоким уровнем экспрессии CD11b, CD29, CD57, CD94 при низком по сравнению с СD8+СD28+Т-лимфоцитами уровне CD25; у СD8+СD28-Т-лимфоцитов периферической крови существенно снижено фосфорилирование TCR-zeta-цепи и высокий уровень ингибитора циклинзависимой киназы р16.

Получение моноклональных антител, которые строго взаимодействуют с СD8+СD28-Т-лимфоцитами, позволило подтвердить, что они представляют собой самостоятельный клон клеток, отличающийся от цитотоксических лимфоцитов; применение указанных антител обрывало ингибирующие эффекты CD8+CD28-T-лимфоцитов как in vivo, так и in vitro, но не влияло на функции ЦТЛ.

С помощью моноклональных антител в этих клетках был идентифицирован один из эпитопов ганглиозидов - CD75s, который не выявлялся на других клетках, что послужило основанием для расширения фенотипической характеристики, которая была определена как CD8+CD28-CD75s+.

С позиций понимания общебиологического значения CD8+CD28-Т-лимфоцитов важна их способность взаимодействовать с эпителиальными клетками слизистой оболочки. CD8+CD28-T-клетки с такой способностью экспрессируют CD101 и CD103, взаимодействуют с эпителиальными клетками через белок р180 и выполняют регуляторные функции.

Авторы с полным основанием заключают, что в слизистой оболочке есть СD8+СD28-СD101+СD103+Т-лимфоциты, которые осуществляют локальный иммунологический контроль. Из этих данных следует, что регуляторные влияния СD8+СВ28-Т-лимфоцитов не ограничиваются Тh1-лимфоцитами и имеют более широкий спектр действия.

Взаимодействие СD8+СD28-Т-лимфоцитов с эпителиальными клетками представлено на рис. 58.

Рис. 58. Взаимодействие супрессорных Т-лимфоцитов и эпителиальных клеток:
CD101 - гликопротеин, участвующий в ко-стимуляции; CD103 - антиген лимфоцитов слизистой оболочки

Эти общие представления о СD8+СD28-Т-лимфоцитах в последнее время пополняются новыми данными, которые раскрывают как ранее не известные их ингибиторные эффекты, так и некоторые пути и механизмы их реализации. Такие данные получены и в экспериментальных исследованиях, и при изучении супрессорных Т-лимфоцитов периферической крови здоровых лиц, а также при некоторой патологии.

Значительный интерес представляют сведения о том, что упомянутый выше факт гетерогенности этого клона клеток получает новое освещение. При исследовании СD8+СD28-Т-лимфоцитов периферической крови человека были выявлены три их типа, объединенные способностью ингибировать антигенспецифический ответ Т-лимфоцитов.

Первый тип характеризуется способностью повреждать экспрессию ко-стимулирующих молекул на ДК - эффект, который требует непосредственного межклеточного взаимодействия. Второй обладает выраженной способностью ингибировать секрецию таких цитокинов, как IFNy и IL-6, что происходит без обязательного межклеточного контакта. Третий опосредует свои эффекты, секретируя IL-10.

При изучении как экспрессирующих CD28, так и неэкспрессирующих Т-лимфоцитов в периферической крови людей различных возрастных групп были получены важные данные. Во-первых, показано, что с возрастом количество СD8+СD28-Т-лимфоцитов уменьшается, во-вторых, стимуляция фитогемагглютинина (ФГА) увеличивает соотношение этих клонов клеток во всех возрастных группах и усиливает пролиферацию не только CD8+CD28+-, но CD8+CD28-T-клеток при более высоком уровне пролиферации последних у пожилых лиц.

Наконец, было установлено, что обработка лимфоцитов ФГА приводит к апоптозу всех СD8+Т-лимфоцитов и количество погибших клеток было одинаковым в обоих клонах - свидетельство того, что способность к апоптозу не зависела от возраста. К этому следует добавить данные о том, что увеличением количества СD8+СD28-Т-лимфоцитов у пожилых лиц без выявленной патологии можно объяснить снижение пролиферации, сопровождающееся усилением активности циклинзависимой протеинкиназы р16.

Вполне обоснованно полагать, что эти новые данные при дальнейшем изучении возрастных изменений Т-супрессорных лимфоцитов могут оказаться существенными для выяснения их роли в возрастных особенностях регуляции иммунологического гомеостаза.

К настоящему времени стали известны основные этапы ингибирующего действия СD8+СD28-Т-лифоцитами, активация которых может происходить под влиянием аллогенных, ксеногенных, а также гетерогенных антигенпрезентирующих клеток, нагруженных антигенами. Основными участниками реализации ингибирующего действия супрессорных Т-лимфоцитов являются: СD8+СD28+Т-лимфоциты, антигенпрезентирующие клетки и СD4+Т-хелперы.

При этом антигенпрезентируюшие клетки выполняют роль своеобразного мостика между Т-супрессорами и СD4+Т-лимфоцитами. Общий механизм ингибирующего действия супрессорных Т-лимфоцитов можно представить так: активация СD8+СD28-Т-лимфоцитов человека в результате распознавания ими комплекса антигены главного комплекса гистосовместимости - пептид (процесс происходит с участием TCR супрессорных клеток) на антигенпрезентирующих клетках, что лишает их способности экспрессировать ко-стимулирующие молекулы и поэтому после распознавания Т-лимфоцитами-хелперами комплекса антигены II класса ГКГ - пептид они не получают необходимого ко-стимулирующего сигнала, становятся энергичными и не способными к активации и пролиферации. Схематически этот процесс представлен на рис. 59.


Рис. 59. Этапы ингибирующего влияния СD8+СD28~Т-лимфоцитов на СD4+Т-лимфоциты (хелперы): АПК - антигенпрезентирующая клетка

Для понимания механизма действия супрессорных Т-лимфоцитов важно также то, что для осуществления ингибирующего действия они не нуждаются ни в пролиферации, ни в синтезе белка. При реализации ингибирующих сигналов Т-супрессорных лимфоцитов в антигенпрезентирующих клетках ингибируется активность NF-kappaB, что играет главную роль в их неспособности посылать ко-стимулирующие сигналы Th-лимфоцитам.

Как уже отмечено, существенное внимание уделяется вопросу о том, необходим ли для осуществления ингибирующего влияния CD8+CD28-T-лимфоцитами их непосредственный контакт с антигенпрезентирующими клетками. В настоящее время большинство авторов склоняется к тому, что такой межклеточный контакт необходим.

Множество фактов, позволяющих расширить представления о регуляторных возможностях СD8+СD28-Т-лимфоцитов, получены при их изучении в условиях трансплантации ткани, а также аутоиммунной патологии. Согласно полученным данным наличие CD8+CD28-Т-лимфоцитов во многом предопределяет судьбу трансплантата.

Сравнительное изучение этих клеток периферической крови здоровых лиц и людей с трансплантированным сердцем показало значительно более выраженную их активацию у больных, чем у здоровых лиц с параллельной активной экспрессией CD38, лейкоцитарного антигена DR, более высоким содержанием перфоринположительных клеток.

Отмечено, что экспрессия CD27 более выражена на клетках CD8+CD28- больных, у которых не происходило отторжения трансплантата, по сравнению с больными, у которых наблюдались признаки отторжения. В связи с этими данными определяется еще один аспект значения Т-супрессорных клеток: существует клон регуляторных клеток CD8+CD28-CD27+, которые играют роль в защите трансплантата.

Установлено также, что эти клетки, выделенные из трансплантатов, не проявляют цитотоксической активности против клеток донора и имеют более высокий уровень экспрессии KIR94 - факты, свидетельствующие о том, что при трансплантации происходят фенотипические изменения в Т-супрессорных лимфоцитах.

Учитывая, что Т-супрессорные лимфоциты находятся в крови после трансплантации, а также их способность супрессировать экспрессию ко-стимулирующих молекул (CD80, CD86) на антигенпрезентирующих клетках донора, целесообразно проведение соответствующего мониторинга при трансплантации.

Как уже указывалось, изучение СD8+СD28-Т-лимфоцитов при аутоиммунной патологии также дает информацию о свойствах этих клеток. В частности, установлено, что у больных с красной системной волчанкой в активной фазе СD8+СD28-Т-лимфоциты не обладали ингибирующей активностью, что сочеталось с дисбалансом между ингибиторными влияниями IL-6 и стимулирующими IL-12.

Способность Т-супрессорных лимфоцитов подавлять пролиферацию антигенспецифических СD4+Т-лимфоцитов ассоциируется с появлением ремиссии у больных с аутоиммунной патологией. В системах in vitro удалось охарактеризовать предшественников CD8+CD28-T-лимфоцитов и показать, что ключевую роль в их генерации играют моноциты, которые секретируют IL-10 после стимуляции GM-CSF (в этих случаях прямой межклеточный контакт существенной роли не играет).

Предшественники имеют фенотип CD8+CD45RA-CD27-CCR-IL10Ra-. Было также показано, что Т-супрессорные лимфоциты подавляют активность и антигенспецифических цитотоксических лимфоцитов, уменьшая экспрессию антигенов I класса главного комплекса гистосовместимости.

Представленные данные не оставляют сомнений в том, что СD8+СD28-Т-лимфоциты играют важную роль в поддержании иммунологического гомеостаза вместе с СD4+-регуляторными Т-лимфоцитами.

Есть достаточно оснований считать, что одна из основных функций этих клеток - регуляция специфического Т-клеточного ответа. Активация супрессорных Т-лимфоцитов через специфическое распознавание в физиологических условиях защищает Th-лимфоциты от чрезмерной активации, а следовательно, и от чрезмерного иммунологического ответа в определенных условиях, в частности при увеличении количества реактивных Т-хелперов.

Имеющиеся данные показывают, что ингибирующие эффекты Т-супрессорных лимфоцитов являются одними из важных участников индукции периферической толерантности, а дисрегуляция контроля, который осуществляется этими клетками над аутореактивными клонами других Т-лимфоцитов, может быть причиной развития аутоиммунной патологии.

Наряду с этим нельзя не согласиться с тем, что понимание физиологического значения роли СD8+СD28-Т-лимфоцитов требует дальнейшего изучения, которое позволит получить новые данные о механизмах их действия в опухолевой и аутоиммунной патологии.

Общие представления о СD8+СD28-Т-лимфоцитах дает рис. 60.


Рис. 60. Фенотипические и функциональные особенности СD8+СD28-Т-лимфоцитов

Регуляторные функции супрессорных Т-лимфоцитов

Результаты изучения супрессорных СD8+СD28-Т-лимфоцитов не оставляют сомнений в том, что они выполняют важные регуляторные функции, которые достаточно четко определены в условиях нормы.

Вполне обоснованно также утверждать, что как супрессорные Т-лимфоциты (CD8+CD28-), так и регуляторные СD4+СD25+Т-лимфоциты (Th3/Trl) - совместные участники регуляции иммунологического гомеостаза на всех этапах его формирования.

Наряду с этим очевидно и то, что если роль супрессорных Т-лимфоцитов в условиях нормы достаточно ясна, то роль этих клеток при злокачественном росте предстоит выяснить в дальнейшем. В этом плане особый интерес представляет вопрос: при каких условиях CD8+CD28-T-cyпрессоры приобретают способность к цитотоксическому действию - факт, который наблюдался только при их культивировании с опухолевыми клетками.

Детализация этого вопроса (во всех ли случаях возможно появление способности к цитотоксичности, в какой мере это связано с биологическими особенностями опухолевых клеток, каков удельный вес этих клеток в реализации цитотоксичности и каков механизм влияния опухолевых клеток на СD8+СD28-Т-лимфоциты), несомненно, даст возможность нового понимания роли Т-супрессорных лимфоцитов в опухолевом процессе.

Не менее важно и дальнейшее изучение особенностей взаимодействия Т-супрессорных лимфоцитов с эндотелиальными клетками в процессе роста опухоли. Интерес к выяснению этого вопроса понятен в связи с тем, что взаимодействие СD8+СD28-Т-лимфоцитов с эндотелиальными клетками приводит к выраженным проявлениям активности последних, что может влиять на процесс злокачественной трансформации.

Обобщая представленные материалы, можно сделать такие выводы:

Первое

Т-супрессорные лимфоциты - CD8+CD28- представляют собой отдельный клон Т-лимфоцитов, экспрессирующих CD8, обладают выраженными ингибирующими эффектами в отношении СD4+Т-лимфоцитов, способны взаимодействовать с эндотелиальными клетками; выполняют важную роль в поддержании иммунологического гомеостаза в условиях нормы и патологии.

Второе

Ингибирующие эффекты супрессорных Т-лимфоцитов обусловлены межклеточными взаимодействиями, в которых наряду с СD8+СD28-Т-лимфоцитами принимают участие дендритные клетки и СD4+Т-лимфоциты.

Третье

В большинстве случаев при различных онкологических заболеваниях количество СD8+СD28-Т-лимфоцитов в крови увеличивается, что нередко сочетается с плохим прогнозом; лимфоциты, инфильтрирующие опухоль, также содержат значительное количество этих клеток.

Четвертое

При совместном культивировании Т-супрессорных лимфоцитов с аутологичными опухолевыми клетками появляются CD8+СD28-Т-лимфоциты, способные оказывать цитотоксическое действие.

Пятое

Определение количества СD8+СD28-Т-лимфоцитов может использоваться как контроль за влиянием

Для нарушения активации Т-лимфоцитов характерно присутствие в крови нормального или повышенного числа Т-клеток. Эти клетки сохраняют нормальный фенотип, но в них нарушено проведение сигнала от рецепторов в клетку. Поэтому они не пролиферируют и не продуцируют цитокины при стимуляции митогенами, антигенами или другими сигналами от TCR.

По клиническим проявлениям такие дефекты сходны с другими видами недостаточности и в ряде случаев неотличимы от тяжелого комбинированного иммунодефицита.

CD8 лимфопения при мутации гена zeta-ассоциированного протеина 70

У больных с нарушением активации Т-клеток в младенческом возрасте развиваются тяжелые, рецидивирующие и часто смертельные инфекции. Большинство случаев выявлено среди меннонитов. Число В-лимфоцитов в крови нормально или повышено; концентрация иммуноглобулинов в сыворотке вариабельна. Экспрессия поверхностных антигенов CD3 и CD4 на Т-лимфоцитах сохраняется, но СD8-клетки почти полностью отсутствуют.

Не реагируют на митогены или аллогенные клетки in vitro и не образуют цитоток-сических Т-лимфоцитов. Активность NK-клеток сохраняется. Тимус одного из больных имел нормальное строение, и в нем присутствовали клетки с обоими поверхностными маркерами - CD4 и CD8. Однако CD8-клетки отсутствовали. Это состояние обусловлено мутациями гена, кодирующего zeta-ассоциированный протеин 70 (ZAP-70) - тиро-зинкиназу, не принадлежащую к семейству Src и играющую важную роль в проведении сигнала в Т-лимфоциты.

Ген ZAP-70 расположен на длинном плече хромосомы 2 (участок ql2). Нормальное число Т-лимфоцитов с обоими маркерами (CD4 и CD8) объясняется возможностью использования для позитивной селекции другой тирозинкиназы - Syk. Уровень Syk в тимоцитах в 4 раза превышает ее содержание в периферических Т-лимфоцитах, что и определяет, по-видимому, отсутствие нормальной реакции СD4-клеток крови.

Недостаточность р56-Iск . У 2-месячного мальчика, страдающего бактериальными, вирусными и грибковыми инфекциями, была обнаружена лимфопения и гипогаммаглобулинемия. В- и NK-клетки в крови присутствовали, но число CD4 Т-лимфоцитов было низким. Реакции на митогены оказались непостоянными. Стимуляция TCR не приводила к экспрессии CD69. Однако при стимуляции форболмиристатацетатом и кальциевым ионофором CD69 (который является маркером активации) на Т-лимфоцитах она появлялась, что свидетельствует о дефекте проксимальных участков пути проведения сигнала в клетки.

Молекулярные исследования выявили альтернативный сплайсинг транскрипта, в результате чего в p56-lck отсутствовал киназный домен.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека