Минеральные ресурсы литосферы. Обеспеченность минеральными водами территории бывшего ссср

Экологическая геология

Тема 2.
Экологические функции
литосферы (часть 1)

Ресурсная экологическая функция литосферы и её преобразование под влиянием техногенеза

Часть 1
РЕСУРСНАЯ ЭКОЛОГИЧЕСКАЯ ФУНКЦИЯ
ЛИТОСФЕРЫ И ЕЁ ПРЕОБРАЗОВАНИЕ ПОД
ВЛИЯНИЕМ ТЕХНОГЕНЕЗА

Определение, значение и структура ресурсной экологической функции литосферы

Под ресурсной экологической функцией литосферы мы понимаем, как
уже
показано
ранее,
роль
минеральных,
органических,
органоминеральных ресурсов литосферы, а также ее геологического
пространства для жизни и деятельности биоты как в качестве
биоценоза, таки человеческого сообщества как социальной
структуры.
Объектом изучения при таком подходе являются особенности состава и
строения литосферы со всеми их компонентами, влияющими на
возможность и качество существования биоты, а предметом – знания о
сырьевом потенциале литосферы, пригодности ее пространства для
проживания биоты (включая человека как биологического вида) и
развития человечества как социальной структуры.
Ресурсная экологическая функция литосферы занимает лидирующее,
положение по отношению к геодинамической, геохимической и
геофизической функциям. Она не только определяет комфортность
"проживания биоты", но и саму возможность ее существования и
развития.

Ресурсы литосферы, необходимые для жизни биоты

Ресурсы литосферы, необходимые для жизни биоты,
включая
человека
как
биологический
вид,
представлены четырьмя составляющими:
горными породами, включающими в себя элементы
биофильного ряда – растворимые элементы, жизненно
необходимые организмам и называемые биогенными
элементами;
кудюритами – минеральным веществом кудюров,
являющихся минеральной пищей животных – литофагов;
поваренной солью;
подземными водами.

Биофильные элементы литосферы

Элементы и их соединения, требующиеся биоте в больших
количествах, называют макробиогенными (углерод, кислород,
азот, водород, кальций, фосфор, сера), а в малых количествах –
микробиогенными.
Для растений – это Fe, Mg, Си, Zn, В, Si, Mo, CI, V, Ca, которые
обеспечивают функции фотосинтеза, азотного обмена и
метаболическую функцию.
Для животных требуются как перечисленные элементы (кроме
бора), так и дополнительно селен, хром, никель, фтор, йод и
олово.
Несмотря на малые количества, все эти элементы необходимы
для
жизнедеятельности
биосистем,
для
реализации
биогеохимических функций живым веществом

Средний химический состав белков, жиров и углеводов, %

Средний химический состав растения и человека, % сухого вещества

Минеральные биогенные комплексы-кудюриты

Литофагия, или камнеедение ("литос" – камень, "фагос" –
пожирание), известна давно. В животном мире это явление столь
же обычное, как и традиционное питание.
Кроме пищевых и лечебных солей в природе существует большая
группа алюмосиликатных и силикатных минералов, которые едят
птицы, звери и люди.
–На склонах холмов о. Суматра сложенных цеолитизированными и
туфами, описаны пещеры размерами 3,5 × 7,5 м, которые "выскребли"
слоны, добывая белую каменную пемзу (продукт выветривания туфов,
обогащенный
минералами
с
высокими
сорбционными
и
ионообменными свойствами). Этими слоновыми раскопками
пользовались и другие животные – орангутаны, гиббоны, олени и даже
белки.
–Во многих районах Африки существуют целые производства по
приготовлению минеральной пищи. Так, в поселении Анфоэда (Гана)
две тысячи рабочих до-бывают глину и изготавливают из нее лепешки
для продажи, а жители деревни Узалла (Нигерия) съедают ежегодно
400-500 т "съедобной" глины.
–В пределах активных тектонических разломов, на нефтегазоносных и
угленосных площадях, где были зафиксированы относительно
интенсивные истечения СО2 из недр, растительность существенно
отличается от зональной. Она более "пышная" и более "южная".

Природа литофагии

Литофагия - это естественная потребность диких животных в
сбалансировании солевого состава организма, особенно в
периоды сезонной смены пищи.
В основе литофагии лежит литотерапия, направленная на
регуляцию солевого баланса организма. В качестве меню
животные выбирают минеральные смеси, обладающие
высокими ионообменными и сорбционными свойствами.
Последние и получили на Алтае название кудюриты от слова
"кудур" – солонцовый грунт, солончак, солонец, которым
издревле пользуются исконные скотоводы – алтайцы, монголы,
манджуры и др.
В последние годы кудюриты стали использоваться в качестве
добавок в корм домашних животных, что существенно
увеличило их прирост и улучшило физическое состояние.

Поваренная соль

Поваренная соль является типичным минеральным образованием,
потребляемым биотой и, в первую очередь, человеком. По отношению к
ней все – литофаги.
Жители Земли употребляют её в объеме 8-10 кг в год на человека.
С ресурсных позиций это минеральное образование является
исключением из общего правила, так как в определенном объеме
относится к категории возобновляемого ресурса. Поваренную соль
получают либо из рассолов в зоне соляных залежей, либо собирают в
местах естественного выпаривания соленой морской воды. Пока
природные запасы поваренной соли в ресурсном отношении особой
тревоги не вызывают.
Следует напомнить, что этот минеральный ресурс необходим человеку
как биологическому виду. Поваренная соль активизирует некоторые
ферменты, поддерживает кислотно-щелочное равновесие, она
необходима для выработки желудочного сока. Отсутствие или недостаток
соли в организме приводит к различным расстройствам: понижению
артериального давления, мышечным судорогам, учащению сердцебиения
и другим отрицательным последствиям.
Следует отметить, что, несмотря на практически неограниченные запасы
поваренной соли, в конце 80-х годов потребность в ней населения
Северной Евразии удовлетворялась только на 90%. Такое же положение
сохранилось и до настоящего времени.

Подземные воды как ресурс литосферы, необходимый для жизни биоты

С этих позиций экологическая значимость пресных
подземных вод особых пояснений не требует.
В.И.Вернадский показал, что живое вещество в течение
всего 1 млн. лет пропускает через себя такое количество
воды, которое равно по объему и количеству Мировому
океану.
Подземные
воды,
пригодные
для
питьевого
водоснабжения, составляют 14% от всех пресных вод
планеты. Однако они значительно превосходят по
качеству поверхностные воды и в отличие от них
гораздо лучше защищены от загрязнения, содержат
микро- и макроэлементы, необходимые для организма
человека, не требуют дорогостоящей очистки. Именно
этим определяется их значимость как важнейшего
источника питьевого водоснабжения, т.е. обеспечения
водой человека как биологического вида.

Обеспеченность подземными водами

В настоящее время более 60% городов Российской Федерации имеют
централизованные источники водоснабжения. В ресурсном плане
использование подземных вод значительно ниже потенциальных
возможностей и составляет порядка 5% (для водоснабжения) от потенциальных ресурсов, оцениваемых в 230 км3/год. Однако сделанные оценки
справедливы только для России в целом и существенно меняются при
переходе к отдельным регионам.
Дефицит в питьевой воде в принципе обусловлен тремя основными
факторами:
–отсутствием достаточных ресурсов подземных вод в связи с природными причинами (зона многолетнемерзлых пород, широкое развитие относительно
безводных толщ – Карелия, Мурманская, Кировская и Астраханская области);
–интенсивной эксплуатацией и сработкой основных водоносных горизонтов
(Средний Урал, зоны крупных городских агломераций);
–техногенным загрязнением водоносных горизонтов, используемых для
питьевого водоснабжения.

Примеры возникновения дефицита запасов подземных вод

Наиболее впечатляющим примером таких катастрофических техногенных воздействий является РавнинноКрымский артезианский бассейн. Интенсивная эксплуатация подземных вод для орошения, а также
строительство и ввод в действие Северо-Крымского канала привели к засолению пресных подземных вод. За 30
лет эксплуатации водоносных горизонтов около 10 км3 пресной воды стало солоноватой.
Невозможность использования подземных вод для хозяйственно-питьевого водоснабжения в результате
загрязнения отмечается на участках складирования твердых бытовых отходов. Например, в районе полигона
ТБО Щербинка Московской области загрязненные грунтовые воды с превышением ПДК по ряду компонентов в
100-130 раз проникли в подольско-мячковский водоносный горизонт каменноугольных отложений. В результате
этого в водах горизонта увеличилось содержание хлоридов в 3-7 раз, сульфатов более чем в два раза, отмечено
присутствие хрома и кадмия.
Разработка месторождений твердых полезных ископаемых приводит к истощению эксплуатационных запасов
подземных вод, что связано не только с отбором откачиваемых вод на разрабатываемом месторождении, но и
с выходом из строя действующих водозаборов подземных вод. Наиболее крупные воронки-депрессии
формируются в тех случаях, когда в обводнении горных выработок участвуют водоносные горизонты, имеющие
региональное распространение. Так, длительная работа (начиная с 1956 г.) системы водопонижения вокруг
месторождения КМА привела к смыканию депрессионных воронок вокруг Лебединского карьера и шахты им.
Губкина. Уровни мелового водоносного горизонта были снижены на 20-25 м, из-за чего строительство
следующего Стойленского карьера осуществлялось на первом этапе практически в обезвоженных породах. В
настоящее время режим подземных вод района разработок нарушен по верхнемеловому горизонту в радиусе
40 км, а по докембрийскому – в радиусе 80 км, что делает экономически нецелесообразным использование
подземных вод этого района для водоснабжения населения.

Минеральные ресурсы, их структура и человеческое общество

Минеральные ресурсы представлены совокупностью выявленных в недрах
скоплений (месторождений) различных полезных ископаемых, в которых
химические элементы и образуемые ими минералы находятся в резко
повышенной концентрации по сравнению с кларковыми содержаниями в
земной коре, обеспечивающей возможность
их промышленного
использования.
Все природные ресурсы представляют природные тела и вещества (или их
совокупность), а также виды энергии, которые на конкретном этапе развития
производительных сил используются или могут быть технически использованы
для
эффективного
удовлетворения
разнообразных
потребностей
человеческого общества.
Структура минеральных ресурсов определяется целевым назначением их использования.
Существует пять основных категорий минеральных ресурсов:
–топливно-энергетические (нефть, конденсат, горючий газ, каменные и бурые угли, уран,
битуминозные сланцы, торф и др.),
–черные и легирующие металлы (руды железа, марганца, хрома, титана, ванадия, вольфрама и
молибдена),
–цветные металлы (руды меди, кобальта, свинца, цинка, олова, алюминия, сурьмы и ртути),
–неметаллические полезные ископаемые (различные виды минеральных солей (фосфатные,
калийные, натриевые), строительные (щебень, гранит и песок) и другие материалы (самородная
сера, флюорит, каолин, барит, графит, асбест-хризотил, магнезит, огнеупорная глина)),
–подземные воды.

Принципиальная схема использования природных ресурсов литосферы в сфере

Роль и место минеральных ресурсов в социально-экономических и экологических вопросах развития материальной базы современного общества

Роль и место минеральных ресурсов в социальноэкономических и экологических вопросах развития
материальной базы современного общества

О запасах минеральных ресурсов верхних горизонтов литосферы

Анализ оценки обеспеченности топливно-энергетическими ресурсами показывает, что наиболее
дефицитным видом топлива является нефть, ее разведанных запасов хватит, по разным
источникам, на 25-48 лет. Затем через 35-64 года истощатся запасы горючего газа и урана. Лучше
всего обстоит дело с углем, его запасы в мире велики, и обеспеченность составляет 218-330 лет.
При этом следует учитывать, что в мировой обеспеченности жидкими энергоносителями есть
существенные резервы, связанные с продуктивными залежами нефти и газа на шельфе Мирового
океана. Перспективы России связаны с освоением шельфа арктических морей, где по оценкам
специалистов содержится свыше 100 млрд т углеводородов в нефтяном эквиваленте.
Среди черных и легирующих металлов самую низкую обеспеченность имеют руды титана (65
лет) и вольфрама (от 10 до 84 лет по разным источникам).
Мировая обеспеченность цветными металлами в целом значительно ниже, чем черными и
легирующими. Запасов кобальта, свинца, цинка, олова, сурьмы и ртути хватит на 10-35 лет.
Обеспеченность России запасами меди, никеля, свинца составляет 58-89%, а сурьмы – всего 17-18%
от среднемировой. На этом фоне исключение составляют запасы алюминия: при современном
уровне потребления и добычи его запасов хватит еще на 350 лет.
Мировая обеспеченность ресурсами неметаллических полезных ископаемых в среднем составляет
50-100 лет и выше. Самыми дефицитными являются хризотил-асбест (мировая обеспеченность 54
года) и флюорит (мировая 42 года).

Мировая обеспеченность человеческого общества минеральными ресурсами

Отбор пресных подземных вод по основным экономическим районам России в км3/год на 1.1.1992 г.

1 – общее количество;
2 – хозяйственно-питьевое
водоснабжение;
3 – шахтный и карьерный
водоотлив;
4 – сброс воды без
использования (потери
воды при
транспортировке, сброс
воды из скважин,
самоизлив из скважин,
водослив дренажных
вод);
5 – техническое
водоснабжение;
6 – орошение земель и
обводнение пастбищ

Подземные воды как ресурс литосферы

Обеспеченность ресурсами подземных вод в целом по России достаточно высокая. В связи с
особой важностью рассмотрим несколько подробнее обеспеченность пресными,
минеральными, термальными и промышленными водами.
Пресные подземные воды. В соответствии с ГОСТом 2874-82 к ним относятся подземные воды
с сухим остатком до 1 г/дм3 (в некоторых случаях – до 1,5 г/дм3).
При расчетах обеспеченности ресурсами подземных вод учитываются невостребованные
запасы подземных вод, срабатываемые в течение 50 лет. Таким образом, если допустить, что
в течение последующих 50 лет общий отбор подземных вод увеличится в два раза и составит
примерно 35-40 км3/год, то можно предположить, что общие эксплуатационные ресурсы
подземных вод России, составляющие около 230 км3/год, в результате отбора
невосполняемых запасов уменьшатся, примерно на 15-20 км3/год.
Несомненно, что основной объем пресных подземных вод расходуется на питьевое
водоснабжение. Однако определенная доля пресных подземных вод тратится на технические
нужды, орошение пахотных земель и поливы пастбищ.

Обеспеченность минеральными водами территории бывшего СССР

Термальные воды

К термальным водам относятся подземные воды, приуроченные к
естественным коллекторам геотермальной энергии и представленные
природными тепло-носителями (водой, паром и пароводяными смесями).
Для практического использования термальные воды
подразделяются на несколько классов:
–низкопотенциальные (с температурой нагрева 20- 100оС)
теплотехнических нужд,
–среднепотенциальные – для теплоснабжения,
–высокопотенциальные (более для выработки электроэнергии.
используются
для
Термальные воды с более высокой температурой (150-350°С) из-за
технических трудностей обращения с ними пока не нашли своего применения.
Обеспеченность России запасами термальных вод очень высокая. Из общего
количества глубинного тепла, выделяемого термальными источниками в
атмосферу, 86% приходится на Курило-Камчатскую область, около 7% – на
область Байкальского рифта и лишь 8% – на все остальные мобильные области
континентальной коры.
Экологические аспекты освоения геотермальных ресурсов связаны с
вероятностью теплового и химического загрязнения поверхностных слоев
литосферы, так как термальные воды, помимо высокой температуры,
характеризуются также повышенной минерализацией. Во избежание этого
загрязнения разработана технология эксплуатации водоносных горизонтов с
обратной закачкой в них использованных термальных вод.

Промышленные воды

К промышленным водам относятся высокоминерализованные подземные воды глубоких (15003000 м) водоносных горизонтов. Из них в промышленных мас-штабах получают такие элементы, как
натрий, хлор, бор, йод, бром, литий или их соединения (например, поваренную соль).
Интерес к промышленному использованию вод глубоких водоносных горизонтов в качестве
минерального сырья определяется расширением потребности в редких элементах в различных
отраслях хозяйственной деятельности и истощением традиционного рудного сырья. В мире
добывается из промышленных вод 90% от общей добычи брома, 85% – йода, 30% – поваренной
соли, сульфида натрия, лития, 25% – магния, брома и т.д.
Обеспеченность России подземными промышленными водами достаточно высокая. Они, как
правило, приурочены к глубоким частям крупных артезианских бассейнов и др. выделены весьма
перспективные на йод и бром районы в пределах Восточно-Европейской, Западно-Сибирской и
Сибирской платформенных областей.
Экологические аспекты разработки промышленных вод связаны с проблемой утилизации
отработанных вод и вероятностью загрязнения вмещающих пород и дневной поверхности в
процессе их добычи и переработки.

Определение и структура ресурсов геологического пространства

Под ресурсом геологического пространства подразумевается
геологическое пространство, необходимое для расселения и
существования биоты, в том числе для жизни и деятельности
человека.
В общей систематике экологических функций литосферы структура
ресурсов геологического пространства включает: место обитания биоты,
место расселения человека, вместилище наземных и подземных
сооружений, место захоронения и складирования отходов, включая
высокотоксичные и радиоактивные.
Иной подход к структурированию ресурсов геологического пространства
основан на подходе, позволяющием рассматривать литосферу в качестве
места обитания и расселения разнообразных представителей флоры и
фауны, включая человека как биологический вид, и в качестве
пространства, активно осваиваемого человечеством как социальной
структурой.

Общая структура ресурсов геологического пространства

Ресурсы геологического пространства и расширение инженерно-хозяйственной деятельности человечества

При рассмотрении литосферы в качестве среды инженерно-хозяйственной
деятельности человека четко обособляются два пути оценки ресурсов
геологического пространства: оценка "площадного" ресурса поверхности
литосферного пространства и оценка ресурса подземного геологического
пространства под различные виды его освоения. В каждом случае может быть
много вариантов оценки применительно к различным видам инженернохозяйственной деятельности.
Первый из них – "площадные" ресурсы геологического пространства уже стали
огромным дефицитом. В настоящее время человечеством освоено порядка 56%
поверхности суши с тенденцией к дальнейшему нарастанию этого процесса. И если
для ряда стран с большими земельными ресурсами проблема размещения
промышленных, сельскохозяйственных и селитебных объектов еще не стала остро
актуальной, то для небольших по площади государств с большой численностью
населения она превратилась в важнейший экологический фактор социального
развития.
Наиболее ярким примером является Япония, вынужденная для размещения
промышленных объектов и зон отдыха засыпать прибрежные части морских
акваторий и осуществлять строительство на насыпных грунтах.

Ресурсы геологического пространства и урбанизация

Особенно остро, даже в сравнительно благополучных с точки зрения общей территориальной
обеспеченности странах, стоит вопрос дефицита площадей на урбанизированных территориях. Как
правило, это касается столиц и крупных промышленных центров.
О темпах урбанизации красноречиво говорят следующие цифры: в начале XIX в. в городах мира
проживало 29,3 млн человек (3% населения Земли), к 1900 г. – 224,4 млн (13,6%), к 1950 г. - 729 млн
(28,8%), к 1980 г. - 1821 млн (41,1%), к 1990 г. – 2261 млн (41%).
Городское население Российской Федерации к началу 1990 г. составляло около 74%.
Доля городского населения в Европе составляет более 73%, в Азии - 31, Африке – 32, Северной
Америке – 75, Латинской Америке – 72, в Австралии и Океании – 71%.
Всего в мире существует около 220 городов-миллионеров (более 1 млн жителей), самый крупный из
которых – Мехико (9,8 млн). В Большом Лондоне 6,8 млн человек проживают на территории
площадью более 1800 км2, в Москве на площади 1000 км2 проживает около 9 млн человек.
При такой плотности населения создается специфическая ресурсная картина, при которой в качестве
пригодных под застройку начинают рассматриваться территории со сложными инженерногеологическими и экологическими условиями (территории бывших свалок, шлако-золоотвалы и т.п.).

Ресурсы геологического пространства и сложные гражданские и промышленные объекты

Ресурсы геологического пространства под размещение большинства сложных
инженерных сооружений, оказывающих большие давления на грунт (0,5 МПа
и более), в частности, таких объектов, как тепловые электростанции (ТЭС),
металлургические заводы, телевизионные башни, небоскребы, определяются
наличием благоприятных инженерно-геологических условий в районе
предполагаемого строительства. Эти сооружения в силу своей специфики, как
правило, располагаются на хорошо освоенных территориях, часто в черте
города или в непосредственной близости от него. Это предъявляет особые
требования к их устойчивости и безопасности не только с инженерных, но и с
экологических позиций.
Основная ресурсная (как и геохимическая экологическая) проблема,
связанная с ТЭС – размещение золоотвалов, что близка к проблеме
размещения отходов горно-обогатительной и горно-добывающей отраслей
промышленности, рассматриваемой далее.
Основные ограничения при выборе участка под атомные
электростанции (АЭС):
–высокая сейсмичность (более 8 баллов по шкале MSK-64);
–наличие мощных (более 45 м) толщ просадочных, водорастворимых и
разжижающихся грунтов;
–наличие активных разломов, карста и других потенциально опасных
экзогенных геологических процессов;
–высокий уровень подземных вод (менее 3 м);
–наличие хорошо фильтрующих грунтов и грунтов с низкой сорбционной
емкостью мощностью более10 м.
Главной экологической опасностью АЭС является возможность
радиоактивного загрязнения значительных площадей в аварийных ситуациях.
Эти территории выпадают из любого использования на сотни, даже тысячи
лет.

Ресурсы геологического пространства и гидротехническое строительство

Ярко выраженной спецификой с точки зрения
необходимого
ресурса
геологического
пространства
обладает
гидротехническое
строительство. Ресурс пространства в первую
очередь определяется наличием водотоков и
участков с благоприятными инженерногеологическими условиями на них.
Крупное гидротехническое строительство в
значительной
мере
исчерпало
ресурс
геологического пространства, пригодного под
эти цели, даже в России, богатой водными и
территориальными ресурсами.
Сток многих крупных рек нашей страны
зарегулирован.

Площади затопления и количество перенесенных строений для отдельных крупных водохранилищ бывшего СССР

Ресурсы геологического пространства горно-добывающих регионов

Ресурсы геологического пространства горнодобывающих регионов
Остро стоит вопрос дефицита геологического пространства и в районах развития
горно-добывающей и горно-перерабатывающей отраслей промышленности.
Наиболее емкими в отношении отчуждения природного геологического
пространства являются предприятия угольной промышленности: добыча 1 млн т
топлива сопровождается отчуждением в среднем около 8 га земельных угодий.
В горно-добывающих районах существенное нарушение территориального
ресурса происходит за счет оседания земной поверхности над подземными
выработками. Величины оседаний достигают в Московском угольном бассейне 3
м на площади км2, в Донбассе – 7 м на площади более 20 км2. Осадки могут
продолжаться в течение 20 лет и иногда носят провальный характер.
Существенный ущерб ресурсному потенциалу территорий наносит изменение
гидрогеологических условий в результате законтурного водопонижения, шах-тного
и карьерного водоотлива. Формирование крупных депрессионных воронок
площадью до 300 км2 может не только нарушать принятую систему
водоснабжения территории и приводить к оседанию земной поверхности, но и
вызывать активизацию карстовых, суффозионных и провальных процессов.

Ресурсы геологического пространства и размещение отходов жизнедеятельности человеческого общества

Многообразие отходов деятельности человеческого сообщества занимают огромные
площади. Только в России суммарная их площадь на (1997), составляет более 500 тыс. га, а
негативное воздействие отходов на окружающую среду проявляется на территории, в 10 раз
превышающей указанную площадь.
Большинство отходов активно взаимодействуют с окружающей средой (литосферой,
атмосферой, гидросферой и биосферой). Продолжительность "агрессивного" (активного)
существования отходов зависит от их состава. При хране-нии все отходы претерпевают
изменения, обусловленные как внутренними физико-химическими процессами, так и
влиянием внешних условий. В результате этого на полигонах хранения и захоронения отходов
могут образоваться новые эколо-гически опасные вещества, которые при проникновении в
литосферу будут пред-ставлять серьезную угрозу для биоты.
Города – самые крупные производители отходов. Статистические данные по-казывают, что в
условиях современной технологии при более высоком уровне эко-номического развития
страны в ее границах образуется и большее количество от-ходов в расчете на душу населения.
Средняя норма накопления мусора в развитых странах колеблется от 150-170 (Польша) до
700-1100 кг/чел. в год (США). В Москве ежегодно образуется 2,5 млн т твердых бытовых
отходов (ТБО), а средняя норма "производства" ТБО на одного человека в год достигает
примерно 1 м3 по объему и 200 кг по массе (для крупных городов рекомендуется норматив
1,07 м3/чел. в год).

Классификация отходов по происхождению

Радиусы негативного воздействия полигонов твердых бытовых отходов

Основные аспекты воздействия полигонов ТБО компоненты окружающей среды и человека

Радиусы негативного воздействия полигонов складирования отходов горно-добывающей и горно-перерабатывающей отраслей промышленности

Радиусы негативного воздействия полигонов
складирования отходов горно-добывающей и горноперерабатывающей отраслей промышленности

Люди еще в древности научились применять для своих нужд некоторые из этих ресурсов, что нашло свое выражение в названиях исторических периодов развития человечества: «каменный век», «бронзовый век», «железный век». В наши дни используются более 200 различных видов минеральных ресурсов. По образному выражению академика А. Е. Ферсмана (1883–1945), ныне к ногам человечества сложена вся периодическая система Менделеева.

Полезные ископаемые – это минеральные образования земной коры, которые могут эффективно использоваться в хозяйстве, скопления полезных ископаемых образуют месторождения, а при больших площадях распространения – бассейны.

Распространение полезных ископаемых в земной коре подчиняется геологическим (тектоническим) закономерностям (табл. 7.4).

Топливные полезные ископаемые имеют осадочное происхождение и обычно сопутствуют чехлу древних платформ и их внутренним и краевым прогибам. Так что название «бассейн» отражает их происхождение довольно точно – «морской бассейн».

На земном шаре известно более 3,6 тыс. угольных бассейнов и месторождений, которые в совокупности занимают 15 % территории земной суши. Основная часть ресурсов угля приходится на Азию, Северную Америку и Европу и сконцентрирована в десяти крупнейших бассейнах Китая, США, России, Индии, Германии.

Нефтегазоносных бассейнов разведано более 600, разрабатывается 450. Общее число нефтяных месторождений достигает 35 тыс. Основные запасы находятся в Северном полушарии и являются отложениями мезозоя. Главная часть этих запасов также сконцентрирована в небольшом числе крупнейших бассейнов Саудовской Аравии, США, России, Ирана.

Рудные полезные ископаемые обычно приурочены к фундаментам (щитам) древних платформ, а также к складчатым областям. В таких областях они нередко образуют огромные по протяженности рудные (металлогенические) пояса, связанные своим происхождением с глубинными разломами в земной коре. Ресурсы геотермальной энергии особенно велики в странах и районах с повышенной сейсмической и вулканической активностью (Исландия, Италия, Новая Зеландия, Филиппины, Мексика, Камчатка и Северный Кавказ в России, Калифорния в США).



Для хозяйственного освоения наиболее выгодны территориальные сочетания (скопления) полезных ископаемых, которые облегчают комплексную переработку сырья.

Добыча минеральных ресурсов закрытым (шахтным) способом в мировых масштабах ведется в зарубежной Европе, Европейской части России, США, где многие месторождения и бассейны, находящиеся в верхних слоях земной коры, уже сильно выработаны.

Если полезные ископаемые залегают на глубине 20–30 м, выгоднее снять бульдозером верхний слой горной породы и вести добычу открытым способом. Открытым способом добывают, например, железную руду в районе Курска, уголь на некоторых месторождениях Сибири.

По запасам и добыче многих минеральных богатств Россия занимает одно из первых мест в мире (газ, уголь, нефть, железная руда, алмазы).

В табл. 7.4 показана зависимость между строением земной коры, рельефом и размещением полезных ископаемых.

Таблица 7.4

Залежи полезных ископаемых в зависимости от строения и возврата участка земной коры и форм рельефа

Гидросфера

Гидросфера (от греч. hydro – вода и sphaira – шар) – водная оболочка Земли, представляющая собой совокупность океанов, морей и континентальных водных бассейнов – рек, озер, болот и др., подземных вод, ледников и снежных покровов.

Полагают, что водная оболочка Земли образовалась в раннем архее, то есть примерно 3800 млн лет назад. В этот период истории Земли на нашей планете установилась температура, при которой вода могла находиться в значительной мере в жидком агрегатном состоянии.

Вода как вещество обладает уникальными свойствами, к числу которых относятся следующие:

♦ способность к растворению очень многих веществ;

♦ высокая теплоемкость;

♦ нахождение в жидком состоянии в интервале температур от 0 до 100 °C;

♦ большая легкость воды в твердом состоянии (льда), нежели в жидком.

Уникальные свойства воды позволили ей играть важную роль в эволюционных процессах, происходящих в поверхностных слоях земной коры, в круговороте вещества в природе и являться условием возникновения и развития жизни на Земле. Вода начинает выполнять свои геологические и биологические функции в истории Земли после возникновения гидросферы.

Гидросферу составляют поверхностные воды и подземные воды. Поверхностные воды гидросферы покрывают 70,8 % земной поверхности. Их суммарный объем достигает 1370,3 млн км 3 , что составляет 1/800 общего объема планеты, а масса оценивается в 1,4 ч 1018 т. К числу поверхностных вод, то есть вод, покрывающих сушу, относят Мировой океан, континентальные водные бассейны и материковые льды.

Мировой океан включает в себя все моря и океаны Земли.

Моря и океаны покрывают 3/4 поверхности суши, или 361,1 млн км 2 . В Мировом океане сосредоточена основная масса поверхностных вод – 98 %. Мировой океан условно разделен на четыре океана: Атлантический, Тихий, Индийский и Северный Ледовитый. Полагают, что современный уровень океана установился около 7000 лет назад. По данным геологических исследований, колебания уровня океана за последние 200 млн лет не превышали 100 м.

Вода в Мировом океане соленая. Среднее содержание солей составляет около 3,5 % по массе, или 35 г/л. Их качественный состав следующий: из катионов преобладают Na + ,Mg 2+ ,K + ,Ca 2+ , из анионов – Cl - ,SO 4 2- ,Br - ,CO 3 2- ,F - . Считается, что солевой состав Мирового океана остается постоянным с палеозойской эры – времени начала развития жизни на суше, то есть примерно в течение 400 млн лет.

Континентальные водные бассейны представляют собой реки, озера, болота, водохранилища. Их воды составляют 0,35 % от общей массы поверхностных вод гидросферы. Некоторые континентальные водоемы – озера – содержат соленую воду. Эти озера имеют либо вулканическое происхождение, либо представляют собой изолированные остатки древних морей, либо образованы в районе мощных отложений растворимых солей. Однако в основном континентальные водоемы пресные.

Пресная вода открытых водоемов также содержит растворимые соли, но в небольшом количестве. В зависимости от содержания растворенных солей пресную воду разделяют на мягкую и жесткую. Чем меньше в воде растворено солей, тем она мягче. Самая жесткая пресная вода содержит солей не более 0,005 % по массе, или 0,5 г/л.

Материковые льды составляют 1,65 % от общей массы поверхностных вод гидросферы, 99 % льда находится в Антарктиде и Гренландии. Общая масса снега и льда на Земле оценивается в 0,0004 % массы нашей планеты. Этого достаточно для того, чтобы покрыть всю поверхность планеты слоем льда толщиной 53 м. Согласно расчетам, если эта масса растает, то уровень океана поднимется на 64 м.

Химический состав поверхностных вод гидросферы приблизительно равен среднему составу морской воды. Из химических элементов по массе преобладают кислород (85,8 %) и водород (10,7 %). Поверхностные воды содержат значительное количество хлора (1,9 %) и натрия (1,1 %). Отмечается существенно более высокое, чем в земной коре, содержание серы и брома.

Подземные воды гидросферы содержат основной запас пресной воды. Предполагают, что суммарный объем подземных вод примерно 28,5 млрдкм 3 . Это почти в 15 раз больше, чем в Мировом океане. Считают, что именно подземные воды являются основным резервуаром, пополняющим все поверхностные водоемы. Подземная гидросфера может быть разделена на пять зон.

Криозона. Область льдов. Зона охватывает полярные районы. Толщина ее оценивается в пределах 1 км.

Зона жидкой воды. Охватывает практически всю земную кору.

Зона парообразной воды ограничивается глубиной до 160 км. Полагают, что вода в этой зоне имеет температуру от 450 °Cдо700 °C и находится под давлением до 5 ГПа.

Ниже, на глубинах до 270 км, располагается зона мономерных молекул воды. Она охватывает слои воды с диапазоном температур от 700 °C до 1000 °C и давлением до 10 ГПа.

Зона плотной воды простирается, предположительно, до глубин в 3000 км и опоясывает всю мантию Земли. Температуру воды в этой зоне оценивают в промежутке от 1000° до 4000 °C, а давление – до 120 ГПа. Вода при таких условиях полностью ионизирована.

Гидросфера Земли выполняет важные функции: она регулирует температуру планеты, обеспечивает круговорот веществ, является составной частью биосферы.

Непосредственное воздействие на регуляцию температуры поверхностных слоев Земли гидросфера оказывает благодаря одному из важных свойств воды – большой теплоемкости. По этой причине поверхностные воды аккумулируют солнечную энергию, а затем медленно ее отдают в окружающее пространство. Выравнивание температуры на поверхности Земли происходит исключительно благодаря круговороту воды. Кроме того, снег и лед имеют очень высокую отражающую способность: она превышает среднюю для земной поверхности на 30 %. Поэтому на полюсах разность между поглощенной и излученной энергией всегда отрицательна, то есть поглощенная поверхностью энергия меньше испущенной. Так происходит терморегуляция планеты.

Обеспечение круговорота веществ – другая важнейшая функция гидросферы.

Гидросфера находится в постоянном взаимодействии с атмосферой, земной корой и биосферой. Вода гидросферы растворяет в себе воздух, концентрируя при этом кислород, используемый в дальнейшем водными живыми организмами. Находящийся в воздухе углекислый газ, образующийся преимущественно в результате дыхания живых организмов, сжигания топлива и извержения вулканов, обладает высокой растворимостью в воде и аккумулируется в гидросфере. Гидросфера растворяет в себе также тяжелые инертные газы – ксенон и криптон, содержание которых в воде выше, чем в воздухе.

Воды гидросферы, испаряясь, поступают в атмосферу и выпадают в виде осадков, которые проникают в горные породы, разрушая их. Так вода участвует в процессах выветривания горных пород. Обломки горных пород сносятся текучими водами в реки, а затем в моря и океаны или в замкнутые континентальные водоемы и постепенно отлагаются на дне. Эти отложения впоследствии превращаются в осадочные горные породы.

Полагают, что главные катионы морской воды – катионы натрия, магния, калия, кальция – образовались в результате выветривания горных пород и последующего выноса продуктов выветривания реками в море. Важнейшие анионы морской воды – анионы хлора, брома, фтора, сульфат-ион и карбонат-ион, вероятно, происходят из атмосферы и связаны с вулканической деятельностью.

Часть растворимых солей систематически выводится из состава гидросферы посредством их осаждения. Например, при взаимодействии растворенных в воде карбонат-ионов с катионами кальция и магния образуются нерастворимые соли, которые опускаются на дно в виде карбонатных осадочных горных пород. В осаждении некоторых солей большую роль играют организмы, населяющие гидросферу. Они извлекают из морской воды отдельные катионы и анионы, концентрируя их в своих скелетах и раковинах в виде карбонатов, силикатов, фосфатов и других соединений. После смерти организмов их твердые оболочки накапливаются на морском дне и образуют мощные толщи известняков, фосфоритов и различных кремнистых пород. Подавляющая часть осадочных горных пород и такие ценные полезные ископаемые, как нефть, уголь, бокситы, разнообразные соли и т. д., образовались в прошлые геологические периоды в различных водоемах гидросферы. Установлено, что даже самые древние горные породы, абсолютный возраст которых достигает около 1,8 млрд лет, представляют собой сильно изменившиеся осадки, образованные в водной среде. Вода используется также в процессе фотосинтеза, в результате которого образуется органическое вещество и кислород.

В гидросфере примерно около 3500 млн лет назад зародилась жизнь на Земле. Эволюция организмов продолжалась исключительно в водной среде вплоть до начала палеозойской эры, когда примерно 400 млн лет назад началось постепенное переселение животных и растительных организмов на сушу. В этой связи гидросферу рассматривают как компонент биосферы (биосфера – сфера жизни, область обитания живых организмов).

Живые организмы распространены в гидросфере крайне неравномерно. Количество и многообразие живых организмов в отдельных участках поверхностных вод определяется многими причинами, в том числе комплексом факторов внешней среды: температурой, соленостью воды, освещенностью, давлением. С увеличением глубины ограничивающее действие освещенности и давления возрастает: количество поступающего света резко уменьшается, а давление, наоборот, становится очень высоким. Так, в морях и океанах заселены в основном литоральные зоны, то есть зоны не глубже 200 м, наиболее прогреваемые солнечными лучами.

Характеризуя функции гидросферы на нашей планете, В. И. Вернадский отмечал: «Вода определяет и создает всю биосферу. Она создает основные черты земной коры, вплоть до магматической оболочки».

Атмосфера

Атмосфера (от греч. atmos – пар, испарение и sphaira – шар) – оболочка Земли, состоящая из воздуха.

В состав воздуха входит ряд газов и взвешенные в них частицы твердых и жидких примесей – аэрозолей. Масса атмосферы оценивается в 5,157 × 10 15 т. Столб воздуха оказывает давление на поверхность Земли: среднее атмосферное давление на уровне моря – 1013,25 гПа, или 760 мм рт. ст. Давление величиной 760 мм рт. ст. приравнено к внесистемной единице давления – 1 атмосфере (1 атм.). Средняя температура воздуха у поверхности Земли – 15 °C, при этом температура изменяется примерно от 57 °C в субтропических пустынях до -89 °C в Антарктиде.

Атмосфера неоднородна. Различают следующие слои атмосферы: тропосферу, стратосферу, мезосферу, термосферу и экзосферу, которые отличаются по особенностям распределения температуры, плотности воздуха и некоторым другим параметрам. Участки атмосферы, занимающие промежуточное положение между этими слоями, соответственно называют тропопаузой, стратопаузой и мезопаузой.

Тропосфера – нижний слой атмосферы высотой от 8-10 км в полярных широтах и до 16–18 км в тропиках. Тропосфера характеризуется падением температуры воздуха с высотой-с удалением от поверхности Земли на каждый километр температура уменьшается примерно на 6 °C. Плотность воздуха быстро убывает. В тропосфере сосредоточено около 80 % всей массы атмосферы.

Стратосфера располагается на высотах в среднем от 10–15 км до 50–55 км от поверхности Земли. Стратосфера характеризуется повышением температуры с высотой. Возрастание температуры происходит по причине поглощения озоном, находящимся в этом слое атмосферы, коротковолновой радиации Солнца, прежде всего УФ (ультрафиолетовых) лучей. При этом в нижней части стратосферы до уровня около 20 км температура мало меняется с высотой и может даже незначительно уменьшаться. Выше температура начинает возрастать – сначала медленно, а с уровня 34–36 км намного быстрее. В верхней части стратосферы на высоте 50–55 км температура достигает 260270 К.

Мезосфера – слой атмосферы, расположенный на высотах 55–85 км. В мезосфере температура воздуха с увеличением высоты уменьшается – примерно с 270 К на нижней границе до 200 К на верхней границе.

Термосфера простирается на высотах примерно от 85 км до 250 км от поверхности Земли и характеризуется быстрым повышением температуры воздуха, достигающей на высоте 250 км 800-1200 К. Повышение температуры происходит вследствие поглощения этим слоем атмосферы корпускулярной и рентгеновской радиации Солнца; здесь тормозятся и сгорают метеоры. Таким образом, термосфера выполняет функцию защитного слоя Земли.

Выше тропосферы находится экзосфера, верхняя граница которой условна и отмечается высотой примерно 1000 км над поверхностью Земли. Из экзосферы атмосферные газы рассеиваются в мировое пространство. Так происходит постепенный переход от атмосферы к межпланетному пространству.

Атмосферный воздух вблизи поверхности Земли состоит из различных газов, преимущественно из азота (78,1 % по объему) и кислорода (20,9 % по объему). В состав воздуха в небольшом количестве также входят следующие газы: аргон, углекислый газ, гелий, озон, радон, водяной пар. Кроме того, воздух может содержать различные переменные компоненты: оксиды азота, аммиак и др.

Помимо газов в состав воздуха входит атмосферный аэрозолъ, который представляет собой взвешенные в воздухе очень мелкие твердые и жидкие частицы. Аэрозоль образуется в процессе жизнедеятельности организмов, хозяйственной деятельности человека, вулканических извержений, подъема пыли с поверхности планеты и из космической пыли, попадающей в верхние слои атмосферы.

Состав атмосферного воздуха до высоты порядка 100 км в целом постоянен во времени и однороден в разных районах Земли. При этом содержание переменных газообразных компонентов и аэрозолей неодинаково. Выше 100–110 км происходит частичный распад молекул кислорода, углекислого газа и воды. На высоте около 1000 км начинают преобладать легкие газы – гелий и водород, а еще выше атмосфера Земли постепенно переходит в межпланетный газ.

Водяной пар – важная составная часть воздуха. Он поступает в атмосферу при испарении с поверхности воды и влажной почвы, а также путем транспирации растениями. Относительное содержание водяного пара в воздухе меняется у земной поверхности от 2,6 % в тропиках до 0,2 % в полярных широтах. С удалением от поверхности Земли количество водяного пара в атмосферном воздухе быстро падает, и уже на высоте 1,5–2 км убывает наполовину. В тропосфере ввиду понижения температуры водяной пар конденсируется. При конденсации водяного пара образуются облака, из которых выпадают атмосферные осадки в виде дождя, снега, града. Количество осадков, выпавших на Землю, равно количеству испарившейся с поверхности Земли воды. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмосфере с океана на континенты, равно объему стока рек, впадающих в океаны.

Озон сосредоточен на 90 % в стратосфере, остальная его часть находится в тропосфере. Озон поглощает УФ-радиацию Солнца, которая негативно воздействует на живые организмы. Районы с пониженным содержанием озона в атмосфере называют озоновыми дырами.

Наибольшие колебания толщины озонового слоя наблюдаются в высоких широтах, поэтому вероятность возникновения озоновых дыр в районах, близких к полюсам, выше, чем у экватора.

Углекислый газ поступает в атмосферу в значительном количестве. Он постоянно выделяется в результате дыхания организмов, горения, извержения вулканов и других процессов, происходящих на Земле. Однако содержание углекислого газа в воздухе мало, поскольку основная его масса растворяется в водах гидросферы. Тем не менее отмечается, что за последние 200 лет содержание углекислого газа в атмосфере увеличилось на 35 %. Причина такого существенного увеличения – активная хозяйственная деятельность человека.

Главным источником тепла для атмосферы является поверхность Земли. Атмосферный воздух достаточно хорошо пропускает к земной поверхности солнечные лучи. Поступающая на Землю солнечная радиация частично поглощается атмосферой – главным образом, водяным паром и озоном, но подавляющая ее часть достигает земной поверхности.

Суммарная солнечная радиация, достигающая поверхности Земли, частично отражается от нее. Величина отражения зависит от отражающей способности конкретного участка земной поверхности, так называемого альбедо. Среднее альбедо Земли – около 30 %, при этом разница между величиной альбедо от 7–9 % для чернозема до 90 % для свеже-выпавшего снега. Нагреваясь, земная поверхность выделяет тепловые лучи в атмосферу и нагревает ее нижние слои. Помимо основного источника тепловой энергии атмосферы – теплоты земной поверхности, тепло в атмосферу поступает в результате конденсации водяного пара, а также путем поглощения прямой солнечной радиации.

Неодинаковый разогрев атмосферы в разных областях Земли вызывает неодинаковое распределение давления, что приводит к перемещению воздушных масс вдоль поверхности Земли. Воздушные массы перемещаются из областей с высоким давлением в области с низким давлением. Такое движение воздушных масс называют ветром. При определенных условиях скорость ветра может быть очень большой, до 30 м/с и более (более 30 м/с – уже ураган).

Состояние нижнего слоя атмосферы в данном месте и в данное время называют погодой. Погода характеризуется температурой воздуха, осадками, силой и направлением ветра, облачностью, влажностью воздуха и атмосферным давлением. Погода определяется условиями циркуляции атмосферы и географическим положением местности. Она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Характер погоды, ее сезонная динамика зависят от климата на данной территории.

Под климатом понимаются наиболее часто повторяющиеся для данной местности особенности погоды, сохраняющиеся на протяжении длительного времени. Это усредненные за 100 лет характеристики – температура, давление, количество осадков и др. Понятие климата (от греч. klima – наклон) возникло еще в Древней Греции. Уже тогда понимали, что погодные условия зависят от угла, под которым солнечные лучи падают на поверхность Земли. Ведущим условием установления определенного климата на данной территории является количество энергии, приходящейся на единицу площади. Оно зависит от суммарной солнечной радиации, падающей на земную поверхность, и от альбедо этой поверхности. Так, в районе экватора и у полюсов температура мало меняется в течение года, а в субтропических областях и в средних широтах годовая амплитуда температур может достигать 65 °C. Основными климатообразующими процессами являются теплообмен, влагообмен и циркуляция атмосферы. Все эти процессы имеют один источник энергии – Солнце.

Атмосфера является непременным условием для всех форм жизни. Наибольшее значение для жизнедеятельности организмов имеют следующие газы, входящие в состав воздуха: кислород, азот, водяной пар, углекислый газ, озон. Кислород необходим для дыхания подавляющему большинству живых организмов. Азот, усваиваемый из воздуха некоторыми микроорганизмами, необходим для минерального питания растений. Водяной пар, конденсируясь и выпадая в виде осадков, является источником воды на суше. Углекислый газ – исходное вещество для процесса фотосинтеза. Озон поглощает вредное для организмов жесткое УФ-излучение.

Предполагают, что современная атмосфера имеет вторичное происхождение: она образовалась после завершения образования планеты около 4,5 млрд лет назад из газов, выделяемых твердыми оболочками Земли. В течение геологической истории Земли атмосфера под влиянием различных факторов претерпевала значительные изменения своего состава.

Развитие атмосферы зависит от геологических и геохимических процессов, происходящих на Земле. После возникновения жизни на нашей планете, то есть примерно 3,5 млрд лет назад, на развитие атмосферы начали оказывать существенное влияние и живые организмы. Значительная часть газов – азот, углекислый газ, водяной пар – возникла в результате извержения вулканов. Кислород появился около 2 млрд лет назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.

В течение последнего времени происходят заметные изменения в атмосфере, связанные с активной хозяйственной деятельностью человека. Так, согласно наблюдениям, за последние 200 лет произошел существенный рост концентрации парниковых газов: содержание углекислого газа возросло в 1,35 раза, метана – в 2,5 раза. Значительно увеличилось содержание многих других переменных компонентов в составе воздуха.

Происходящие изменения состояния атмосферы – увеличение концентрации парниковых газов, озоновые дыры, загрязнение воздуха – представляют собой глобальные экологические проблемы современности.

Люди еще в древности научились применять для своих нужд некото­рые из этих ресурсов, что нашло свое выражение в названиях истори­ческих периодов развития человечества: «каменный век», «бронзовый век», «железный век». В наши дни используются более 200 различных видов минеральных ресурсов. По образному выражению академика А. Е. Ферсмана (1883-1945), ныне к ногам человечества сложена вся периодическая система Менделеева.

Полезные ископаемые - это минеральные образования земной ко­ры, которые могут эффективно использоваться в хозяйстве, скопле­ния полезных ископаемых образуют месторождения, а при больших площадях распространения - бассейны.

Распространение полезных ископаемых в земной коре подчиняет­ся геологическим (тектоническим) закономерностям (табл. 7.4).

Топливные полезные ископаемые имеют осадочное происхожде­ние и обычно сопутствуют чехлу древних платформ и их внутренним и краевым прогибам. Так что название «бассейн» отражает их проис­хождение довольно точно - «морской бассейн».

На земном шаре известно более 3,6 тыс. угольных бассейнов и ме­сторождений, которые в совокупности занимают 15% территории зем­ной суши. Основная часть ресурсов угля приходится на Азию, Север­ную Америку и Европу и сконцентрирована в десяти крупнейших бас­сейнах Китая, США, России, Индии, Германии.

Нефтегазоносных бассейнов разведано более 600, разрабатывает­ся 450. Общее число нефтяных месторождений достигает 35 тыс. Ос­новные запасы находятся в Северном полушарии и являются отложе­ниями мезозоя. Главная часть этих запасов также сконцентрирована в небольшом числе крупнейших бассейнов Саудовской Аравии, США, России, Ирана.

Рудные полезные ископаемые обычно приурочены к фундаментам (щитам) древних платформ, а также к складчатым областям. В таких областях они нередко образуют огромные по протяженности рудные (металлогенические) пояса, связанные своим происхождением с глу­бинными разломами в земной коре. Ресурсы геотермальной энергии особенно велики в странах и районах с повышенной сейсмической и вулканической активностью (Исландия, Италия, Новая Зеландия, Филиппины, Мексика, Камчатка и Северный Кавказ в России, Кали­форния в США).



Для хозяйственного освоения наиболее выгодны территориальные сочетания (скопления) полезных ископаемых, которые облегчают комплексную переработку сырья.

Добыча минеральных ресурсов закрытым (шахтным) способом в мировых масштабах ведется в зарубежной Европе, Европейской час­ти России, США, где многие месторождения и бассейны, находящиеся в верхних слоях земной коры, уже сильно выработаны.

Если полезные ископаемые залегают на глубине 20-30 м, выгоднее снять бульдозером верхний слой горной породы и вести добычу от­крытым способом. Открытым способом добывают, например, желез­ную руду в районе Курска, уголь на некоторых месторождениях Сибири.

По запасам и добыче многих минеральных богатств Россия занимает одно из первых мест в мире (газ, уголь, нефть, железная руда, алмазы).

В табл. 7.4 показана зависимость между строением земной коры, рельефом и размещением полезных ископаемых.

Таблииа 7.4

Залежи полезных ископаемых в зависимости от строения и возврата участка земной коры и форм рельефа

Формы рельефа Строение и возраст участка земной коры Характерные полезные ископаемые Примеры
Равнины Щиты архейско-протерозойских платформ Обильные месторожде­ния железных руд Украинский щит, Балтийский щит Русской платфор­мы
Плиты древних платформ, чехол ко­торых сформировал­ся в палеозойское и мезозойское время Нефть, газ, каменный уголь, строительные ма­териалы Западно-Сибир­ская низменность, Русская равнина
Горы Молодые складча­тые горы альпийско­го возраста Полиметаллические ру­ды, строительные мате­риалы Кавказ, Альпы
Разрушенные складчато-глыбовые горы мезозойской, герцинской и каледон­ской складчатостей Самые богатые полез­ными ископаемыми структуры: руды черных (железо, марганец) и цветных (хром, медь, никель, уран, ртуть) ме­таллов, россыпи золота, платины, алмазов Казахский мелко-сопочник
Омоложенные горы мезозойской и па­леозойской складча-тостей Руды черных и цветных металлов, коренные и россыпные месторожде­ния золота, платины и алмазов Урал, Аппалачи, горы Централь­ной Европы
Матери­ковая отмель (шельф) Краевые прогибы Нефть, газ Мексиканский за­лив
Затопленная часть плит, платформ Нефть, газ Персидский залив
Дно океана Абиссальные равни­ны Железо-марганцевые конкреции Дно Северного моря

Гидросфера

Гидросфера (от греч. hydro - вода и sphaira - шар) - водная оболочка Земли, представляющая собой совокупность океанов, морей и конти­нентальных водных бассейнов - рек, озер, болот и др., подземных вод, ледников и снежных покровов.

Полагают, что водная оболочка Земли образовалась в раннем архее, то есть примерно 3800 млн лет назад. В этот период истории Зем­ли на нашей планете установилась температура, при которой вода мог­ла находиться в значительной мере в жидком агрегатном состоянии.

Вода как вещество обладает уникальными свойствами, к числу ко­торых относятся следующие:

♦ способность к растворению очень многих веществ;

♦ высокая теплоемкость;

♦ нахождение в жидком состоянии в интервале температур от 0 до 100 °С;

♦ большая легкость воды в твердом состоянии (льда), нежели в жид­ком.

Уникальные свойства воды позволили ей играть важную роль в эво­люционных процессах, происходящих в поверхностных слоях земной коры, в круговороте вещества в природе и являться условием возник­новения и развития жизни на Земле. Вода начинает выполнять свои геологические и биологические функции в истории Земли после возникновения гидросферы.

Гидросферу составляют поверхностные воды и подземные воды. Поверхностные воды гидросферы покрывают 70,8% земной поверхности. Их суммарный объем достигает 1370,3 млн км 3 , что составляет 1/800 общего объема планеты, а масса оценивается в 1,4 х 1018 т. К числу поверхностных вод, то есть вод, покрывающих сушу, относят Мировой океан, континентальные водные бассейны и материковые льды. Мировой океан включает в себя все моря и океаны Земли.

Моря и океаны покрывают 3/4 поверхности суши, или 361,1 млн км 2 . В Мировом океане сосредоточена основная масса поверхностных вод - 98%. Мировой океан условно разделен на четыре океана: Атлантиче­ский, Тихий, Индийский и Северный Ледовитый. Полагают, что современный уровень океана установился около 7000 лет назад. По дан­ным геологических исследований, колебания уровня океана за послед­ние 200 млн лет не превышали 100 м.

Вода в Мировом океане соленая. Среднее содержание солей со­ставляет около 3,5% по массе, или 35 г/л. Их качественный состав сле­дующий: из катионов преобладают Na + , Mg 2+ , K + , Ca 2+ , из анионов - Сl-, SO 4 2- , Вг - , С0з 2- , F - . Считается, что солевой состав Мирового океана остается постоянным с палеозойской эры времени начала развития жизни на суше, то есть примерно в течение 400 млн лет.

Континентальные водные бассейны представляют собой реки, озе­ра, болота, водохранилища. Их воды составляют 0,35% от общей мас­сы поверхностных вод гидросферы. Некоторые континентальные во­доемы - озера - содержат соленую воду. Эти озера имеют либо вулка­ническое происхождение, либо представляют собой изолированные остатки древних морей, либо образованы в районе мощных отложений растворимых солей. Однако в основном континентальные водоёмы пресные.

Пресная вода открытых водоемов также содержит растворимые соли, но в небольшом количестве. В зависимости от содержания раство­ренных, солей пресную воду разделяют на мягкую и жесткую. Чем меньше в воде растворено солей, тем она мягче. Самая жесткая прес­ная вода содержит солей не более 0,005% по массе, или 0,5 г/л.

Материковые льды составляют 1,65% от общей массы поверхност­ных вод гидросферы, 99% льда находится в Антарктиде и Гренландии. Общая масса снега и льда на Земле оценивается в 0,0004% массы на­шей планеты. Этого достаточно для того, чтобы покрыть всю поверхность планеты слоем льда толщиной 53 м. Согласно расчетам, если эта масса растает, то уровень океана поднимется на 64 м.

Химический состав поверхностных вод гидросферы приблизитель­но равен среднему составу морской воды. Из химических элементов по массе преобладают кислород (85,8%) и водород (10,7%). Поверхно­стные воды содержат значительное количество хлора (1,9%) и натрия (1,1%). Отмечается существенно более высокое, чем в земной коре, со­держание серы и брома.

Подземные воды гидросферы содержат основной запас пресной во­ды: Предполагают, что суммарный объем подземных вод примерно 28,5 млрд км 3 . Это почти в 15 раз больше, чем в Мировом океане. Счи­тают, что именно подземные воды являются основным резервуаром, пополняющим все поверхностные водоемы. Подземная гидросфера может быть разделена на пять зон.

Криозона. Область льдов. Зона охватывает полярные районы. Тол­щина ее оценивается в пределах 1 км.

Зона жидкой воды. Охватывает практически всю земную кору.

Зона парообразной воды ограничивается глубиной до 160 км. Пола­гают, что вода в этой зоне имеет температуру от 450 °С до 700 °С и на­ходится под давлением до 5 ГПа 1 .

Ниже, на глубинах до 270 км, располагается зона мономерных моле­кул воды. Она охватывает слои воды с диапазоном температур от 700 °С до 1000 °С и давлением до 10 ГПа.

Зона плотной воды простирается, предположительно, до глубин в 3000 км и опоясывает всю мантию Земли. Температуру воды в этой зоне оценивают в промежутке от 1000° до 4000 °С, а давление - до 120 ГПа. Вода при таких условиях полностью ионизирована.

Гидросфера Земли выполняет важные функции: она регулирует температуру планеты, обеспечивает круговорот веществ, является составной частью биосферы.

Непосредственное воздействие на регуляцию температуры поверхностных слоев Земли гидросфера оказывает благодаря одному важных свойств воды - большой теплоемкости. По этой причине поверхностные воды аккумулируют солнечную энергию, а затем медленно её отдают в окружающее пространство. Выравнивание температуры на поверхности Земли происходит исключительно благодаря круговороту воды. Кроме того, снег и лед имеют очень высокую отражающую

способность: она превышает среднюю для земной поверхности на 30%, Поэтому на полюсах разность между поглощенной и излученной энер­гией всегда отрицательна, то есть поглощенная поверхностью энергия меньше испущенной. Так происходит терморегуляция планеты.

Обеспечение круговорота веществ - другая важнейшая функция гидросферы.

Гидросфера находится в постоянном взаимодействии с атмосфе­рой, земной корой и биосферой. Вода гидросферы растворяет в себе воздух, концентрируя при этом кислород, используемый в дальней­шем водными живыми организмами. Находящийся в воздухе углекис­лый газ, образующийся преимущественно в результате дыхания жи­вых организмов, сжигания топлива и извержения вулканов, обладает высокой растворимостью в воде и аккумулируется в гидросфере. Гид­росфера растворяет в себе также тяжелые инертные газы - ксенон и криптон, содержание которых в воде выше, чем в воздухе.

Воды гидросферы, испаряясь, поступают в атмосферу и выпадают в виде осадков, которые проникают в горные породы, разрушая их. Так вода участвует в процессах выветривания горных пород. Обломки гор­ных пород сносятся текучими водами в реки, а затем в моря и океаны или в замкнутые континентальные водоемы и постепенно отлагаются на дне. Эти отложения впоследствии превращаются в осадочные гор­ные породы.

Полагают, что главные катионы морской воды - катионы натрия, магния, калия, кальция - образовались в результате выветривания горных пород и последующего выноса продуктов выветривания река­ми в море. Важнейшие анионы морской воды - анионы хлора, брома, фтора, сульфат-ион и карбонат-ион, вероятно, происходят из атмо­сферы и связаны с вулканической деятельностью.

Часть растворимых солей систематически выводится из состава гидросферы посредством их осаждения. Например, при взаимодейст­вии растворенных в воде карбонат-ионов с катионами кальция и маг­ния образуются нерастворимые соли, которые опускаются на дно в ви­де карбонатных осадочных горных пород. В осаждении некоторых со­лей большую роль играют организмы, населяющие гидросферу. Они извлекают из морской воды отдельные катионы и анионы, концентрируя их в своих скелетах и раковинах в виде карбонатов, силикатов, фосфатов и других соединений. После смерти организмов их твердые оболочки накапливаются на морском дне и образуют мощные тол­щи известняков, фосфоритов и различных кремнистых пород. Подав­ляющая часть осадочных горных пород и такие ценные полезные ископаемые, как нефть, уголь, бокситы, разнообразные соли и т.д., образевались в прошлые геологические периоды в различных водоемах гидросферы. Установлено, что даже самые древние горные породы, аб­солютный возраст которых достигает около 1,8 млрд лет, представляют собой сильно изменившиеся осадки, образованные в водной среде. Вода используется также в процессе фотосинтеза, в результате которого образуется органическое вещество и кислород.

В гидросфере примерно около 3500 млн лет назад зародилась жизнь на Земле. Эволюция организмов продолжалась исключительно в водной среде вплоть до начала палеозойской эры, когда примерно 400 млн лет назад началось постепенное переселение животных и растительных организмов на сушу. В этой связи гидросферу рассматривают как ком­понент биосферы (биосфера - сфера жизни, область обитания живых организмов).

Живые организмы распространены в гидросфере крайне неравно­мерно. Количество и многообразие живых организмов в отдельных участках поверхностных вод определяется многими причинами, в том числе комплексом факторов внешней среды: температурой, солено­стью воды, освещенностью, давлением. С увеличением глубины огра­ничивающее действие освещенности и давления возрастает: количест­во поступающего света резко уменьшается, а давление, наоборот, ста­новится очень высоким. Так, в морях и океанах заселены в основном литоральные зоны, то есть зоны не глубже 200 м, наиболее прогревае­мые солнечными лучами.

Характеризуя функции гидросферы на нашей планете, В. И. Вер­надский отмечал: «Вода определяет и создает всю биосферу. Она со­здает основные черты земной коры, вплоть до магматической оболоч­ки».

Атмосфера

Атмосфера (от греч. atmos - пар, испарение и sphaira - шар) - обо­лочка Земли, состоящая из воздуха.

В состав воздуха входит ряд газов и взвешенные в них частицы твердых и жидких примесей - аэрозолей. Масса атмосферы оценива­ется в 5,157 х 10 15 т. Столб воздуха оказывает давление на поверхность Земли: среднее атмосферное давление на уровне моря - 1013,25 гПа, или 760 мм рт. ст. Давление величиной 760 мм рт. ст. приравнено, к внесистемной единице давления - 1 атмосфере (1 атм.). Средняя температура воздуха у поверхности Земли - 15 °С, при этом температура изменяется примерно от 57 °С в субтропических пустынях до 89 °С в Антарктиде.

Атмосфера неоднородна. Различают следующие слои атмосферы: тропосферу, стратосферу, мезосферу, термосферу и экзосферу, кото­рые отличаются по особенностям распределения температуры, плот­ности воздуха и некоторым другим параметрам. Участки атмосферы, занимающие промежуточное положение между этими слоями, соот­ветственно называют тропопаузой, стратопаузой и мезопаузой.

Тропосфера - нижний слой атмосферы высотой от 8-10 км в по­лярных широтах и до 16-18 км в тропиках. Тропосфера характери­зуется падением температуры воздуха с высотой - с удалением от поверхности Земли на каждый километр температура уменьшается примерно на 6°С. Плотность воздуха быстро убывает. В тропосфере сосредоточено около 80% всей массы атмосферы.

Стратосфера располагается на высотах в среднем от 10-15 км до 50-55 км от поверхности Земли. Стратосфера характеризуется повы­шением температуры с высотой. Возрастание температуры происхо­дит по причине поглощения озоном, находящимся в этом слое атмо­сферы, коротковолновой радиации Солнца, прежде всего УФ (ультра­фиолетовых) лучей. При этом в нижней части стратосферы до уровня около 20 км температура мало меняется с высотой и может даже не­значительно уменьшаться. Выше температура начинает возрастать - сначала медленно, а с уровня 34-36 км намного быстрее. В верхней части стратосферы на высоте 50-55 км температура достигает 260-270 К.

Мезосфера - слой атмосферы, расположенный на высотах 55-85 км. В мезосфере температура воздуха с увеличением высоты уменьшает­ся - примерно с 270 К на нижней границе до 200 К на верхней границе.

Термосфера простирается на высотах примерно от 85 км до 250 км от поверхности Земли и характеризуется быстрым повышением тем­пературы воздуха, достигающей на высоте 250 км 800-1200 К. Повы­шение температуры происходит вследствие поглощения этим слоем атмосферы корпускулярной и рентгеновской радиации Солнца; здесь тормозятся и сгорают метеоры. Таким образом, термосфера выполняет функцию защитного слоя Земли.

Выше тропосферы находится экзосфера, верхняя граница которой условна и отмечается высотой примерно 1000 км над поверхностью Земли. Из экзосферы атмосферные газы рассеиваются в мировое пространство. Так происходит постепенный переход от атмосферы к межпланетному пространству.

Атмосферный воздух вблизи поверхности Земли состоит, из раз­личных газов, преимущественно из азота (78,1% по объему) и кисло­рода (20,9% по объему). В состав воздуха в небольшом количестве так­же входят следующие газы: аргон, углекислый газ, гелий, озон, радон, водяной пар. Кроме того, воздух может содержать различные переменные компоненты: оксиды азота, аммиак и др.

Помимо газов в состав воздуха входит атмосферный аэрозоль, ко­торый представляет собой взвешенные в воздухе очень мелкие твердые и жидкие частицы. Аэрозоль образуется в процессе жизнедеятельности организмов, хозяйственной деятельности человека, вулканических извержений, подъема пыли с поверхности планеты и из космической пыли, попадающей в верхние слои атмосферы.

Состав атмосферного воздуха до высоты порядка 100 км в.целом постоянен, во времени и однороден в разных районах Земли. При этом содержание переменных газообразных компонентов и аэрозолей не­одинаково. Выше 100-110 км происходит частичный распад молекул кислорода, углекислого газа и воды. На высоте около 1000 км начина­ют преобладать легкие газы - гелий и водород, а еще выше атмосфера Земли постепенно переходит в межпланетный газ.

Водяной пар - важная составная часть воздуха. Он поступает в ат­мосферу при испарении с поверхности, воды и влажной почвы, а также путем транспирации растениями. Относительное содержание водяно­го пара в воздухе меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С удалением от поверхности Земли ко­личество водяного пара в атмосферном воздухе, быстро падает, и уже на высоте 1,5-2 км убывает наполовину. В тропосфере ввиду пониже­ния температуры водяной пар конденсируется. При конденсации во­дяного пара образуются облака, из которых выпадают атмосферные осадки в виде дождя, снега, града. Количество осадков, выпавших на Землю, равно количеству испарившейся с поверхности. Земли воды. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмо­сфере с океана на континенты, равно объему стока рек, впадающих в океаны.

Озон сосредоточен на 90% в стратосфере, остальная его часть находится в тропосфере. Озон поглощает УФ-радиацию Солнца, кото­рая негативно воздействует на живые организмы. Районы с пониженным содержанием озона в атмосфере называют озоновыми дырами.

Наибольшие колебания толщины озонового слоя наблюдаются в вы­соких широтах, поэтому вероятность возникновения озоновых дыр в районах, близких к полюсам, выше, чем у экватора.

Углекислый газ поступает в атмосферу в значительном количестве. Он постоянно выделяется в результате дыхания организмов, горения, извержения вулканов и других процессов, происходящих на Земле. Однако содержание углекислого газа в воздухе мало, поскольку ос­новная его масса растворяется в водах гидросферы. Тем не менее отме­чается, что за последние 200 лет содержание углекислого газа в атмо­сфере увеличилось на 35%. Причина такого существенного увеличе­ния - активная хозяйственная деятельность человека.

Главным источником тепла для атмосферы является поверхность Земли. Атмосферный воздух достаточно хорошо пропускает к земной поверхности солнечные лучи. Поступающая на Землю солнечная ра­диация частично поглощается атмосферой - главным образом, водя­ным паром и озоном, но подавляющая ее часть достигает земной по­верхности.

Суммарная солнечная радиация, достигающая поверхности Земли, частично отражается от нее. Величина отражения зависит от отражающей способности конкретного участка земной поверхности, так назы­ваемого альбедо. Среднее альбедо Земли - около 30%, при этом разница между величиной альбедо от 7-9% для чернозема до 90% для свежевыпавшего снега. Нагреваясь, земная поверхность выделяет тепловые лучи в атмосферу и нагревает ее нижние слои. Помимо основного ис­точника тепловой энергии атмосферы - теплоты земной поверхности; тепло в атмосферу поступает в результате конденсации водяного пара, а также путем поглощения прямой солнечной радиации.

Неодинаковый разогрев атмосферы в разных областях Земли вы­зывает неодинаковое распределение давления, что приводит к переме­щению воздушных масс вдоль поверхности Земли. Воздушные массы перемещаются из областей с высоким давлением в области с низким давлением. Такое движение воздушных масс называют ветром. При определенных условиях скорость ветра может быть очень большой, до 30 м/с и более (более 30 м/с - уже ураган).

Состояние нижнего слоя атмосферы в данном месте и в Данное вре­мя называют погодой. Погода характеризуется температурой воздуха, осадками, силой и направлением ветра, облачностью, влажностью воз­духа и атмосферным давлением. Погода определяется условиями цир­куляции атмосферы и географическим положением местности. Она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Характер погоды, ее сезонная динамика зависят от климата на данной территории.

Под, климатом понимаются наиболее часто повторяющиеся для данной местности особенности погоды, сохраняющиеся на протяже­нии длительного времени. Это усредненные за 100 лет характеристи­ки - температура, давление, количество осадков и др. Понятие клима­та (от греч, klima - наклон) возникло еще в Древней Греции. Уже тогда понимали, что погодные условия зависят от угла, под которым солнеч­ные лучи падают на поверхность Земли. Ведущим условием установ­ления определенного климата на данной территории является количе­ство энергии, приходящейся на единицу площади. Оно зависит от суммарной солнечной радиации, падающей на земную поверхность, и от альбедо этой поверхности. Так, в районе экватора и у полюсов тем­пература мало меняется в течение года, а в субтропических областях и в средних широтах годовая амплитуда температур может достигать 65 °С. Основными климатообразующими процессами являются теп­лообмен, влагообмен и циркуляция атмосферы. Все эти процессы име­ют один источник энергии - Солнце.

Атмосфера является непременным условием для всех форм жизни. Наибольшее значение для жизнедеятельности организмов имеют сле­дующие газы, входящие в состав воздуха: кислород, азот, водяной пар, углекислый газ, озон. Кислород необходим для дыхания подавляюще­му большинству живых организмов. Азот, усваиваемый из воздуха не­которыми микроорганизмами, необходим для минерального питания растений. Водяной пар, конденсируясь и выпадая в виде осадков, яв­ляется источником воды на суше. Углекислый газ - исходное вещест­во для процесса фотосинтеза. Озон поглощает вредное для организ­мов жесткое УФ-излучение.

Предполагают, что современная атмосфера имеет вторичное проис­хождение: она образовалась после завершения образования планеты около 4,5 млрд лет назад из газов, выделяемых твердыми оболочками Земли. В течение геологической истории Земли атмосфера под влия­нием различных факторов претерпевала значительные изменения своего состава.

Развитие атмосферы зависит от геологических и геохимических процессов, происходящих на Земле. После возникновения жизни на нашей планете, то есть примерно 3,5 млрд лет назад, на развитие атмо­сферы начали оказывать существенное влияние и живые организмы. Значительная часть газов - азот, углекислый газ, водяной пар - воз­никла в результате извержения вулканов. Кислород появился около 2 млрд лет назад как результат деятельности фотосинтезирующих орга­низмов, первоначально зародившихся в поверхностных водах океана.

В течение последнего времени происходят заметные изменения в атмосфере, связанные с активной хозяйственной деятельностью че­ловека. Так, согласно наблюдениям, за последние 200 лет произошел существенный рост концентрации парниковых газов: содержание угле­кислого газа возросло в 1,35 раза, метана - в 2,5 раза. Значительно увеличилось содержание многих других переменных компонентов в со­ставе воздуха.

Происходящие изменения состояния атмосферы - увеличение концентрации парниковых газов, озоновые дыры, загрязнение возду­ха - представляют собой глобальные экологические проблемы совре­менности.

65. ЭКОЛОГИЧЕСКИЕ ФУНКЦИИ ЛИТОСФЕРЫ: РЕСУРСНАЯ, ГЕОДИНАМИЧЕСКАЯ, ГЕОФИЗИКО-ГЕОХИМИЧЕСКАЯ

Люди еще в древности научились применять для своих нужд некоторые из ресурсов литосферы и других оболочек Земли, что нашло свое отражение в названиях исторических периодов развития человечества: «каменный век», «бронзовый век», «железный век». В наши дни используется более 200 различных видов ресурсов. Все природные ресурсы четко следует отграничивать от природных условий.

Природные ресурсы – это тела и силы природы, которые на данном уровне развития производительных сил и изученности могут быть использованы для удовлетворения потребностей человеческого общества в форме непосредственного участия в материальной деятельности.

Под полезными ископаемыми понимаются минеральные образования земной коры, которые могут эффективно использоваться в хозяйственной деятельности человека. Распространение полезных ископаемых в земной коре подчиняется геологическим закономерностям. К ресурсам литосферы относятся топливные, рудные и нерудные полезные ископаемые, а также энергия внутреннего тепла Земли. Таким образом, литосфера выполняет одну из важнейших для человечества функций – ресурсную – снабжение человека почти всеми видами известных ресурсов.

Кроме ресурсной функции, литосфера выполняет и еще одну важную функцию – геодинамическую. На Земле непрерывно проходят геологические процессы. В основе всех геологических процессов лежат разные источники энергии. Источником внутренних процессов является тепло, образующееся при радиоактивном распаде и гравитационной дифференциации веществ внутри Земли.

С внутренними процессами связаны различные тектонические движения земной коры, создающие основные формы рельефа – горы и равнины, магматизм, землетрясения. Тектонические движения проявляются в медленных вертикальных колебаниях земной коры, в образовании складок горных пород и тектонических разломов. Постоянно происходит изменение внешнего облика земной поверхности под воздействием литосферных и внутриземных процессов. Мы воочию можем находятся лишь немногие из таких процессов. К ним, в частности, относятся такие грозные явления, как землетрясения и вулканизм, вызванные сейсмической активностью внутриземных процессов.

В разнообразии химического состава и физико-химических свойств земной коры и заключается следующая функция литосферы – геофизико-геохими-ческая. По геологическим и геохимическим данным до глубины 16 км подсчитан усредненный химический состав пород земной коры: кислород – 47 %, кремний -27,5 %, алюминий – 8,6 %, железо – 5 %, кальций, натрий, магний и калий – 10,5 %, на все остальные элементы приходится около 1,5 %, в том числе на титан – 0,6 %, углерод – 0,1 %, медь -0,01 %, свинец – 0,0016 %, золото – 0,0000005 %. Очевидно, что первые восемь элементов составляют почти 99 % земной коры. Выполнение литосферой данной, не менее важной, чем предыдущие, функции приводит к наиболее эффективному хозяйственному использованию практически всех слоев литосферы. В частности, наиболее ценным по своему составу и физико-химическим свойствам является верхний тонкий слой земной коры, обладающий естественным плодородием и именуемый почвой.

65. ЭКОЛОГИЧЕСКИЕ ФУНКЦИИ ЛИТОСФЕРЫ: РЕСУРСНАЯ, ГЕОДИНАМИЧЕСКАЯ, ГЕОФИЗИКО-ГЕОХИМИЧЕСКАЯ

Люди еще в древности научились применять для своих нужд некоторые из ресурсов литосферы и других оболочек Земли, что нашло свое отражение в названиях исторических периодов развития человечества: «каменный век», «бронзовый век», «железный век». В наши дни используется более 200 различных видов ресурсов. Все природные ресурсы четко следует отграничивать от природных условий.

Природные ресурсы – это тела и силы природы, которые на данном уровне развития производительных сил и изученности могут быть использованы для удовлетворения потребностей человеческого общества в форме непосредственного участия в материальной деятельности.

Под полезными ископаемыми понимаются минеральные образования земной коры, которые могут эффективно использоваться в хозяйственной деятельности человека. Распространение полезных ископаемых в земной коре подчиняется геологическим закономерностям. К ресурсам литосферы относятся топливные, рудные и нерудные полезные ископаемые, а также энергия внутреннего тепла Земли. Таким образом, литосфера выполняет одну из важнейших для человечества функций – ресурсную – снабжение человека почти всеми видами известных ресурсов.

Кроме ресурсной функции, литосфера выполняет и еще одну важную функцию – геодинамическую. На Земле непрерывно проходят геологические процессы. В основе всех геологических процессов лежат разные источники энергии. Источником внутренних процессов является тепло, образующееся при радиоактивном распаде и гравитационной дифференциации веществ внутри Земли.

С внутренними процессами связаны различные тектонические движения земной коры, создающие основные формы рельефа – горы и равнины, магматизм, землетрясения. Тектонические движения проявляются в медленных вертикальных колебаниях земной коры, в образовании складок горных пород и тектонических разломов. Постоянно происходит изменение внешнего облика земной поверхности под воздействием литосферных и внутриземных процессов. Мы воочию можем находятся лишь немногие из таких процессов. К ним, в частности, относятся такие грозные явления, как землетрясения и вулканизм, вызванные сейсмической активностью внутриземных процессов.

В разнообразии химического состава и физико-химических свойств земной коры и заключается следующая функция литосферы – геофизико-геохими-ческая. По геологическим и геохимическим данным до глубины 16 км подсчитан усредненный химический состав пород земной коры: кислород – 47 %, кремний -27,5 %, алюминий – 8,6 %, железо – 5 %, кальций, натрий, магний и калий – 10,5 %, на все остальные элементы приходится около 1,5 %, в том числе на титан – 0,6 %, углерод – 0,1 %, медь -0,01 %, свинец – 0,0016 %, золото – 0,0000005 %. Очевидно, что первые восемь элементов составляют почти 99 % земной коры. Выполнение литосферой данной, не менее важной, чем предыдущие, функции приводит к наиболее эффективному хозяйственному использованию практически всех слоев литосферы. В частности, наиболее ценным по своему составу и физико-химическим свойствам является верхний тонкий слой земной коры, обладающий естественным плодородием и именуемый почвой.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека