Строение и функции эндотелия. Сосудистый эндотелий как эндокринная сеть Функции сосудистого эндотелия


Владельцы патента RU 2309668:

Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для неинвазивного определения функции эндотелия. Для этого осуществляют снижение трансмурального давления в конечности, регистрируют амплитуды плетизмографических сигналов при различных давлениях. Определяют давление, при котором амплитуда плетизмографического сигнала максимальна, при этом производят снижение давления до величины, соответствующей заданному проценту от максимальной амплитуды, проведение окклюзионной пробы, в ходе которой в манжете, накладываемой проксимально от лоцируемого участка конечности. Далее создают давление, превышающее систолическое давление испытуемого, по меньшей мере на 50 мм рт.ст., при этом окклюзию осуществляют в течение, по меньшей мере, 5 минут. Устройство включает сенсорный блок, выполненный двухканальным и имеющий возможность регистрации пульсовых кривых с периферических артерий. Блок создания давления, выполненный с возможностью создания в манжете нарастающего ступенчато давления. Электронный блок, выполненный с возможностью определения давления в манжете, соответствующего максимальной амплитуде плетизмографического сигнала, и управления блоком создания давления для установления давления в манжете, соответствующего амплитуде плетизмографического сигнала, составляющей заданный процент от максимальной амплитуды, при этом сенсорный блок связан с электронным блоком, к выходу которого подключен блок создания давления. Заявленное изобретение позволяет повысить достоверность оценки функции эндотелия вне зависимости от артериального давления пациента. 2 н. и 15 з.п. ф-лы, 6 ил.

Изобретение относится к медицине, а именно к функциональной диагностике, и позволяет на ранних этапах выявлять наличие сердечно-сосудистых заболеваний и проводить контроль эффективности проводимой терапии. Изобретение позволят проводить оценку состояния эндотелия и на основании этой оценки решить вопрос ранней диагностики сердечно-сосудистых заболеваний. Изобретение может быть использовано при проведении широкомасштабной диспансеризации населения.

В последнее время все большую актуальность приобретает задача раннего выявление сердечно-сосудистных заболеваний. Для этого используется широкий спектр диагностических средств и методов, описанных в патентной и научной литературе. Так, патент США №5,343,867 раскрывает способ и устройство для ранней диагностики атеросклероза с использованием импедансной плетизмографии для выявления особенностей пульсовой волны в сосудах нижних конечностей. Показано, что параметры кровотока зависят от приложенного к изучаемой артерии извне давления. Максимальная амплитуда плетизмограммы во многом определяется величиной трансмурального давления, представляющего собой разницу между артериальным давлением внутри сосуда и давлением, приложенным снаружи с помощью манжеты тонометра. Максимальная амплитуда сигнала определяется при нулевом значении трансмурального давления.

С позиций структуры и физиологии артериальных сосудов это можно представить следующим образом: давление с манжеты передается на внешнюю стенку артерии и уравновешивает внутриартериальное давление с внутренней стенки артерии. При этом податливость артериальной стенки резко возрастает, и проходящая пульсовая волна растягивает артерию на большую величину, т.е. прирост диаметра артерии при том же пульсовом давлении становится большим. Этот феномен легко увидеть на осциллометрической кривой, снятой при регистрации артериального давления. На этой кривой максимальные осцилляции возникают, когда давление в манжете равно среднему артериальному давлению.

В патенте США №6322515 раскрыт способ и устройство для опеределния ряда параметров сердечно-сосудистой системы, используемые в том числе для оценки состояния эндотелия. В качестве сенсора для определения пульсовой волны здесь использованы фотодиоды и фотоприемники, проведен анализ фотоплетизмографических (ФПГ) кривых, зарегистрированных на пальцевой артерии до и после проведения пробы с реактивной гиперемией. При регистрации этих кривых на палец поверх оптического сенсора накладывалась манжета, в которой создавалось давление 70 мм рт.ст.

В патенте США №6939304 раскрыт способ и устройство для неинвазивой оценки функции эндотелия с использованием ФПГ сенсора.

В патенте США №6908436 раскрыт способ оценки состояния эндотелия с помощью измерения скорости распространения пульсовой волны. Для этого используется двухканальный плетизмограф, датчики устанавливаются на фалангу пальца, окклюзия создается с помощью располагаемой на плече манжеты. Изменение состояния артериальной стенки оценивается по задержке распространения пульсовой волны. Величина задержки в 20 мс и более рассматривается как проба, подтверждающая нормальную функцию эндотелия. Определение задержки проводится путем сравнения с ФПГ кривой, зарегистрированной на руке, на которой не проводилась окклюзионная проба. Однако недостатками известного способа является определение задержки по измерению смещения в области минимума непосредственно перед систолическим подъемом, т.е. в области, которая является в значительной степени вариабельной.

Наиболее близким аналогом к заявленным способу и устройству являются способ и устройство для неинвазивного определения изменения физиологического состояния пациента, описанные в патенте РФ №2220653. Известный способ заключается в проведении контроля периферического артериального тонуса путем размещения на датчиках пульса манжеты и повышения давления в манжете до 75 мм рт.ст., последующего измерения артериального давления с повышением давления в манжете выше систолического в течение 5 минут, дальнейшей регистрации пульсовой волны методом ФПГ на двух руках, после чего проводят амплитудный анализ ФПГ кривой в отношении полученных замеров до и после пережатия, определяют прирост ФПГ сигнала. Известное устройство включает датчик для измерения давления с манжетой, нагревательный элемент для нагрева поверхности лоцируемого участка тела и процессор для обработки измеренных сигналов.

Однако известные способ и устройство не позволяют обеспечить высокую достоверность проведенных исследований в виду низкой точности замеров и зависимости их от колебаний давления пациента.

Нарушение функции эндотелия возникает при наличии таких факторов риска сердечно-сосудистых заболеваний (ССЗ) как гиперхолестеринемия, артериальная гипертензия, курение, гипергомоцистеинемия, возраст и другие. Установлено, что эндотелий является органом-мишенью, в котором патогенетически реализуются факторы риска развития ССЗ. Оценка состояния эндотелия является "барометром", взгляд на который позволяет осуществить раннюю диагностику ССЗ. Такая диагностика позволит отойти от подхода, когда необходимо провести ряд биохимических тестов (определение уровня холестерина, липопротеидов низкой и высокой плотности, гомоцистеина и др.) для выявления наличия фактора риска. Экономически более обосновано для скринирования населения на первом этапе использовать интегральный показатель риска развития заболевания, каким является оценка состояния эндотелия. Оценка состояния эндотелия также чрезвычайно актуальна для объективизации проводимой терапии.

Задача, на решение которой направлены заявленные изобретения, заключается в создании физиологически обоснованного, неинвазивного способа и устройства для достоверного определения состояния эндотелиальной функции обследуемого пациента, обеспечивающих дифференцированный подход в зависимости от состояния пациента и основанных на системе преобразования, усиления и регистрации ФПГ сигнала при действии оптимальной величины заданного давления или локально приложенного к лоцируемой артерии усилия до и после проведения окклюзионной пробы.

Технический результат, который достигается при использовании заявленных устройства и способа, состоит в повышении достоверности оценки функции эндотелия вне зависимости от артериального давления пациента.

Технический результат в части способа достигается за счет того, что осуществляют снижение трансмурального давления в конечности, проводят регистрацию амплитуды плетизмографических сигналов при различных давлениях, определение давления, при котором амплитуда ПГ сигнала максимальна, снижение давления до величины, соответствующей заданному % от максимальной амплитуды, проведение окклюзионной пробы, в ходе которой в манжете, накладываемой проксимально от лоцируемого участка конечности, создают давление, превышающее систолическое давление испытуемого, по меньшей мере, на 50 мм рт.ст., а окклюзию осуществляют в течение, по меньшей мере, 5 минут.

Технический результат усиливается за счет того, что трансмуральное давление снижают путем наложения на участок конечности манжеты, в которой создают давление.

Давление на ткани конечности повышают дискретно с шагом 5 мм рт.ст. и длительностью шага 5-10 сек, регистрируют амплитуду ПГ сигнала.

Для снижения трансмуралъного давления в лоцируемой артерии используют механическое усилие, локально приложенное к тканям конечности.

Для снижения трансмуралъного давления в лоцируемой артерии уменьшают гидростатическое давление путем поднятия конечности на заданную высоту относительно уровня сердца.

После выбора величины трансмуралъного давления, при котором амплитуда ПГ сигнала составляет 50% от максимальной величины прироста ПГ сигнала, в окклюзионной манжете, установленной проксимально от лоцируемой артерии, создают супрасистолическое давление, регистрируют плетизмографический сигнал.

После, по меньшей мере, 5 минутной экспозиции окклюзионной манжеты, установленной проксимально от лоцируемой артерии, давление в ней сбрасывают до нуля, а регистрацию изменений ПГ сигнала осуществляют одновременно по двум референсному и испытуемому каналам в течение, по меньшей мере, 3 минут.

Зарегистрированный плетизмографический сигнал после проведения окклюзионной пробы анализируют с одновременным использованием амплитудного и временного анализа по данным, полученным по двум референсному и испытуемому каналам.

При проведении амплитудного анализа сравнивают величины амплитуды сигнала в референсном и испытуемом канале, скорость нарастания амплитуды сигнала в испытуемом канале, отношение амплитуд сигналов полученного максимума при различных величинах трансмуралъного давления, с максимальной величиной сигнала, полученного после проведения окклюзионной пробы.

При проведении временного анализа сравнивают плетизмографические кривые, полученные по референсному и испытуемому каналам, проводят процедуру нормирования сигнала, а затем определяют время запаздывания или фазовый сдвиг.

Технический результат в части устройства достигается за счет того, что устройство включает сенсорный блок, выполненный двухканальным и имеющим возможность регистрации пульсовых кривых с периферических артерий, блок создания давления, выполненный с возможностью создания в манжете нарастающего ступенчато давления, и электронный блок, выполненный с возможностью определения давления в манжете, соответствующего максимальной амплитуде ПГ сигнала и управления блоком создания давления для установления давления в манжете, соответствующего амплитуде ПГ сигнала, составляющей заданный процент от прироста максимальной амплитуды, при этом сенсорный блок связан с электронным блоком, к выходу которого подключен блок создания давления.

Технический результат усиливается за счет того, что блок создания давления выполнен с возможностью создания ступенчато нарастающего давления в манжете с шагом 5 мм рт. ст. и длительностью шага 5-10 секунд.

Сенсорный блок в каждом канале включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации проходящего через лоцируемую область светового сигнала.

Сенсорный блок в каждом канале включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации отраженного от лоцируемой области рассеянного светового сигнала.

Сенсорный блок включает импедансометрические электроды, или датчики Холла, или эластичную трубку, заполненную электропроводящим материалом.

Фотоприемник связан с фильтром, имеющим возможность выделения из общего сигнала пульсовой составляющей.

Сенсорный блок включает средство для поддержания заданной температуры лоцируемого участка тела.

Устройство включает жидкокристаллический дисплей для отображения результатов оценки функции эндотелия и/или соединенный с электронным блоком интерфейс для передачи данных о функции эндотелия в компьютер.

Техническая сущность заявленных изобретения и возможность достижения технического результата, достигаемого в результате их использования, будет более понятна при описании примера осуществления со ссылками на позиции чертежей, где на фиг.1 проиллюстрирована динамика показателей объемного кровотока и диаметра плечевой артерии в ходе проведения окклюзионной пробы, на фиг.2 приведена схема формирования ФПГ сигнала, на фиг.3 представлена ФПГ кривая, на фиг.4 показано семейство ФПГ кривых, полученных при различных величинах трансмурального давления у пациентов контрольной группы, фиг.5 показывает влияние изменения гидростатического давления на амплитуду ФПГ сигнала, а на фиг.6 представлена принципиальная блок-схема заявленного устройства.

Электронный блок обеспечивает определение давления в манжете 1, соответствующего максимальной амплитуде ПГ сигнала, и управление блоком создания давления для установления давления в манжете 1, соответствующего амплитуде ПГ сигнала, составляющей заданный процент (50%) от максимального прироста амплитуды. Возможно выполнение сенсорного блока в нескольких вариантах: в первом варианте инфракрасный светодиод 2 и фотоприемник 3 расположены с возможностью регистрации проходящего через лоцируемую область светового сигнала, по разные стороны от лоцируемого участка конечности, во втором - инфракрасный светодиод 2 и фотоприемник 3 расположены с возможностью регистрации отраженного от лоцируемой области рассеянного светового сигнала, по одну сторону от лоцируемого сосуда.

Кроме того, сенсорный блок может быть выполнен на основе импедансометрических электродов, или датчиков Холла, или эластичной трубки, заполненной электропроводящим материалом.

Оценка функции эндотелия осуществляется на основе регистрации ПГ сигнала, полученного с помощью сенсорного блока, установленного на верхних конечностях обследуемого пациента, с последующим электрическим преобразованием полученного сигнала, в ходе линейного нарастания давления в манжете 1 (или величины локально приложенного к лоцируемой артерии усилия) до получения максимальной амплитуды сигнала, после чего величина давления в манжете или локально приложенное усилие фиксируется, и окклюзионная проба проводится при фиксированной величине давления или усилия. При этом сенсорный блок устанавливается на внутренней стороне манжеты 1 или располагается на конце устройства, создающего усилие в области проекции артерии на поверхность кожи. Для автоматического задания этого давления используется обратная связь по амплитуде ПГ сигнала, поступающего с цифроаналогового преобразователя 8 через контроллер 9 на компрессор 11 блока создания давления.

Окклюзионная проба проводится с использованием манжеты, установленной проксимально (плечо, предплечье, запястье) относительно лоцируемои артерии (плечевая, радиальная или пальцевая). При этом сигнал, полученный с другой конечности, на которой не проводится окклюзионная проба, является референсным.

Заявленный способ определения состояния эндотелиальной функции обследуемого пациента включает два основных этапа: первый позволяет получить ряд плетизмографических кривых, зарегистрированных при различных давлениях в манжете 1 (или усилий прикладываемых к лоцируемои артерии), и второй этап - это непосредственно сама окклюзионная проба. Результатом первого этапа является информация о вязкоэластичных свойствах артериального русла и выбор давления или усилия для проведения окклюзионного теста. Изменения амплитуды ПГ сигнала при действии приложенного давления или усилия свидетельствуют о тонусе гладких мышц артерии и состоянии ее эластических компонентов (эластин и коллаген). Локально приложенное давление или усилие сопровождается изменением трансмурального давления, величина которого определяется разницей между артериальным давлением и приложенным извне давлением или усилием. При уменьшении трансмурального давления тонус гладких мышц снижается, что сопровождается увеличением просвета артерии, соответственно, при повышении трансмурального давления происходит сужение артерии. В этом состоит миогенная регуляция кровотока, направленная на сохранение оптимального давления в системе микроциркуляции. Так, при изменении давления в магистральном сосуде от 150 мм рт.ст. до 50 мм рт.ст. в капиллярах давление остается практически без изменений.

Изменение гладкомышечного тонуса реализуется не только в виде сужения или дилатации артерии, но и приводит соответственно к увеличению жесткости или податливости артериальной стенки. При снижении трансмурального давления гладкомышечный аппарат сосудистой стенки в той или иной степени релаксирует, что на ФПГ проявляется в виде увеличения амплитуды сигнала. Максимальная амплитуда имеет место при трансмуральном давлении, равном нулю. Схематически это представлено на фиг.4, где на приведенной S-образной кривой деформирования видно, что максимум приращения объема определяется при трансмуральном давлении, близком к нулю. При равных волнах пульсового давления, приложенных к различным участкам кривой деформирования, максимальный плетизмографический сигнал наблюдается в области, близкой к нулевой величине трансмурального давления. У пациентов контрольной группы, сопоставимой по возрасту и величине диастолического давления с группой лиц с клиническими проявлениями ишемической болезни, возрастание амплитуды сигнала при изменении трансмурального давления может составлять более 100% (фиг.4). Тогда как в группе больных ИБС это приращение амплитуды не превышает 10-20%.

Подобную динамику изменения амплитуды ПГ сигнала при разных значениях трансмурального давления можно связать только с особенностями вязкоэластичных свойств артериального русла у здоровых и больных стенозирующим атеросклерозом различной локализации. Гладкомышечный тонус артерий можно рассматривать преимущественно как вязкостный компонент, тогда как волокна эластина и коллагена представляют собой чисто эластический компонент структуры сосудистой стенки. Снижая гладкомышечный тонус при подходе к нулевым значениям трансмурального давления, мы как бы уменьшаем вклад вязкостного компонента гладких мышц в кривую деформирования. Подобный прием позволяет не только проводить более детальный анализ кривой деформирования эластических компонент артериальной сосудистой стенки, но и в более выгодных условиях регистрировать феномен реактивной гиперемии, после проведения окклюзионного теста.

Величину прироста диаметра приводящей артерии связывают с функционированием эндотелиальных клеток. Возрастание напряжения сдвига после окклюзионной пробы приводит к возрастанию синтеза оксида азота (NO). Возникает так называемая "поток-индуцированная дилатация". При нарушении функции эндотелиальных клеток способность продуцировать оксид азота и другие вазоактивные соединения снижена, что приводит к отсутствию феномена поток - индуцированной дилатации сосудов. В этой ситуации полноценной реактивной гиперемии не возникает. В настоящее время этот феномен используется для выявления нарушения функции эндотелия, т.е. эндотелиальной дисфункции. Индуцированная потоком дилатация сосуда определяется следующей последовательностью событий: окклюзия, увеличение потока крови, воздействие напряжения сдвига на эндотелиальные клетки, синтез оксида азота (как адаптация к увеличению кровотока), эффект воздействия NO на гладкую мышцу.

Максимальная величина кровотока достигается через 1-2 секунды после снятия окклюзии. При этом нужно отметить, что при одновременном мониторировании величины кровотока и диаметра артерии первоначально увеличивается величина кровотока, и только после этого меняется диаметр сосуда (фиг.1). После быстрого (несколько секунд) достижения максимума скорости кровотока увеличивается диаметр артерии, достигая максимума через 1 минуту. После чего возвращается к исходной величине в течение 2-3 минут. На примере особенностей состояния эластического модуля артериальной стенки у больных артериальной гипертензией можно сделать предположение о возможном участии исходной жесткости артерии в проявлении ответа эндотелиальных клеток на окклюзионную пробу. Нельзя исключить того, что при одинаковой продукции окиси азота эндотелиальными клетками проявление ответа гладкомышечными клетками артерии будет определятся исходным состоянием модуля эластичности артериальной стенки. Для нормализации проявления ответа гладкомышечного аппарата артериальной стенки желательно иметь исходную жесткость артерий у различных пациентов, если не идентичной, то по возможности близкой. Одним из вариантов такой унификации исходного состояния артериальной стенки является подбор величины трансмурального давления, при которой отмечается ее наибольшая податливость.

Оценку результатов окклюзионной пробы по параметрам реактивной гиперемии можно проводить не только на плечевой артерии, но и на более мелких сосудах.

Для определения потокозависимой дилатации был использован оптический метод. В основе метода находится прирост оптической плотности, связанный с пульсовым увеличением объема крови лоцируемой артерии. Приходящая пульсовая волна растягивает стенки артерии, увеличивая диаметр сосуда. Так как при ФПГ оптический сенсор регистрирует не изменение диаметра артерии, а прирост объема крови, который равен квадрату радиуса, то это измерение можно проводить с большей точностью. На фиг.2 представлен принцип получения ФПГ сигнала. Фотодиод регистрирует световой поток, прошедший через лоцируемый участок ткани пальца. С каждой пульсовой волной артерия пальца, расширяясь, увеличивает объем крови. Гемоглобин крови в значительной степени поглощает ИК излучение, что приводит к возрастанию оптической плотности. Проходящая по артерии пульсовая волна изменяет ее диаметр, что является основным компонентом пульсового приращения объема крови в лоцируемом участке.

На фиг.3 представлена ФПГ кривая. На кривой можно видеть два пика, первый из которых связан с сокращением сердца, второй - с отраженной пульсовой волной. Данная кривая получена при установке оптического датчика на последнюю фалангу указательного пальца.

Перед началом измерений компрессор 11 по сигналу контроллера 9 создает в манжете 1 давление. Нарастание давления осуществляется ступенчато с шагом 5 мм рт.ст., длительность каждого шага составляет 5-10 сек. С возрастанием давления снижается трансмуральное давление, а при равенстве давления в манжете и давления в лоцируемой артерии - становится равным нулю. На каждом шаге производится регистрация ФПГ сигнала, поступающего с фотоприемника 3. Сигнал с выхода преобразователя 4 усиливается в усилителе 5 и подвергается фильтрации в фильтре 6 для вырезания помех с промышленной частотой 50 Гц и ее гармоник. Основное усиление сигнала осуществляется масштабируемым (инструментальным) усилителем 7. Усиленное напряжение подается на аналого-цифровой преобразователь 8 и далее через USB - интерфейс 10 в компьютер. Контроллер 9 определяет давление, при котором амплитуда сигнала максимальна. Для улучшения соотношения сигнал/шум применяется синхронное детектирование.

Процедура проведения оценки эндотелиальной функции делится на две части:

1) снижение трансмурального давления с помощью приложенного к части пальца давления (манжета с воздухом, эластичный окклюдер, механическое сдавливание) или путем изменения гидростатического давления за счет поднятия конечности на определенную высоту. Последняя процедура полностью может заменить навязывание усилия извне на стенку сосуда. В упрощенном варианте оценки состояния эндотелия можно исключить сложную схему автоматики, и только поднимая и опуская руку определять среднее давление по максимуму амплитуды плетизмографического сигнала, выйти на линейный участок кривой податливости (50% от максимального прироста) и затем провести окклюзионную пробу. Единственным недостатком такого подхода является необходимость позиционирования руки и проведение окклюзии с приподнятой рукой.

При снижении трансмурального давления возрастает пульсовая составляющая ФПГ, что соответствует увеличению податливости исследуемой артерии. При воздействии последовательностью нарастающих давлений, приложенных к пальцу, можно, с одной стороны, увидеть выраженность ауторегуляторной реакции, а с другой - выбрать оптимальные условия (по величине трансмурального давления) для съема информации при проведении окклюзионной пробы (выбор наиболее крутого участка на кривой податливости артерии);

2) создание окклюзии артерии путем приложения супрасистолического давления (на 30 мм рт.ст) в течение 5 минут. После быстрого сброса давления в манжете, установленной на лучевой артерии, проводится регистрация динамики ФПГ кривой (амплитудный и временной анализ). Регистрацию изменений ПГ сигнала осуществляют одновременно по двум референсному и испытуемому каналам в течение, по меньшей мере, 3 минут. При проведении амплитудного анализа сравнивают величины амплитуды сигнала в референсном и испытуемом канале, скорость нарастания амплитуды сигнала в испытуемом канале, отношение амплитуд сигналов, полученного максимума при различных величинах трансмуралъного давления, с максимальной величиной сигнала, полученного после проведения окклюзионной пробы. При проведении временного анализа сравнивают плетизмографические кривые, полученные по референсному и испытуемому каналу, проводят процедуру нормирования сигнала, а затем определяют время запаздывания или фазовый сдвиг.

Максимальные величины амплитуды ФПГ сигналов отмечались при нулевом трансмуральном давлении (давление, приложенное к сосуду извне, равно среднему артериальному давлению). Расчет велся следующим образом - диастолическое давление плюс 1/3 пульсового давления. Этот ответ артерии на давление извне не является эндотелийзависимым. Прием выбора давления, прикладываемого извне к артерии, не только позволяет проводить пробу с реактивной гиперемией по динамике ФПГ сигнала в наиболее оптимальной области податливости артерии, но и обладает собственной диагностической ценностью. Снятие семейства ФПГ кривых при различных величинах трансмурального давления позволяет получить информацию о реологических характеристиках артерии. Эта информация позволяет разграничить изменения, связанные с ауторегуляторным эффектом гладкомышечного аппарата стенки артерии в виде увеличения диаметра, от эластических свойств артерии. Увеличение диаметра артерии приводит к возрастанию постоянного компонента), за счет большего объема крови, находящегося в лоцируемой области. Пульсовая составляющая сигнала отражает приращение объема крови в систолу. Амплитуда ФПГ определяется податливостью артериальной стенки при прохождении пульсовой волны давления. Просвет артерии как таковой не влияет на амплитуду ФПГ сигнала. Полного параллелизма между приращением диаметра сосуда и податливостью стенки при изменении трансмурального давления не наблюдается.

При низком трансмуральном давлении артериальная стенка становиться менее жесткой по сравнению с ее механическими свойствами, определяемыми при физиологических значениях артериального давления.

Оптимизация проведения теста по величине трансмурального давления значительно увеличивает его чувствительность, позволяя выявлять патологию на самых ранних стадиях нарушения функции эндотелия. Высокая чувствительность теста позволит эффективно оценивать проведение фармакологической терапии, направленной на коррекцию нарушений эндотелиальной функции.

При увеличении давления в манжете до 100 мм рт.ст. отмечался постоянный рост сигнала, максимальная амплитуда сигнала определялась при 100 мм рт.ст. Дальнейшее повышение давления в манжете приводило к снижению амплитуды ФПГ сигнала. Снижение давления до 75 мм рт.ст. сопровождалось снижением амплитуды ФПГ сигнала на 50%. Давление в манжете также меняло форму ФПГ сигнала (см. фиг.3).

Изменение формы ФПГ сигнала заключалось в резком увеличении скорости нарастания систолического подъема с одновременной задержкой момента начала подъема. Эти изменения формы отражают влияние манжеты на прохождение пульсовой волны давления. Этот феномен происходит из-за вычитания из пульсовой волны давления, величины давления манжеты.

Подъем руки относительно "точки равенства давлений" (уровень сердца) позволяет отказаться от использования приложенного извне давления (напряжения) с помощью манжеты. Подъем руки с "точки равенства давлений" до позиции вытянутой вверх увеличивает амплитуду ФПГ. Последующее опускание руки на исходный уровень снижает амплитуду до исходного уровня.

Важным фактором, влияющим на величину трансмурального давления, является сила тяжести. Трансмуральное давление в пальцевой артерии поднятой руки меньше давления в той же артерии, находящейся на уровне сердца, на произведение величин плотности крови, ускорения силы тяжести и расстояния от "точки равенства давлений":

где Ptrh - трансмуральное давление в пальцевой артерии поднятой руки,

Ptrho - трансмуральное давление в пальцевой артерии, находящейся на уровне сердца, p - плотность крови (1,03 г/см), g - ускорение силы тяжести (980 см/сек), h - расстояние от точки равенства давлений до пальцевой артерии поднятой руки (90 см). При данном расстоянии от "точки равенства давлений" давление у стоящего человека с поднятой рукой на 66 мм рт.ст. ниже среднего давления в пальцевой артерии, измеренного на уровне сердца.

Таким образом, уменьшить трансмуральное давление можно, увеличивая прикладываемое извне давление или снижая давление в сосуде. Снизить давление в пальцевой артерии достаточно легко. Для этого необходимо поднять кисть выше уровня сердца. Постепенно поднимая руку, мы снижаем трансмуральное давление в пальцевой артерии. При этом амплитуда ФПГ сигнала резко возрастает. В поднятой руке среднее давление в пальцевой артерии может снизиться до 30 мм рт.ст., тогда как при нахождении кисти руки на уровне сердца оно равно 90 мм рт.ст. Трансмуральное давление в артериях голени может быть в четыре раза больше, чем в артериях поднятой руки. Влияние гидростатического давления на величину трансмурального давления можно использовать в функциональной пробе по оценке вязкоэластических свойств артериальной стенки.

Заявленные изобретения имеют следующие преимущества:

1) давление для проведения окклюзионной пробы выбирается индивидуально для каждого пациента,

2) обеспечивается информация о вязкоэластических свойствах артериального русла (по зависимости амплитуды ПГ сигнала от давления (усилия)),

3) обеспечивается улучшение соотношения сигнал/шум,

4) окклюзионная проба проводится в наиболее оптимальной области податливости артерии,

5) изобретения позволяют получить информацию о реологических характеристиках артерии за счет снятия семейства ФПГ кривых при различных значениях трансмурального давления,

6) изобретения увеличивают чувствительность теста, а следовательно, достоверность оценки функции эндотелия,

7) позволяют выявить патологию на самых ранних стадиях нарушения функции эндотелия,

8) позволяют достоверно оценить эффективность проводимой фармакотерапии.

1. Способ неинвазивного определения функции эндотелия, включающий проведение окклюзионной пробы, в ходе которой в манжете, накладываемой проксимально от лоцируемого участка конечности, создают давление, превышающее систолическое давление испытуемого, а окклюзию осуществляют в течение 5 мин, отличающийся тем, что на первом этапе производят снижение трансмурального давления в конечности, регистрируют амплитуды плетизмографических сигналов при различных давлениях, определяют давление, при котором амплитуда плетизмографического сигнала максимальна, затем снижают давление до величины, соответствующей заданному проценту от максимальной амплитуды, на втором этапе проводят окклюзионную пробу, причем создают давление, превышающее систолическое давление испытуемого, по меньшей мере, на 50 мм рт.ст, далее после проведения окклюзионной пробы регистрированный плетизмографический сигнал, анализируют с одновременным использованием амплитудного и временного анализа по данным, полученным по референсному и испытуемому каналам.

2. Способ по п.1, отличающийся тем, что трансмуральное давление снижают путем наложения на участок конечности манжеты, в которой создают давление.

3. Способ по п.1, отличающийся тем, что давление на ткани конечности повышают дискретно с шагом 5 мм рт.ст. и длительностью шага 5-10 с, одновременно регистрируют амплитуду плетизмографического сигнала.

4. Способ по п.1, отличающийся тем, что для снижения трансмуралъного давления в лоцируемой артерии уменьшают гидростатическое давление путем поднятия конечности на заданную высоту относительно уровня сердца.

5. Способ по п.1, отличающийся тем, что после выбора величины трансмурального давления, при котором амплитуда плетизмографического сигнала составляет 50% от максимально возможной величины, в окклюзионной манжете, установленной проксимально от лоцируемой артерии, создают супрасистолическое давление, регистрируют плетизмографический сигнал.

6. Способ по п.5, отличающийся тем, что после по меньшей мере 5-минутной экспозиции окклюзионной манжеты, установленной проксимально от лоцируемой артерии, давление в ней сбрасывают до нуля, а регистрацию изменений плетизмографического сигнала осуществляют одновременно по двум, референсному и испытуемому, каналам в течение, по меньшей мере, 3 мин.

7. Способ по п.1, отличающийся тем, что при проведении амплитудного анализа сравнивают величины амплитуды сигнала в референсном и испытуемом каналах, скорость нарастания амплитуды сигнала в испытуемом канале, отношение амплитуд сигналов, полученного максимума при различных величинах трансмурального давления с максимальной величиной сигнала, полученного после проведения окклюзионной пробы.

8. Способ по п.1, отличающийся тем, что при проведении временного анализа сравнивают плетизмографические кривые, полученные по референсному и испытуемому каналам, проводят процедуру нормирования сигнала, а затем определяют время запаздывания или фазовый сдвиг.

9. Устройство для неинвазивного определения функции эндотелия, включающее сенсорный блок, выполненный двухканальным и имеющим возможность регистрации пульсовых кривых с периферических артерий, блок создания давления, выполненный с возможностью создания в манжете нарастающего ступенчато давления, и электронный блок, выполненный с возможностью определения давления в манжете, соответствующего максимальной амплитуде плетизмографического сигнала, и управления блоком создания давления для установления давления в манжете, соответствующего амплитуде плетизмографического сигнала, составляющей заданный процент от максимальной амплитуды, при этом сенсорный блок связан с электронным блоком, к выходу которого подключен блок создания давления.

10. Устройство по п.9, отличающееся тем, что блок создания давления выполнен с возможностью создания ступенчато нарастающего давления в манжете с шагом 5 мм рт.ст и длительностью шага 5-10 с.

11. Устройство по п.9, отличающееся тем, что каждый канал сенсорного блока включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации проходящего через лоцируемую область светового сигнала.

12. Устройство по п.9, отличающееся тем, что каждый канал сенсорного блока включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации отраженного от лоцируемой области рассеянного светового сигнала.

13. Устройство по п.9, отличающееся тем, что сенсорный блок включает импедансометрические электроды, или датчики Холла, или эластичную трубку, заполненную электропроводящим материалом.

14. Устройство по п.11, отличающееся тем, что фотоприемник связан фильтром, имеющим возможность выделения из общего сигнала пульсовой составляющей.

Изобретение относится к медицине и физиологии и может быть использовано для комплексной оценки уровня физической работоспособности практически здоровых лиц старше 6 лет разного уровня тренированности, не имеющих ограничений по состоянию здоровья.

Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для неинвазивного определения функции эндотелия

Эндотелий сосудов обладает способностью синтезировать и выделять факторы, вызывающие расслабление или сокращение гладких мышц сосудов в ответ на разного рода стимулы. Общая масса эндотелиоцитов, монослойно выстилающих кровеносные сосуды изнутри (интима), у человека приближается к 500 г. Общая масса, высокая секреторная способность эндотелиальных клеток позволяют рассматривать эту «ткань» как своеобразный эндокринный орган (железу). Распределенный по сосудистой системе эндотелий, очевидно, предназначен для вынесения своей функции непосредственно к гладкомышечным образованиям сосудов. Период полужизни выделяемого эндотелиоцитами инкрета очень мал - 6-25 с (вследствие быстрого перехода его в нитраты и нитриты), но он способен сокращать и расслаблять гладкие мышцы сосудов, не оказывая влияния на эффектор-ные образования других органов (кишечник, бронхи, матка).

Выделяемые эндотелием сосудов расслабляющие факторы (ЭРФ) - нестабильные соединения, одним из которых является оксид азота (N0). В эндотелиальных клетках сосудов N0 образуется из а-аргинина при участии фермента - синтетазы окиси азота.

NO рассматривается как некоторый общий путь передачи сигнала от эндотелия к гладким мышцам сосудов. Выделение из эндотелия N0 ингибируется гемоглобином и потенцируется ферментом - дисмутазой.

Участие эндотелия в регуляции тонуса сосудов общепризнанно. Для всех магистральных артерий показана чувствительность эндотелиоцитов к скорости кровотока, выражающаяся в выделении ими расслабляющего гладкие мышцы сосудов фактора, приводящего к увеличению просвета этих артерий. Таким образом, артерии непрерывно регулируют свой просвет соответственно скорости течения по ним крови, что обеспечивает стабилизацию давления в артериях в физиологическом диапазоне изменений величин кровотока. Этот феномен имеет большое значение в условиях развития рабочей гиперемии органов и тканей, когда происходит значительное увеличение кровотока, а также при повышении вязкости крови, вызывающей рост сопротивления кровотоку в сосудистой сети. Повреждение механочувствительности сосудистых эндотелиоцитов может быть одним из этиологических (патогенетических) факторов развития облитерирующего эндоартериита и гипертонической болезни.

Роль курения

Общепризнанно, что никотин и оксид углерода влияют на функции сердечно-сосудистой системы и вызывают изменения обмена веществ, повышения артериального давления, частоты пульса, потребления кислорода, содержания в плазме катехоламинов и карбоксигемоглобина, атерогенеза и пр. Все это способствует развитию и ускорении появления заболеваний сердечно-сосудистой системы

Никотин повышает уровень сахара в крови и, возможно, поэтому курение способствует утолению голода и ощущению эйфории. После выкуривания каждой сигареты увеличивается частота сердечных сокращений, снижается ударный объем при физической нагрузке разной интенсивности.

Выкуривание большого числа сигарет с низким содержанием никотина вызывает такие же изменения, как и выкуривание меньшего количества сигарет с бульшим содержанием никотина. Это очень важный факт, свидетельствующий об иллюзорности курения безопасных сигарет.

Важную роль в развитии поражения сердечно-сосудистой системы при курении играет оксид углерода, который вдыхается в виде газа с табачным дымом. Оксид углерода способствует развитию атеросклероза, влияет на мышечную ткань (частичный или тотальный некроз), на функцию сердца у больных стенокардией, включая негативное инотропное действие на миокард

Важное значение имеет тот факт, что у курильщиков повышен уровень холестерина в крови по сравнению с некурящими, что вызывает закупорку коронарных сосудов.

Курение оказывает существенное влияние на ишемическую болезнь сердца (ИБС), вероятность заболевания ИБС возрастает с увеличением количества потребляемых сигарет; эта вероятность также возрастает с увеличением длительности курения, но снижается у лиц, прекративших курение.

Курение также оказывает влияние на развитие инфаркта миокарда. Риск инфаркта (в том числе повторного) возрастает с количеством выкуренных за день сигарет, а также в старших возрастных группах, особенно старше 70 лет, курение сигарет с более низким содержанием никотина не снижает риск развития инфаркта миокарда. Влияние курения на развитие инфаркта миокарда обычно связывают с возникновением коронарного атеросклероза, вследствие чего появляются ишемия сердечной мышцы и последующий некроз ее. Как содержащие, так и не содержащие никотин сигареты увеличивают присутствие в крови оксида углерода, уменьшают усвоение кислорода сердечной мышцей.

Существенное воздействие оказывает курение на заболевания периферических сосудов, в частности на развитие эндартериита нижних конечностей (перемежающаяся хромота или облитерирующий эндартериит), особенно при сахарном диабете. После выкуривания одной сигареты спазм периферических сосудов держится примерно 20 мин, в связи с чем велика опасность развития облитерирующего эндартериита.

Курящие больные сахарным диабетом подвергаются большему риску (на 50%) развития обструктивного поражения периферических сосудов, чем некурящие.

Курение является также фактором риска в развитии атеросклеротической аневризмы аорты, развивающейся у курящих в 8 раз чаще по сравнению с некурящими. У курильщиков в 2-3 раза увеличена смертность от аневризмы брюшной аорты.

Спазм периферических сосудов, возникающих под влиянием никотина, играет роль в развитии гипертонической болезни (во время курения артериальное давление особенно сильно повышается).

    Артериальная гипертензия (эссенциальная гипертензия). Патогенез. Факторы риска.

Артериальная гипертензия - стойкое повышение артериального давления. По происхождению различают артериальную гипертензию первичную и вторичную. Вторичное повышение артериального давления является лишь симптомом (симптоматическая гипертензия), следствием какого-нибудь другого заболевания (гломерулонефрит, сужение дуги аорты, аденома гипофиза или коркового вещества надпочечных желез и т. д.).

Первичную гипертензию до сих пор называют эссенциальной гипертензией, что указывает на невыясненность ее происхождения

Гипертоническая болезнь является одним из вариантов первичной артериальной гипертензии. При первичной гипертензии повышение артериального давления является основным проявлением болезни.

На долю первичной гипертензии приходится 80% всех случаев артериальной гипертензии. Остальные 20% составляют вторичную артериальную гипертензию, из них 14% связаны с заболеваниями паренхимы почек или ее сосудов.

Этиология. Причины первичной гипертензии, возможно, различны и многие из них до сих пор окончательно не установлены. Однако не подлежит сомнению, что определенное значение в возникновении гипертензии имеет, перенапряжение высшей нервной деятельности под влиянием эмоциональных воздействий. Об этом свидетельствуют частые случаи развития первичной гипертензии у людей, переживших ленинградскую блокаду, а также у людей "стрессовых" профессий. Особое значение при этом имеют отрицательные эмоции, в частности эмоции, не отреагированные в двигательном акте, когда вся сила их патогенного воздействия обрушивается на систему кровообращения. На этом основании Г. Ф. Ланг назвал гипертоническую болезнь "болезнью неотреагированных эмоций".

Артериальная гипертензия - это "болезнь осени жизни человека, которая лишает его возможности дожить до зимы" (А. А. Богомолец). Тем самым подчеркивается роль возраста в происхождении гипертонической болезни. Однако и в молодом возрасте первичная гипертензия встречается не так редко. Важно при этом отметить, что до 40 лет мужчины болеют чаще, чем женщины, а после 40 соотношение приобретает противоположный характер.

Определенную роль в возникновении первичной гипертензии играет наследственный фактор. В отдельных семьях заболевание встречается в несколько раз чаще, чем у остального населения. О влиянии генетических факторов свидетельствует и большая конкордантность по гипертонической болезни у однояйцевых близнецов, а также существование линий крыс, предрасположенных или резистентных к некоторым формам гипертензии.

В последнее время в связи с проведенными в некоторых странах и среди народностей (Япония, Китай, негритянское население Багамских островов, некоторые районы Закарпатской области) эпидемиологическими наблюдениями установлена тесная связь между уровнем артериального давления и количеством потребляемой соли. Считают, что длительное потребление более 5 г соли в день способствует развитию первичной Гипертензии у людей, имеющих наследственное предрасположение к ней.

Успешное экспериментальное моделирование "солевой гипертензии" подтверждает значение избыточного потребления соли. С приведенными наблюдениями хорошо согласуются клинические данные о благоприятном терапевтическом эффекте низкосолевой диеты при некоторых формах первичной гипертензии.

Таким образом, в настоящее время установлено несколько этиологических факторов гипертензии. Неясно только, какой из них является причиной, а какой играет роль условия в возникновении болезни.

    Прекапиллярный и посткапиллярный виды гипертензии малого круга кровообращения. Причины. Последствия.

Лёгочная гипертензия (АД более 20/8 мм рт.ст.) бывает либо прекапиллярной, либо посткапиллярной.

Прекапиллярная форма лёгочной гипертензии характеризуется повышением давления (а значит, сопротивления) в мелких артериальных сосудах системы лёгочного ствола. Причинами прекапиллярной формы гипертензии бывают спазм артериол и эмболия ветвей лёгочной артерии.

Возможные причины спазма артериол:

        стресс, эмоциональные нагрузки;

        вдыханием холодного воздуха;

        рефлекс фон Эйлера-Лильестранда (констрикторная реакция лёгочных сосудов, возникающая в ответ на снижение рО2 в альвеолярном воздухе);

        гипоксия.

Возможные причины эмболии ветвей лёгочной артерии:

    тромбофлебит;

    нарушения ритма сердца;

    гиперкоагуляция крови;

    полицитемия.

Резкий подъём АД в лёгочном стволе раздражает барорецепторы и путём срабатывания рефлекса Швачка-Парина приводит к снижению системного АД, замедлению ритма сердца, увеличению кровенаполнения селезёнки, скелетных мышц, уменьшению венозного возврата крови к сердцу, предотвращению отёка лёгкого. Это ещё больше нарушает работу сердца, вплоть до его остановки и гибели организма.

Лёгочная гипертензия усиливается при следующих состояниях:

    снижении температуры воздуха;

    активизации САС;

    полицитемии;

    повышении вязкости крови;

    приступах кашля или хроническом кашле.

Посткапиллярная форма лёгочной гипертензии бывает вызвана снижением оттока крови по системе лёгочных вен. Характеризуется застойными явлениями в лёгких, возникающими и усиливающимися при сдавлении лёгочных вен опухолью, соединительнотканными рубцами, а также при различных заболеваниях, сопровождающихся левожелудочковой сердечной недостаточностью (митральном стенозе, гипертонической болезни, инфаркте миокарда, кардиосклерозе и др.).

Следует отметить, что посткапиллярная форма может осложнять прекапиллярную форму, а прекапиллярная - посткапиллярную.

Нарушение оттока крови из лёгочных вен (при повышении давления в них) приводит к включению рефлекса Китаева, приводящего к увеличению прекапиллярного сопротивления (вследствие сужения лёгочных артерий) в малом круге кровообращения, предназначенного для разгрузки последнего.

Лёгочная гипотензия развивается при гиповолемии, вызванной кровопотерей, коллапсом, шоком, пороками сердца (со сбросом крови справа налево). Последнее, например, возникает при тетраде Фалло, когда значительная часть венозной малооксигенированной крови поступает в артерии большого круга, минуя лёгочные сосуды, в том числе минуя обменные капилляры лёгких. Это приводит к развитию хронической гипоксии и вторичных расстройств дыхания.

В этих условиях, сопровождающихся шунтированием лёгочного кровотока, ингаляция кислорода не улучшает процесс оксигенации крови, гипоксемия сохраняется. Таким образом, эта функциональная проба - простой и надёжный диагностический тест выявления этого вида нарушения лёгочного кровотока.

    Симптоматические гипертензии. Виды, патогенез. Экспериментальные гипертензии.

Catad_tema Артериальная гипертензия - статьи

Дисфункция эндотелия как новая концепция профилактики и лечения сердечно-сосудистых заболеваний

Конец XX века ознаменовался не только интенсивным развитием фундаментальных понятий патогенеза артериальной гипертонии (АГ), но и критическим пересмотром многих представлений о причинах, механизмах развития и лечении этого заболевания.

В настоящее время АГ рассматривается как сложнейший комплекс нейро-гуморальных, гемодинамических и метаболических факторов, взаимоотношение которых трансформируется во времени, что определяет не только возможность перехода одного варианта течения АГ в другой у одного и того же больного, но и заведомую упрощенность представлений о монотерапевтическом подходе, и даже о применении как минимум двух лекарственных препаратов с конкретным механизмом действия.

Так называемая "мозаичная" теория Пейджа, будучи отражением сложившегося традиционного концептуального подхода к изучению АГ, ставившего в основу АГ частные нарушения механизмов регуляции АД, может быть отчасти аргументацией против применения одного гипотензивного средства для лечения АГ. При этом, редко принимается во внимание такой немаловажный факт, что в своей стабильной фазе АГ протекает при нормальной или даже сниженной активности большинства систем, регулирующих АД .

В настоящее время серьезное внимание во взглядах на АГ стало уделяться метаболическим факторам, число которых, однако, увеличивается по мере накопления знаний и возможностей лабораторной диагностики (глюкоза, липопротеиды, С-реактивный белок, тканевой активатор плазминогена, инсулин, гомоцистеин и другие).

Возможности суточного мониторирования АД, пик внедрения которого в клиническую практику пришелся на 80-е годы, показали существенный патологический вклад нарушенной суточной вариабельности АД и особенностей суточных ритмов АД, в частности, выраженного предутреннего подъема, высоких суточных градиентов АД и отсутствия ночного снижения АД, что во многом связывалось с колебаниями сосудистого тонуса.

Тем не менее, к началу наступившего века отчетливо выкристаллизовалось направление, которое во многом включило в себя накопленный опыт фундаментальных разработок с одной стороны, и сосредоточило внимание клиницистов на новом объекте - эндотелии - как органе-мишени АГ, первым подвергающимся контакту с биологически активными веществами и наиболее рано повреждающимся при АГ.

С другой же стороны, эндотелий реализует многие звенья патогенеза АГ, непосредственно участвуя в повышении АД.

Роль эндотелия в сердечно-сосудистой патологии

В привычном человеческому сознанию виде эндотелий представляет собой орган весом 1,5-1,8 кг (сопоставимо с весом, например, печени) или непрерывный монослой эндотелиальных клеток длиной 7 км, или занимающий площадь футбольного поля, либо шести теннисных кортов. Без этих пространственных аналогий было бы трудно представить, что тонкая полупроницаемая мембрана, отделяющая кровоток от глубинных cтруктур сосуда, непрерывно вырабатывает огромное количество важнейших биологически активных веществ, являясь таким образом гигантским паракринным органом, распределенным по всей территории человеческого организма.

Барьерная роль эндотелия сосудов как активного органа определяет его главную роль в организме человека: поддержание гомеостаза путем регуляции равновесного состояния противоположных процессов - а) тонуса сосудов (вазодилатация/вазоконстрикция); б) анатомического строения сосудов (синтез/ингибирование факторов пролиферации); в) гемостаза (синтез и ингибирование факторов фибринолиза и агрегации тромбоцитов); г) местного воспаления (выработка про- и противовоспалительных факторов) .

Необходимо заметить, что каждая из четырех функций эндотелия, определяющая тромбогенность сосудистой стенки, воспалительные изменения, вазореактивность и стабильность атеросклеротической бляшки, напрямую или косвенно связана с развитием, прогрессированием атеросклероза, АГ и ее осложнений . Действительно недавние исследования показали, что надрывы бляшек, приводящих к инфаркту миокарда, отнюдь не всегда происходят в зоне максимального стенозирования коронарной артерии, напротив, зачастую случаются в местах небольших сужений - менее 50% по данным ангиографии .

Таким образом, изучение роли эндотелия в патогенезе сердечно-сосудистых заболеваний (ССЗ) привело к пониманию, что эндотелий регулирует не только периферический кровоток, но и другие важные функции. Именно поэтому объединяющей стала концепция об эндотелии как о мишени для профилактики и лечения патологических процессов, приводящих или реализующих ССЗ.

Понимание многоплановой роли эндотелия уже на качественно новом уровне вновь приводит к достаточно известной, но хорошо забытой формуле "здоровье человека определяется здоровьем его сосудов".

Фактически, к концу XX века, а именно в 1998 году, после получения Нобелевской Премии в области, медицины Ф. Мурадом, Робертом Фуршготом и Луисом Игнарро, была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований в области АГ и других ССЗ - разработке участия эндотелия в патогенезе АГ и других ССЗ, а также способов эффективной коррекции его дисфункции.

Считается, что медикаментозное или немедикаментозное воздействие на ранних стадиях (предболезнь или ранние стадии болезни) способно отсрочить ее наступление или предотвратить прогрессирование и осложнения. Ведущая концепция превентивной кардиологии основана на оценке и коррекции так называемых факторов сердечно-сосудистого риска. Объединяющим началом для всех таких факторов является то, что рано или поздно, прямо или косвенно, все они вызывают повреждение сосудистой стенки, и прежде всего, в ее эндотелиальном слое.

Поэтому можно полагать, что одновременно они же являются факторами риска дисфункции эндотелия (ДЭ) как наиболее ранней фазы повреждения сосудистой стенки, атеросклероза и АГ, в частности.

ДЭ - это, прежде всего, дисбаланс между продукцией вазодилатирующих, ангиопротективных, антипролиферативных факторов с одной стороны (NO, простациклин, тканевой активатор плазминогена, С-тип натрийуретического пептида, эндотелиального гиперполяризующего фактора) и вазоконстриктивных, протромботических, пролиферативных факторов, с другой стороны (эндотелин, супероксид-анион, тромбоксан А2, ингибитор тканевого активатора плазминогена) . При этом, механизм их окончательной реализации неясен.

Очевидно одно - рано или поздно, факторы сердечно-сосудистого риска нарушают тонкий баланс между важнейшими функциями эндотелия, что в конечном итоге, реализуется в прогрессировании атеросклероза и сердечно-сосудистых инцидентах. Поэтому основой одного из нового клинического направлений стал тезис о необходимости коррекции дисфункции эндотелия (т.е. нормализации функции эндотелия) как показателе адекватности антигипертензивной терапии. Эволюция задач гипотензивной терапии конкретизировалась не только до необходимости нормализации уровня АД, но и нормализации функции эндотелия. Фактически это означает, что снижение АД без коррекции дисфункции эндотелия (ДЭ) не может считаться успешно решенной клинической задачей.

Данный вывод является принципиальным, еще и потому, что главные факторы риска атеросклероза, такие как, гиперхолестеринемия , АГ , сахарный диабет , курение , гипергомоцистеинемия сопровождаются нарушением эндотелий-зависимой вазодилатации - как в коронарном, так и в периферическом кровотоке. И хотя вклад каждого из этих факторов в развитие атеросклероза до конца не определен, это пока не меняет сложившихся представлений.

Среди изобилия биологически активных веществ, вырабатываемых эндотелием, важнейшим является оксид азота - NO. Открытие ключевой роли NO в сердечно-сосудистом гомеостазе было удостоено Нобелевской премии в 1998 году. Сегодня - это самая изучаемая молекула, вовлеченная в патогенез АГ и ССЗ в целом. Достаточно сказать, что нарушенное взаимоотношение ангиотензина-II и NO вполне способно определять развитие АГ .

Нормально функционирующий эндотелий отличает непрерывная базальная выработка NO с помощью эндотелиальной NO-синтетазы (eNOS) из L-аргинина. Это необходимо для поддержания нормального базального тонуса сосудов . В то же время, NO обладает ангиопротективными свойствами, подавляя пролиферацию гладкой мускулатуры сосудов и моноцитов , и предотвращая тем самым патологическую перестройку сосудистой стенки (ремоделирование), прогрессирование атеросклероза.

NO обладает антиоксидантным действием, ингибирует агрегацию и адгезию тромбоцитов, эндотелиально-лейкоцитарные взаимодействия и миграцию моноцитов . Таким образом, NO является универсальным ключевым ангиопротективным фактором.

При хронических ССЗ, как правило, наблюдается снижение синтеза NO. Причин тому достаточно много. Если суммировать все, то очевидно - снижение синтеза NO обычно связано с нарушением экспрессии или транскрипции eNOS , в том числе метаболического происхождения, снижением доступности запасов L-аргинина для эндотелиальной NOS , ускоренным метаболизмом NO (при повышенном образовании свободных радикалов ) или их комбинацией.

При всей многогранности эффектов NO Dzau et Gibbons удалось схематически сформулировать основные клинические последствия хронического дефицита NO в эндотелии сосудов , показав тем самым, на модели ишемичeской болезни сердца реальные следствия ДЭ и обратив внимание на исключительную важность ее коррекции на возможно ранних этапах.

Из схемы 1. следует важный вывод: NO играет ключевую ангиопротективную роль еще на ранних стадиях атеросклероза.

Схема 1. МЕХАНИЗМЫ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ
ПРИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЯХ

Так, доказано, что NO уменьшает адгезию лейкоцитов к эндотелию , тормозит трансэндотелиальную миграцию моноцитов , поддерживает нормальную проницаемость эндотелия для липопротеидов и моноцитов , ингибирует окисление ЛПНП в субэндотелии . NO способен тормозить пролиферацию и миграцию гладко-мышечных клеток сосуда , а также синтез ими коллагена . Назначение ингибиторов NOS после сосудистой баллонной ангиопластики или в условиях гиперхолестеринемии приводило к гиперплазии интимы , и напротив, применение L-apгинина или доноров NO уменьшало выраженность индуцированной гиперплазии .

NO обладает антитромботическими свойствами, ингибируя адгeзию тромбоцитов , их активацию и агрегацию , активируя тканевой активатор плазминогена . Появляются убедительные основания полагать, что NO - важный фактор, модулирующий тромботический ответ на надрыв бляшки .

И безусловно, NO является мощным вазодилататором, модулирующим тонус сосудов, приводя к вазорелаксации опосредованно через повышение уровня цГМФ , поддерживая базальный тонус сосудов и осуществляя вазодилатацию в ответ на различные стимулы - напряжение сдвига крови , ацетилхолин , серотонин .

Нарушенная NO - зависимая вазодилатация и парадоксальная вазоконстрикция эпикардиальных сосудов приобретает особое клиническое значение для развития ишемии миокарда в условиях умственного и физического стресса, или холодовой нагрузки . А учитывая, что перфузия миокарда регулируется резистивными коронарными артериями , тонус которых зависит от вазодилататорной способности коронарного эндотелия , даже при отсутствии атеросклеротическнх бляшек, дефицит NO в коронарном эндотелии способен привести к миокардиальной ишемии .

Оценка функции эндотелия

Снижение синтеза NO является главным в развитии ДЭ. Поэтому, казалось бы, нет ничего более простого, чем измерение NO в качестве маркера функции эндотелия. Однако, нестабильность и короткий период жизни молекулы резко ограничивают применение этого подхода. Изучение же стабильных метаболитов NO в плазме или моче (нитратов и нитритов) не может рутинно применяться в клинике в связи с чрезвычайно высокими требованиями к подготовке больного к исследованию.

Кроме того, изучение одних метаболитов оксида азота вряд ли позволит получить ценную информацию о состоянии нитрат-продуцирующих систем. Поэтому, при невозможности одновременного изучения активности NO-синтетаз, наряду с тщательно контролируемым процессом подготовки пациента, наиболее реальным способом оценки состояния эндотелия in vivo является исследование эндотелий-зависимой вазодилатации плечевой артерии с помощью инфузии ацетилхолина или серотонина, либо с использованием венозно-окклюзионной плетизмографии, а также с помощью новейших методик - пробы с реактивной гиперемией и применением ультразвука высокого разрешения.

Кроме указанных методик, в качестве потенциальных маркеров ДЭ рассматривается несколько субстанций, продукция которых может отражать функцию эндотелия: тканевой активатор плазминогена и его ингибитор, тромбомодулин, фактор Виллебрандта .

Терапевтические стратегии

Оценка ДЭ как нарушения эндотелий-зависимой вазодилатации вследствие снижения синтеза NO, в свою очередь, требует пересмотра терапевтических стратегий воздействия на эндотелий с целью профилактики или уменьшения повреждений сосудистой стенки.

Уже показано, что улучшение функции эндотелия предшествует регрессу структурных атеросклеротических изменений . Влияние на вредные привычки - отказ от курения - приводит к улучшению функции эндотелия . Жирная еда способствует ухудшению функции эндотелия у практически здоровых лиц . Прием антиоксидантов (витамин Е, С) способствует коррекции функции эндотелия и тормозит утолщение интимы сонной артерии . Физические нагрузки улучшают состояние эндотелия даже при сердечной недостаточности .

Улучшение контроля гликемии у больных с сахарным диабетом само по себе уже является фактором коррекции ДЭ , а нормализация липидного профиля у пациентов с гиперхолестеринемией приводила к нормализации функции эндотелия , что значительно уменьшало частоту острых сердечно-сосудистых инцидентов .

При этом, такое "специфическое" воздействие, направленное на улучшение синтеза NO, у больных с ИБС или гиперхолестеринемией, как например, заместительная терапия L-аргинином - субстрата NOS - синтетазы, - также приводит к коррекции ДЭ . Аналогичные данные получены и при применении важнейшего кофактора NO-синтетазы - тетрагидробиоптерина - у больных с гиперхолестеринемией .

С целью снижения деградации NO применение витамина С в качестве антиоксиданта также улучшало функцию эндотелия у больных с гиперхолестеринемией , сахарным диабетом , курением , артериальной гипертонией , ИБС . Эти данные свидетельствуют о реальной возможности воздействовать на систему синтеза NO вне зависимости от причин, вызвавших его дефицит.

В настоящее время практически все группы лекарственных препаратов подвергаются проверке на предмет их активности в отношении системы синтеза NO. Косвенное влияние на ДЭ при ИБС , уже показано для ингибиторов АПФ, улучшающих функцию эндотелия опосредованно через косвенное увеличение синтеза и снижения деградации NO .

Позитивные результаты воздействия на эндотелий были получены также при клинических испытаниях антагонистов кальция , однако, механизм этого воздействия неясен.

Новым направлением развития фармацевтики, по-видимому, следует считать создание особого класса эффективных лекарственных препаратов, напрямую регулирующих синтез эндотелиальиого NO и тем самым, напрямую улучшающих функцию эндотелия.

В заключение, хотелось бы внопь подчеркнуть, что нарушения сосудистого тонуса и сердечно-сосудистое ремоделирование приводят к поражению органов - мишеней и осложнениям АГ. Становится очевидным, что биологически активные субстанции, регулирующие сосудистый тонус, одновременно модулируют и ряд важнейших клеточных процессов, таких как пролиферация и рост гладкой мускулатуры сосудов, рост мезангинальных структур, состояние экстрацеллюлярного матрикса , определяя тем самым скорость прогрессирования АГ и ее осложнений. Дисфункция эндотелия, как наиболее ранняя фаза повреждения сосуда, связана прежде всегo, с дефицитом синтеза NO - важнейшего фактора-регулятора сосудистого тонуса, но еще более важного фактора, от которого зависят структурные изменения сосудистой стенки .

Поэтому коррекция ДЭ при АГ и атеросклерозе должна быть рутинной и обязательной частью терапевтических и профилактических программ, а также жестким критерием оценки их эффективности.

Литература

1. Ю.В. Постнов. К истокам первичной гипертензии: подход с позиций биоэнергетики. Кардиология, 1998, N 12, С. 11-48.
2. Furchgott R.F., Zawadszki J.V. The obligatoryrole of endotnelial cells in the relazation of arterial smooth muscle by acetylcholine. Nature. 1980: 288: 373-376.
3. Vane J.R., Anggard E.E., Batting R.M. Regulatory functions of the vascular endotnelium. New England Journal of Medicine, 1990: 323: 27-36.
4. Hahn A.W., Resink T.J., Scott-Burden T. et al. Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regulation. 1990; 1: 649-659.
5. Lusher T.F., Barton M. Biology of the endothelium. Clin. Cardiol, 1997; 10 (suppl 11), II - 3-II-10.
6. Vaughan D.E., Rouleau J-L., Ridker P.M. et al. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. Circulation, 1997; 96: 442-447.
7. Cooke J.P, Tsao P.S. Is NO an endogenous antiathero-genic molecule? Arterioscler. Thromb. 1994; 14: 653-655.
8. Davies M.J., Thomas А.С. Plaque fissuring - the cause of acute myocardial infarction, sudden ischemic death, and creshendo angina. Brit. Heart Journ., 1985: 53: 363-373.
9. Fuster V., Lewis A. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation, 1994: 90: 2126-2146.
10. Falk E., Shah PK, Faster V. Coronary plaque disruption. Circulation, 1995; 92: 657-671.
11. Ambrose JA, Tannenhaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease ana the development of myocardial infarction. J. Amer. Coll. Cardiol. 1988; 92: 657-671.
12. Hacket D., Davies G., Maseri A. Pre-existing coronary stenosis in patients with first myocardial infarction are not necessary severe. Europ. Heart J. 1988, 9: 1317-1323.
13. Little WC, Constantinescu M., Applegate RG et al. Can coronary angiography predict the site of subsequent myocardial infarction in patients with mils-to-moderatecoronary disease? Circulation 1988: 78: 1157-1166.
14. Giroud D., Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Amer. J. Cardiol. 1992; 69: 729-732.
15. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989; 3: 2007-2018.
16. Vane JR. Anggard ЕЕ, Batting RM. Regulatory functions of the vascular endothelium. New Engl. J. Med. 1990; 323: 27-36.
17. Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Prog. Cardiovase. Dis., 1996; 39: 229-238.
18. Stroes ES, Koomans НА, de Bmin TWA, Rabelink TJ. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet, 1995; 346: 467-471.
19. Chowienczyk PJ, Watts, GF, Cockroft JR, Ritter JM. Impaired endothelium - dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet, 1992; 340: 1430-1432.
20. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role ot nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients, Circulation, 1993, 88: 2541-2547.
21. Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl. J. Med. 1990; 323: 22-27.
22. Treasure CB, Manoukian SV, Klem JL. et al. Epicardial coronary artery response to acetylclioline are impared in hypertensive patients. Circ. Research 1992; 71: 776-781.
23. Johnstone MT, Creager SL, Scales KM et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 1993; 88: 2510-2516.
24. Ting HH, Timini FK, Boles KS el al. Vitamin С improves enoothelium-dependent vasodilatiiin in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996: 97: 22-28.
25. Zeiher AM, Schachinger V., Minnenf. Long-term cigarette smoking impairs endotheliu in-dependent coronary arterial vasodilator function. Circulation, 1995: 92: 1094-1100.
26. Heitzer Т., Via Herttuala S., Luoma J. et al. Cigarette smoking potentiates endothelial dislunction of forearm resistance vessels in patients with hypercholes-terolemia. Role of oxidized LDL. Circulation. 1996, 93: 1346-1353.
27. Tawakol A., Ornland T, Gerhard M. et al. Hyperhomocysteinemia is associated with impaired enaothcliurn - dependent vasodilation function in humans. Circulation, 1997: 95: 1119-1121.
28. Vallence P., Coller J., Moncada S. Infects of endothelium-derived nitric oxide on peripheial arteriolar tone in man. Lancet. 1989; 2: 997-999.
29. Mayer В., Werner ER. In search of a function for tetrahydrobioptcrin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995: 351: 453-463.
30. Drexler H., Zeiher AM, Meinzer К, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
31. Ohara Y, Peterson ТЕ, Harnson DG. Hypercholesterolemia increases eiidothelial superoxide anion production. J. Clin. Invest. 1993, 91: 2546-2551.
32. Harnson DG, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: Implications for impaired vasomotion. Amer. J. Cardiol. 1995, 75: 75B-81B.
33. Dzau VJ, Gibbons GH. Endothelium and growth factors in vascular remodelling of hypertension. Hypertension, 1991: 18 suppl. III: III-115-III-121.
34. Gibbons GH., Dzau VJ. The emerging concept of vascular remodelling. New Engl. J. Med., 1994, 330: 1431-1438.
35. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium derived relaxing factor from pulmonary artery and vein possesses pharmaciilogical and chemical properties identical to those of nitric oxide radical. Circul. Research. 1987; 61: 866-879.
36. Palmer RMJ, Femge AG, Moncaila S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987, 327: 524-526.
37. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholin in athero-sclerotic coronary arteries. New Engl. J. Med. 1986, 315: 1046-1051.
38. Esther CRJr, Marino EM, Howard ТЕ et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 1997: 99: 2375-2385.
39. Lasher TF. Angiotensin, ACE-inhibitors and endothelial control of vasomotor tone. Basic Research. Cardiol. 1993; 88(SI): 15-24.
40. Vaughan DE. Endothelial function, fibrinolysis, and angiotensyn-converting enzym inhibition. Clin. Cardiology. 1997; 20 (SII): II-34-II-37.
41. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expresiion of plasminogen activator inhibitor-1 in cultured endothelial cells. J. Clin. Invest. 1995; 95: 995-1001.
42. Ridker PM, Gaboury CL, Conlin PR et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Circulation. 1993; 87: 1969-1973.
43. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994; 74: 1141-1148.
44. Griendling KK, Alexander RW. Oxidative stress and cardiovascular discase. Circulation. 1997; 96: 3264-3265.
45. Hamson DG. Endothelial function and oxidant stress. Clin. Cardiol. 1997; 20 (SII): II-11-II-17.
46. Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA., 1991; 88: 4651-4655.
47. Lefer AM. Nitric oxide: Nature"s naturally occuring leukocyte inhibitor. Circulation, 1997; 95: 553-554.
48. Zeiker AM, Fisslthaler В, Schray Utz B, Basse R. Nitric oxide modulates the expression of monocyte chemoat-tractant protein I in cultured human endothelial cells. Circ. Res. 1995; 76: 980-986.
49. Tsao PS, Wang B, Buitrago R., Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation. 1997; 97: 934-940.
50. Hogg N, Kalyanamman B, Joseph J. Inhibition of low-density lipoprotein oxidation by nitric oxide: potential role in atherogenesis. FEBS Lett, 1993; 334: 170-174.
51. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Amer. J. Physiol. 1992; 262: H611-H615.
52. Austin MA. Plasma triglyceride and coronary heart disease. Artcrioscler. Thromb. 1991; 11: 2-14.
53. Sarkar R., Meinberg EG, Stanley JС et al. Nitric oxide reversibility inhibits the migration of cultured vascular smooth muscle cells. Circ. Res. 1996: 78: 225-230.
54. Comwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Amer. J. Physiol. 1994; 267: C1405-1413.
55. Kolpakov V, Gordon D, Kulik TJ. Nitric oxide-generating compounds inhibit total protein and collgen synthesis in cultured vascular smooth cells. Circul. Res. 1995; 76: 305-309.
56. McNamara DB, Bedi B, Aurora H et al. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem. Biophys. Res. Commun. 1993; 1993: 291-296.
57. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994; 14: 753-759.
58. Tarry WC, Makhoul RG. L-arginine improves endothelium-dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscler. Thromb. 1994: 14: 938-943.
59. De Graaf JC, Banga JD, Moncada S et al. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation, 1992; 85: 2284-2290.
60. Azurna H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Brit. J. Pharmacol. 1986; 88: 411-415.
61. Stamler JS. Redox signaling: nitrosylation and related target interactions oi nitric oxide. Cell, 1994; 74: 931-938.
62. Shah PK. New insights inio the pathogenesis and prevention of acute coronary symptoms. Amer. J. Cardiol. 1997: 79: 17-23.
63. Rapoport RM, Draznin MB, Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMO-depcndent protein phosphorviation Nature, 1983: 306: 174-176.
64. Joannides R, Haefeli WE, Linder L et al. Nitric oxide is responsible for flow-dependent dilation of human peripheral conduit arteries in vivo. Circulation, 1995: 91: 1314-1319.
65. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atlierosclerotic coronary arteries. New Engl. J. Mod. 1986, 315: 1046-1051.
66. Bruning ТА, van Zwiete PA, Blauw GJ, Chang PC. No functional involvement of 5-hydroxytryptainine la receptors in nitric oxide dependent dilation caused by serotonin in the human forearm vascular bed. J. Cardiovascular Pharmacol. 1994; 24: 454-461.
67. Meredith IT, Yeung AC, Weidinger FF et al. Role of impaired endotheliuin-dependent vasodilatioii in iscnemic manifestations ot coronary artery disease. Circulation, 1993, 87 (S.V): V56-V66.
68. Egashira K, Inou T, Hirooka Y, Yamada A. et al. Evidence of impaired endothclium-dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograins. New Engl. J. Mod. 1993; 328: 1659-1664.
69. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Amer. J. Physiol. 1986; 251: 11779-11788.
70. Zeiher AM, Krause T, Schachinger V et al. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation. 1995, 91: 2345-2352.
71. Blann AD, Tarberner DA. A reliable marker of endothelial cell disfunction: does it exist? Brit. J. Haematol. 1995; 90: 244-248.
72. Benzuly KH, Padgett RC, Koul S et al. Functional improvement precedes structural regression of atherosclerosis. Circulation, 1994; 89: 1810-1818.
73. Davis SF, Yeung AC, Meridith IT et al. Early endothelial dysfunction predicts the development ottransplant coronary artery disease at I year posttransplant. Circulation 1996; 93: 457-462.
74. Celemajer DS, Sorensen KE, Georgakopoulos D et al. Cigarette smoking is associated witn dose-related and potentially reversible iinpairement of endothelium-dependent dilation in healthy young adults. Circulation, 1993; 88: 2140-2155.
75. Vogel RA, Coretti MC, Ploinic GD. Effect of single high-fat meal on endothelial hinction in healthy subject. Amer. J. Cardiol. 1997; 79: 350-354.
76. Azen SP, Qian D, Mack WJ et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation, 1996: 94: 2369-2372.
77. Levine GV, Erei B, Koulouris SN et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery discase. Circulation 1996; 93: 1107-1113.
78. Homing B., Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation, 1996; 93: 210-214.
79. Jensen-Urstad KJ, Reichard PG, Rosfors JS et al. Early atherosclerosis is retarded by improved long-term blood-glucose control in patients with IDDM. Diabetes, 1996; 45: 1253-1258.
80. Scandinavian Simvastatin Sunnval Study Investigators. Randomiseci trial cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Sinivastatin Survival Study (4S). Lancet, 1994; 344: 1383-1389.
81. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial disfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
82. Crcager MA, Gallagher SJ, Girerd XJ et al. L-arginine improves endothelium-dependent vasodilation in hypercholcsterolcrnic humans. J. Clin. Invest., 1992: 90: 1242-1253.
83. Tienfenhacher CP, Chilian WM, Mitchel M, DeFily DV. Restoration of endothclium-dependent vasodilation after reperliision injury by tetrahydrobiopterin. Circulation, 1996: 94: 1423-1429.
84. Ting HH, Timimi FK, Haley EA, Roddy MA et al. Vitamin С improves endothelium-dependent vasodilation in forearm vessels of humans with hypercholes-terolemia. Circulation, 1997: 95: 2617-2622.
85. Ting HH, Timimi FK, Boles KS et al. Vitamin С improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1996: 97: 22-28.
86. Heilzer T, Just H, Munzel T. Antioxidant vitamin С improves endothelial dysfunction in chronic smokers. Circulation, 1996: 94: 6-9.
87. Solzbach U., Hornig B, Jeserich M, Just H. Vitamin С improves endothelial ctysfubction of epicardial coronary arteries in hypertensive patients. Circulation, 1997: 96: 1513-1519.
88. Mancini GBJ, Henry GC, Macaya C. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dystunction in patients with coronary artery disease, the TREND study. Circulation, 1996: 94: 258-265.
89. Rajagopalan S, Harrison DG. Reversing endothelial dysfunction with ACE-inhibitors. A new TREND? Circulation, 1996, 94: 240-243.
90. Willix AL, Nagel B, Churchill V el al. Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 1985: 5: 250-255.
91. Berk ВС, Alexander RW. Biology of the vascular wall in hypertension. In: Renner RM, ed. The Kidney. Philadelphia: WB Saunders, 1996: 2049-2070.
92. Kagami S., Border WA, Miller DA, Nohle NA. Angiotensin II stimulates extracellular matrix protein syntliesis through induction ot transforming growth factor В in rat glomerular mesangial cells. J. Clin. Invest, 1994: 93: 2431-2437.
93. Frohlich ED, Tarazi RC. Is arterial pressure the sole factor responsible for hypertensive cardiac hypertropliy ? Amer. J. Cardiol. 1979: 44: 959-963.
94. Frohlich ED. Overview of hemoilynamic factors associated with left ventricular hypertrophy. J. Mol. Cell. Cardiol., 1989: 21: 3-10.
95. Cockcroft JR, Chowienczyk PJ, Urett SE, Chen CP et al. Nebivolol vasodilated human forearm vasculature, evidence for an L-arginine/NO-dependent mccahanism. J. Pharmacol. Exper. Ther. 1995, Sep; 274(3): 1067-1071.
96. Brehm BR, Bertsch D, von Falhis J, Wolf SC. Beta-blockers of the third generation inhibit endothelium-I liberation mRNA production and proliferation of human coronary smooth muscle and endothelial cells. J. Cardiovasc. Pharmacol. 2000, Nov: 36 (5 Suppl.): S401-403.

Ранее мы отмечали, что на состав крови существенное влияние оказывает эндотелий сосудистой стенки. Известно, что диаметр среднего капилляра равен 6-10 мкм, его длина около 750 мкм. Суммарное поперечное сечение сосудистого русла в 700 раз превышает диаметр аорты. Общая площадь сети капилляров составляет 1000 м 2 . Если учесть, что в обмене участвуют пре- и посткапиллярные сосуды, эта величина вырастает вдвое. Здесь протекают десятки, а скорее всего – сотни биохимических процессов, связанных с межклеточным обменом: его организацией, регуляцией, реализацией. По современным представлениям эндотелий – это активный эндокринный орган, самый большой в организме и диффузно рассеянный по всем тканям. Эндотелий синтезирует соединения, важные для свертывания крови и фибринолиза, адгезии и агрегации тромбоцитов. Он является регулятором деятельности сердца, тонуса сосудов, кровяного давления, фильтрационной функции почек и метаболической деятельности мозга. Он контролирует диффузию воды, ионов, продуктов метаболизма. Эндотелий реагирует на механическое давление крови (гидростатическое давление). Учитывая эндокринные функции эндотелия, британский фармаколог, лауреат Нобелевской премии Джон Вейн назвал эндотелий “маэстро кровообращения”.

Эндотелий синтезирует и выделяет большое количество биологически активных соединений, которые высвобождаются согласно текущей потребности. Функции эндотелия определяются наличием следующих факторов:

1. контролирующих сокращение и расслабление мышц сосудистой стенки, что определяет её тонус;

2. участвующих в регуляции жидкого состояния крови и способствующих тромбообразованию;

3. контролирующих рост сосудистых клеток, их репарацию и замещение;

4. принимающих участие в иммунном ответе;

5. Участвующих в синтезе цитомединов или клеточных медиаторов, обеспечивающих нормальную деятельность сосудистой стенки.

Оксид азота. Одной изсамых важных молекул, продуцируемых эндотелием, является оксид азота, конечная субстанция, осуществляющая многие регуляторные функции. Синтез оксида азота осуществляется из L-аргинина конститутивным ферментом NO-синтазой. К настоящему времени идентифицированы три изоформы NO-синтаз, каждая из которых представляет собой продукт отдельного гена, кодируется и идентифицируется в разных типах клеток. В эндотелиальных клетках и в кардиомиоцитах имеется так называемая NO-синтаза 3 (есNOs или NOs3 )

Оксид азота присутствует во всех типах эндотелия. Даже в покое эндотелиоцит синтезирует определенное количество NO, поддерживая базальный тонус сосудов.

При сокращении мышечных элементов сосуда, снижении парциального напряжения кислорода в ткани в ответ на повышение концентрации ацетилхолина, гистамина, норадреналина, брадикинина, АТФ и др. синтез и секреция NO эндотелием усиливается. Продукция оксида азота в эндотелии также зависит от концентрации кальмодулина и ионов Са 2+ .

Функция NO сводится к торможению работы сократительного аппарата гладкомышечных элементов. При этом активируется фермент гуанилатциклаза и образуется посредник (мессенджер) – циклический 3 / 5 / -гуанозинмонофосфат.

Установлено, что инкубация эндотелиальных клеток в присутствии одного из провоспалительных цитокинов – TNFa – приводит к уменьшению жизнеспособности эндотелиальных клеток. Но если усиливается образование оксида азота, то эта реакция защищает эндотелиальные клетки от действия TNFa. В то же время ингибитор аденилатциклазы 2 / 5 / -дидезоксиаденозин полностью подавляет цитопротекторный эффект донора NO. Следовательно, одним из путей действия NO может быть цГМФ-зависимое ингибирование распада цАМФ.

Что же делает NO?

Оксид азота тормозит адгезию и агрегацию тромбоцитов и лейкоцитов, что связано с образованием простациклина. Одновременно он ингибирует синтез тромбоксана А 2 (ТхА 2). Оксид азота тормозит активность ангиотензина II, вызывающего повышение тонуса сосудов.

NO регулирует локальный рост эндотелиальных клеток. Являясь свободнорадикальным соединением с высокой реактивной способностью, NO стимулирует токсическое действие макрофагов на опухолевые клетки, бактерии и грибки. Оксид азота противодействует оксидантному повреждению клеток, вероятно, из-за регуляции механизмов синтеза внутриклеточного глутатиона.

С ослаблением генерации NO связано возникновение гипертензии, гиперхолестеринемии, атеросклероза, а также спастических реакций коронарных сосудов. Кроме того, нарушение генерации оксида азота приводит к дисфункции эндотелия, касающейся образования биологически активных соединений.

Эндотелин. Одним из самых активных пептидов, выделяемых эндотелием, является сосудосуживающий фактор эндотелин, действие которого проявляется в чрезвычайно малых дозах (в одну миллионную мг). В организме присутствуют 3 изоформы эндотелина, чрезвычайно мало отличающиеся по своему химическому составу друг от друга, включающие по 21 аминокислотному остатку и значительно различающиеся по механизму своего действия. Каждый эндотелин является продуктом отдельного гена.

Эндотелин 1 – единственный из этого семейства, который образуется не только в эндотелии, но и в гладкомышечных клетках, а также в нейронах и астроцитах головного и спинного мозга, мезангиальных клетках почки, эндометрии, гепатоцитах и эпителиоцитах молочной железы. Основными стимулами образования эндотелина 1 являются гипоксия, ишемия и острый стресс. До 75% эндотелина 1 секретируется эндотелиальными клетками в направлении гладкомышечных клеток сосудистой стенки. При этом эндотелин связывается с рецепторами на их мембране, что, в конечном итоге, приводит к их констрикции.

Эндотелин 2 – основным местом его образования являются почки и кишечник. В небольших количествах он обнаруживается в матке, плаценте и миокарде. По своим свойствам практически не отличается от эндотелина 1.

Эндотелин 3 постоянно циркулирует в крови, но его источник образования не известен. В высоких концентрациях он обнаружен в головном мозге, где, как предполагается, он регулирует такие функции, как пролиферация и дифференцировка нейронов и астроцитов. Кроме того, он найден в желудочно-кишечном тракте, легких и почках.

Учитывая функции эндотелинов, а также их регуляторную роль в межклеточных взаимодействиях, многие авторы считают, что эти пептидные молекулы следует отнести к цитокинам.

Синтез эндотелина стимулируется тромбином, адреналином, ангиотензином, интерлейкином-I (IL-1) и различными ростовыми факторами. В большинстве случаев эндотелин секретируется из эндотелия внутрь, к мышечным клеткам, где расположены чувствительные к нему рецепторы. Различают три типа эндотелиновых рецепторов: А, В и С. Все они располагаются на мембранах клеток различных органов и тканей. Эндотелиальные рецепторы относятся к гликопротеидам. Большая часть синтезируемого эндотелина взаимодействует с ЭтА-рецепторами, меньшая – с рецепторами ЭтВ-типа. Действие эндотелина 3 опосредуется через ЭтС-рецепторы. При этом они способны стимулировать синтез оксида азота. Следовательно, при помощи одного и того же фактора регулируются 2 противоположные сосудистые реакции – сокращение и расслабление, реализуемые различными механизмами. Следует, однако, заметить, что в естественных условиях, когда происходит медленное накопление концентрации эндотелинов, наблюдается вазоконстрикторный эффект, обусловленный сокращением гладкой мускулатуры сосудов.

Эндотелин, безусловно, причастен к ишемической болезни сердца, острому инфаркту миокарда, нарушениям ритма сердца, атеросклеротическим повреждениям сосудов, легочной и сердечной гипертензии, ишемическим повреждениям мозга, диабету и другим патологическим процессам.

Тромбогенные и тромборезистентные свойства эндотелия. Эндотелий играет чрезвычайно важную роль в сохранении жидкого состояния крови. Повреждение эндотелия неминуемо ведет к адгезии (прилипанию) тромбоцитов и лейкоцитов, благодаря чему образуются белые (состоящие из тромбоцитов и лейкоцитов) или красные (включающие в сгусток эритроциты) тромбы. В связи со сказанным можно считать, что эндокринная функция эндотелия сводится, с одной стороны, к поддержанию жидкого состояния крови, а с другой – к синтезу и высвобождению факторов, способных приводить к остановке кровотечения.

К факторам, способствующим остановке кровотечения, следует отнести комплекс соединений, приводящих к адгезии и агрегации тромбоцитов, образованию и сохранению фибринового сгустка. К соединениям, обеспечивающим жидкое состояние крови, принадлежат ингибиторы агрегации и адгезии тромбоцитов, естественные антикоагулянты и факторы, приводящие к растворению фибринового сгустка. Остановимся на характеристике перечисленных соединений.

Известно, что к веществам, индуцирующим адгезию и агрегацию тромбоцитов и образуемым эндотелием, относятся тромбоксан А 2 (ТхА 2), фактор фон Виллебранда (vWF), фактор активации тромбоцитов (PAF), аденозиндифосфорная кислота (ADP).

ТхА 2 , в основном, синтезируется в самих тромбоцитах, однако это соединение способно также образовываться и из арахидоновой кислоты, входящей в состав эндотелиальных клеток. Действие ТхА 2 проявляется в случае повреждения эндотелия, благодаря чему возникает необратимая агрегация тромбоцитов. Следует заметить, что ТхА 2 обладает довольно сильным сосудосуживающим действием и играет немаловажную роль в возникновении коронароспазма.

vWF синтезируется неповрежденным эндотелием и необходим как для адгезии, так и агрегации тромбоцитов. Различные сосуды в неодинаковой степени способны синтезировать этот фактор. Высокий уровень транспортной РНК vWF обнаружен в эндотелии сосудов легких, сердца, скелетных мышц, тогда как в печени и почках его концентрация сравнительно невысока.

PAF образуется многими клетками, в том числе и эндотелиоцитами. Это соединение способствует экспрессии основных интегринов, принимающих участие в процессах адгезии и агрегации тромбоцитов. PAF обладает широким спектром действия и играет важную роль в регуляции физиологических функций организма, а также в патогенезе многих патологических состояний.

Одним из соединений, принимающих участие в агрегации тромбоцитов, является AДФ. При повреждении эндотелия выделяется, главным образом, аденозинтрифосфат (ATФ), который под действием клеточной АТФ-азы быстро переходит в АДФ. Последняя запускает процесс агрегации тромбоцитов, который на первых этапах носит обратимый характер.

Действию соединений, способствующих адгезии и агрегации тромбоцитов, противостоят факторы, ингибирующие эти процессы. К ним в первую очередь относится простациклин или простагландин I 2 (PgI 2). Синтез простациклина неповрежденным эндотелием происходит постоянно, однако его освобождение наблюдается лишь в случае действия стимулирующих агентов. PgI 2 ингибирует агрегацию тромбоцитов за счет образования цАМФ. Кроме того, ингибиторами адгезии и агрегации тромбоцитов являются оксид азота (см. выше) и экто-АДФ-аза, расщепляющая AДФ до аденозина, служащего ингибитором агрегации.

Факторы, способствующие свертыванию крови. Сюда следует отнести тканевой фактор , который под воздействием различных агонистов (IL-1, IL-6, TNFa, адреналин, липополисахарид (ЛПС) грамотрицательных бактерий, гипоксия, кровопотеря) усиленно синтезируется эндотелиальными клетками и поступает в кровоток. Тканевой фактор (FIII) запускает так называемый внешний путь свертывания крови. В условиях нормы тканевой фактор эндотелиальными клетками не образуется. Однако любые стрессовые ситуации, мышечная активность, развитие воспалительных и инфекционных заболеваний приводят к его образованию и стимуляции процесса свертывания крови.

К факторам, препятствующим свертыванию крови, относятся естественные антикоагулянты . Следует заметить, что поверхность эндотелия покрыта комплексом гликозамингликанов, обладающих противосвертывающей активностью. К ним причисляют гепаран-сульфат, дерматан-сульфат, способные связываться с антитромбином III, а также повышать активность кофактора II гепарина и тем самым увеличивать антитромбогенный потенциал.

Эндотелиальные клетки синтезируют и секретируют 2 ингибитора внешнего пути свертывания крови (TFPI-1 иTFPI-2 ), блокирующие образование протромбиназы. TFPI-1 способен связывать факторы VIIa и Ха на поверхности тканевого фактора. TFPI-2, являясь ингибитором сериновых протеаз, нейтрализует факторы свертывания, принимающие участие во внешнем и внутреннем пути образования протромбиназы. В то же время он является более слабым антикоагулянтом, чем TFPI-1.

Эндотелиальные клетки синтезируют антитромбин III (А-III), который при взаимодействии с гепарином нейтрализует тромбин, факторы Ха, IХa, калликреин и др.

Наконец, к естественным антикоагулянтам, синтезируемым эндотелием, относится система тромбомодулин–протеин С (PtC), куда входит также протеин S (PtS). Этот комплекс естественных антикоагулянтов нейтрализует факторы Va и VIIIa.

Факторы, влияющие на фибринолитическую активность крови. В эндотелии содержится комплекс соединений, способствующих и препятствующих растворению фибринового сгустка. В первую очередь следует указать на тканевой активатор плазминогена (ТАП, TPA) – основной фактор, переводящий плазминоген в плазмин. Кроме того, эндотелий синтезирует и секретирует урокиназный активатор плазминогена. Известно, что последнее соединение синтезируется также в почках и выделяется вместе с мочой.

В то же время в эндотелии синтезируются и ингибиторы тканевого активатора плазминогена (ИТАП, ITPA) I, II и III типов . Все они отличаются по своей молекулярной массе и биологической активности. Наиболее изученным из них является ИТАП I типа. Он постоянно синтезируется и секретируется эндотелиоцитами. Другие ИТАП играют менее заметную роль в регуляции фибринолитической активности крови.

Следует заметить, что в физиологических условиях действие активаторов фибринолиза преобладает над влиянием ингибиторов. При стрессе, гипоксии, физической нагрузке наряду с ускорением свертывания крови отмечается активация фибринолиза, что связано с выбросом ТАП из эндотелиальных клеток. Между тем, ингибиторы ТАП содержатся в эндотелиоцитах в избытке. Их концентрация и активность преобладают над действием ТАП, хотя поступление в кровоток в естественных условиях значительно ограничен. При истощении же запасов ТАП, что наблюдается при развитии воспалительных, инфекционных и онкологических заболеваний, при патологии сердечно-сосудистой системы, при нормальной и особенно патологической беременности, а также при генетически обусловленной недостаточности, начинает преобладать действие ИТАП, благодаря чему наряду с ускорением свертывания крови развивается торможение фибринолиза.

Факторы, регулирующие рост и развитие сосудистой стенки. Известно, что эндотелий синтезирует фактор роста сосудов. В то же время в эндотелии содержится соединение, ингибирующее ангиогенез.

Одним из основных факторов ангиогенеза является так называемый сосудистый фактор роста эндотелия или VGEF (от слов vascular growth endothelial cell factor), который обладает способностью индуцировать хемотаксис и митогенез ЭК и моноцитов и играет важную роль не только в неоангиогенезе, но и васкулогенезе (раннее формирование кровеносных сосудов у плода). Под его воздействием усиливается развитие колатералей и сохраняется целостность эндотелиального слоя.

Фактор роста фибробластов (FGF) имеет отношение не только кразвитию и росту фибробластов, но и участвует в контроле за тонусом гладкомышечных элементов.

Одним из главных ингибиторов ангиогенеза, влияющих на адгезию, рост и развитие эндотелиальных клеток, является тромбоспондин. Это гликопротеин целлюлярного матрикса, синтезируемый различными типами клеток, в том числе эндотелиальными. Синтез тромбоспондина контролируется онкогеном Р53.

Факторы, принимающие участие в иммунитете. Известно, что эндотелиальные клетки играют чрезвычайно важную роль в осуществлении как клеточного, так и гуморального иммунитета. Установлено, что эндотелиоциты являются антигенпрезентирующими клетками (АПК), то есть способны перерабатывать антиген (Аг) в иммуногенную форму и «преподносить» его Т- и В-лимфоцитам. На поверхности эндотелиальных клеток содержатся HLA как I, так и II классов, что служит необходимым условием для презентации антигена. Из сосудистой стенки и, в частности, из эндотелия выделен комплекс полипептидов, усиливающих экспрессию рецепторов на Т- и В-лимфоцитах. В то же время эндотелиальные клетки способны продуцировать ряд цитокинов, способствующих развитию воспалительного процесса. К подобным соединениям относятся IL-1 a и b, TNFa, IL-6, a- и b-хемокины и другие. Кроме того, эндотелиальные клетки выделяют ростовые факторы, оказывающие влияние на гемопоэз. К ним относятся гранулоцитарный колониестимулирующий фактор (Г-КСФ, G-СSF), макрофагальный колониестимулирующий фактор (М-КСФ, M-СSF), гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, G-MСSF) и другие. Недавно из сосудистой стенки выделено соединение полипептидной природы, резко усиливающее процессы эритропоэза и способствующее в эксперименте ликвидации гемолитической анемии, вызванной введением четыреххлористого углерода.

Цитомедины. Эндотелий сосудов, как и другие клетки и ткани, является источником клеточных медиаторов – цитомединов. Под воздействием этих соединений, представляющих комплекс полипептидов с молекулярной массой от 300 до 10000 Д, нормализуется сократительная деятельность гладкомышечных элементов сосудистой стенки, благодаря чему кровяное давление сохраняется в пределах нормы. Цитомедины из сосудов способствуют процессам регенерации и репарации тканей и, возможно, обеспечивают рост сосудов при их повреждении.

Многочисленными исследованиями установлено, что все биологически активные соединения, синтезируемые эндотелием или возникающие в процессе частичного протеолиза, при определенных условиях способны поступать в сосудистое русло и таким образом оказывать влияние на состав и функции крови.

Разумеется, мы представили далеко не полный перечень факторов, синтезируемых и выделяемых эндотелием. Однако и этих сведений достаточно для вывода, что эндотелий является мощной эндокринной сетью, обеспечивающей регуляцию многочисленных физиологических функций.

Октябрь 31, 2017 Нет комментариев

Эндотелий и его базальная мембрана выполняют роль гистогематического барьера, отделяя кровь от межклеточной среды окружающих тканей. При этом эндотелиальные клетки связаны друг с другом плотными и щелевидными соединительными комплексами. Наряду с барьерной функцией эндотелий обеспечивает обмен различных веществ между кровью и окружающими тканями. Процесс обмена на уровне капилляров осуществляется с помощью пиноцитоза, а также диффузии веществ через финестры и поры. Энд отелиоциты поставляют в субэндотелиальный слой компоненты базальной мембраны: коллаген, эластин, ламинин, протеазы, а также их ингибиторы: тромбоспондин, мукополисахариды, вигронектин, фибронектин, фактор Виллебранда и другие белки, имеющие большое значение для межклеточного взаимодействия и образования диффузного барьера, который предотвращает попадание крови во внесосудистое пространство. Этот же механизм позволяет эндотелию регулировать проникновение биологически активных молекул в лежащий ниже слой гладких мышц.

Таким образом, эндотелиальная выстилка может быть преодолена тремя жестко регулируемыми путями. Во-первых, некоторые молекулы могут достичь гладкомышечных клеток путем проникновения через контакты между эндотелиальными клетками. Во-вторых, молекулы могут быть перенесены через эндотелиальные клетки с помощью везикул (процесс пиноцитоза). Наконец, в пределах липидного бислоя могут перемещаться жирорастворимые молекулы.

Эндотелиальные клетки коронарных сосудов, кроме барьерной функции, наделены способностью контролировать сосудистый тонус (двигательную активность гладких мышц сосудистой стенки), адгезивные свойства внутренней поверхности сосудов, а также метаболические процессы в миокарде-Эти и другие функциональные возможности эндотелиоцитов детерминиров-ны их достаточно высокой способностью продуцировать различные биологически активные молекулы, в том числе цитокины, анти- и прокоагулянты, антимитогены и т. д., из просвета сосуда к субинтимальным слоям его стенки-

Эндотелий способен продуцировать и выделять целый ряд веществ, оказывающих как сосудосуживающее, так и сосудорасширяющее действие. При участии этих веществ происходит саморегуляция тонуса сосудов, существенно дополняющая функцию сосудистой нейрорегуляции.

Интактный сосудистый эндотелий синтезирует вазодилататоры и, кроме того, опосредует действие разнообразных биологически активных веществ крови - гистамина, серотонина, катехоламинов, ацетилхолина и др. на гладкие мышцы сосудистой стенки, вызывая преимущественно их расслабление.

Наиболее сильным вазодилататором, который вырабатывает сосудистый эндотелий, является оксид азота (N0). Кроме вазодилатации, к его основным эффектам относят торможение не только адгезии тромбоцитов и подавление эмиграции лейкоцитов благодаря ингибированию синтеза эндотелиальных адгезивных молекул, но и пролиферации гладкомышечных клеток сосудов, а также предотвращение окисления, т. е. мод ификации и, следовательно, накопления, атерогенных липопротеидов в субэндотелии (антиатерогенный эффект).

Оксид азота в эндотелиальных клетках образуется из аминокислоты L-аргинина под действием эндотелиальной NO-синтазы. Различные факторы, такие как ацетилхолинэстераза, брадикинин, тромбин, аде-ниннуклеотиды, тромбоксан А2, гистамин, эндотелии, а также повышение т.н. напряжения сдвига в результате,например, интенсификации кровотока, способны индуцировать синтез NO нормальным эндотелием. Производимый эндотелием NO диффундирует через внутреннюю эластическую мембрану к гладкомышечным клеткам и вызывает их расслабление. Основным механизмом этого действия NO является активация гуанилатциклазы на уровне клеточной мембраны, что увеличивает конверсию гуанозинтрифосфата (ГТФ) в циклический гуанозинмонофосфат (цГМФ), который детерминирует релаксацию гладкомышечных клеток. Затем включается целый ряд механизмов, направленных на снижение цитозольного Са++: 1) фосфорилирование и активация Са++-АТФазы; 2) фосфорилирование специфических белков, ведущих к снижению Са2+ в саркоплазматическом ретикулуме; 3) цГМФ-опосредованное подавление инозитолтрифосфата.

Другим, кроме NO, важным сосудорасширяющим фактором, который вырабатывается клетками эндотелия, является простациклин (prostaglandin I2, РШ2). Наряду с вазодилатирующим эффектом, PGI2 ингибирует адгезию тромбоцитов, уменьшает поступление холестерина в макрофаги и гладкомышечные клетки, а также препятствует высвобождению факторов роста, вызывающих утолщение сосудистой стенки. Как известно, PGI2 образуется из арахидоновой кислоты под действием циклооксигеназы и РС12-синтазы, Продукцию PGI2 стимулируют различные факторы: тромбин, брадикинин, гистамин, липопротеиды высокой плотности (ЛПВП), адениннуклеотиды, лейкотриены, тромбоксан А2, тромбоцитарный фактор роста (PDGF) и др PGI2 активирует аденилатциклазу, что приводит к увеличению внутриклеточного циклического аденозинмонофосфата (цАМФ).

Кроме вазодилататоров, эндотелиальные клетки коронарных артерий продуцируют ряд вазоконстрикторов. Наиболее значимый из них-это эндотелии I.

Эндотелии I является одним из самых мощных вазоконстрикторов, способных вызывать длительное сокращение гладких мышц. Эндотелии I ферментативно производится в эндотелии из препропептида. Стимуляторами его высвобождения являются тромбин, адреналин и гипоксический фактор, т.е. энергодецифит. Эндотелии I связывается со специфическим мембранным рецептором, который активирует фосфолипазу С и приводит к освобождению внутриклеточных инозитолфосфатов и диацилглицерола.

Инозитолтрифосфат связывает рецептор на саркоплазматическом ретикулуме, что увеличивает высвобождение Са2+ в цитоплазму. Повышение уровня цитозольного Са2+ детерминирует усиление сокращения гладкой мышцы.

При повреждении эндотелия реакция артерий на биологически активные вещества, вхч. ацетилхолин, катехоламины, эндотелии I, ангиотензин II извращается, например, вместо дилатации артерии при действии ацетилхолина развивается вазоконстрикторный эффект.

Эндотелий - компонент системы гемостаза. Интактный эндотелиальный слой обладает антитромботическим/антикоагулянтным свойством. Отрицательный (одноименный) заряд на поверхности эндотелиоцитов и тромбоцитов вызывает их взаимное отталкивание, что противодействует адгезии тромбоцитов на сосудистой стенке. Кроме того, эндотелиальные клетки продуцируют целый ряд антитромботических и антикоагулянтных факторов PGI2, NO, гепаринподобные молекулы, тромбомодулин (активатор протеина С), тканевой активатор плазминогена (t-PA) и урокиназу.

Однако при эндотелиальной дисфункции, развивающейся в условиях поражения сосудов, эндотелий реализует свой протромботический/прокоагулянтный потенциал. Провоспалительные цитокины и другие медиаторы воспаления могут индуцировать в эндотелиоцитах продукцию веществ, способствующих развитию тромбоза / гиперкоагуляции. При повреждении сосудов увеличивается поверхностная экспрессия тканевого фактора, ингибитора активатора плазминогена, молекул адгезии лейкоцитов и фактора фон WUlebrand(a). PAI-1 (ингибитор тканевого активатора плазминогена) - это один из основных компонентов антисвертывающей системы крови, ингибирует фибринолиз, а также является маркером эндотелиальной дисфункции.

Дисфункция эндотелия может быть самостоятельной причиной нарушения кровообращения в органе, поскольку нередко провоцирует ангиоспазм или тромбоз сосудов, что, в частности, наблюдают при некоторых формах ишемической болезни сердца. Кроме того, нарушения регионарного кровообращения (ишемия, выраженная артериальная гиперемия) также могут приводить к дисфункции эндотелия.

Интактный эндотелий постоянно продуцирует NO, простациклин и др. биологически активные вещества, которые способны ингибировать адгезию и агрегацию тромбоцитов. Кроме того, на нем экспрессируется фермент АДФаза, разрушающая АДФ, выделяемый активированными тромбоцитами, и, таким образом, ограничивается их вовлечение в процесс тромбообразования. Эндотелий способен вырабатывать коагулянты и антикоагулянты, адсорбировать из плазмы крови многочисленные противосвертывающие вещества - гепарин, протеины С и S.

При повреждении эндотелия его поверхность из антитромботической превращается в протромботическую. В случае обнажения проадгезивной поверхности субэндотелиального матрикса его компоненты - адгезивные белки (фактор фон Виллебранда, коллаген, фибронектин, тромбоспондин, фибриноген и др.) немедленно включаются в процесс образования первичного (сосудисто-тромбоцитарного) тромба, а затем гемокоагуляции.

Продуцируемые эндотелиоцитами биологически активные вещества прежде всего цитокины могут по эндокринному типу действия оказывать существенное влияние на обменные процессы, в частности изменять толерантность тканей к жирным кислотам и углеводам. В свою очередь нарушения жирового, углеводного и других видов обмена неизбежно приводят к эндотелиальной дисфункции со всеми ее последствиями.

В клинической практике врачу, образно говоря, «ежедневно» приходится сталкиваться с тем или иным проявлением эндотелиальной дисфункции, будь то артериальная гипертензия, ишемическая болезнь сердца, хроническая сердечная недостаточность и т.д. При этом следует иметь в виду, что, с одной стороны, эндотелиальная дисфункция способствует формированию и прогрессированию того или иного сердечно-сосудистого заболевания, а с другой, - само это заболевание зачастую усугубляет эндотелиальное повреждение.

Примером такого порочного круга («circulus vitiosus») может являться ситуация, которая создается в условиях развития артериальной гипертензии. Длительное воздействие повышенного АД на стенку сосудов в конечном счете может привести к эндотелиальной дисфункции, в результате чего возрастет тонус гладких мышц сосудов и будут запущены процессы сосудистого ремоделирования (см. ниже), одним из проявлений которого являются утолщение медии (мышечного слоя сосудистой стенки) и соответствующее уменьшение диаметра сосуда. Активное участие эндотелиоцитов в ремоделировании сосудов обусловлено их способностью синтезировать большое количество различных факторов роста.

Сужение просвета (результат сосудистого ремоделирования) будет сопровождаться существенным увеличением периферического сопротивления, которое является одним из ключевых факторов становления и прогрессирования коронарной недостаточности. Это означает формирование («замыкание») порочного круга.

Эндотелий и пролиферативные процессы. Эндотелиальные клетки способны продуцировать как стимуляторы, так и ингибиторы роста гладких мышц сосудистой стенки. При интактном эндотелии пролиферативный процесс в гладких мышцах относительно спокойный.

Экспериментальное удаление эндотелиального слоя (деэндотелизация) приводит к пролиферации гладких мышц, которую можно ингибировать путем восстановления эндотелиальной выстилки. Как упоминалось ранее, эндотелий служит эффективным барьером для предотвращения воздействия на гладкомышечные клетки различных факторов роста, циркулирующих в крови. Кроме того, эндотелиальные клетки продуцируют вещества, которые оказывают тормозящее влияние на пролиферативные процессы в сосудистой стенке.

К ним относят NO, различные гликозоаминогликаны, в том числе гепарин и гепаринсульфат, а также трансформирующий фактор роста (3 (TGF-(3). TGF-J3, являясь самым сильным индуктором экспрессии гена интерстициального коллагена, при определенных условиях способен ингибировать сосудистую пролиферацию по механизму обратной связи.

Эндотелиальные клетки также продуцируют ряд факторов роста, которые способны стимулировать пролиферацию клеток сосудистой стенки: тромбо-цитарный фактор роста (PDGF; Platelet Derived Growth Factor), названный так потому, что впервые был выделен из тромбоцитов - чрезвычайно мощный митоген, который стимулирует синтез ДНК и деление клеток; эндотелиальный фактор роста (EDGF; Endothelial-Cell-Derived Growth Factors), способен, в частности, стимулировать пролиферацию гладкомышечных клеток при атеросклеротических поражениях сосудов; фактор роста фибробластов (FGF; Endothelial-Cell-Derived Growth Factors); эндотелии; инсулинподобный фактор роста (IGF; Insulin-Like Growth Factor); ангиотензин II (в опытах in vitro установлено, что AT II активирует фактор транскрипции ростовых цитокинов, усиливая тем самым пролиферацию и дифференцировку гладкомышечных клеток и кардиомиоцитов).

Кроме факторов роста, к числу молекулярных индукторов гипертрофий стенки сосудов относят: белки-посредники или G-белки, которые контролируют сопряжение рецепторов клеточной поверхности с эффекгорными молекулами факторов роста; белки-рецепторы, обеспечивающие специфичность восприятия и оказывающие влияние на образование вторичных мессенджеров цАМФ и цГМФ; белки, регулирующие трансдукцию генов, детерминирующих гипертрофию гладкомышечных клеток.

Эндотелий и эмиграция лейкоцитов. Эндотелиальные клетки продуцируют разнообразные факторы, которые являются важными для пополнения лейкоцитов в зонах внутрисосудистого повреждения. Эндотелиальные клетки производят хемотаксические молекулы, белок хемотаксиса моноцитов МСР-1 (monocyte chemotactic protein), который привлекает моноциты.

Эндотелиальные клетки также продуцируют молекулы адгезии, которые взаимодействуют с рецепторами на поверхности лейкоцитов: 1 - молекулы межклеточной адгезии ICAM-1 и ICAM-2 (intercellular adhesion molecules), которые связываются с рецептором на В-лимфоцитах, и 2 - сосудисто-клеточные молекулы адгезии-1 - VCAM-1 (vascular cellular adhesion molecule-1), взаимосвязанные с рецепторами на поверхности Т-лимфоцитов и моноцитов.

Эндотелий - фактор липидного обмена. Холестерин и триглицериды транспортируются через артериальную систему в составе липопротеинов, т. е. эндотелий является неотъемлемой частью липидного обмена. Эндотелиоциты могут с помощью фермента липопротеидлипазы преобразовывать триглицериды в свободные жирные кислоты. Освобожденные жирные кислоты затем проникают в субэндотелиальное пространство, обеспечивая источником энергии гладкомышечные и другие клетки. В эндотелиальных клетках присутствуют рецепторы для атерогенных липопротеидов низкой плотности, что предопределяет их участие в развитии атеросклероза.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека