2 N H 3 + N a O C l ⟶ N 2 H 4 + N a C l + H 2 O {\displaystyle {\mathsf {2NH_{3}+NaOCl\longrightarrow N_{2}H_{4}+NaCl+H_{2}O}}}

  • Галогены (хлор, йод) образуют с аммиаком опасные взрывчатые вещества - галогениды азота (хлористый азот, иодистый азот).
  • С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):
N H 3 + C H 3 C l → [ C H 3 N H 3 ] C l {\displaystyle {\mathsf {NH_{3}+CH_{3}Cl\rightarrow Cl}}} (гидрохлорид метиламмония)
  • С карбоновыми кислотами , их ангидридами , галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами - основания Шиффа , которые возможно восстановить до соответствующих аминов (восстановительное аминирование).

История

Аммиак был впервые выделен в чистом виде Дж. Пристли в 1774 году , который назвал его «щелочной воздух» (англ. alkaline air ) . Через одиннадцать лет, в 1785 году К. Бертолле установил точный химический состав аммиака . С того времени в мире начались исследования по получению аммиака из азота и водорода . Аммиак был очень нужен для синтеза соединений азота, поскольку получение их из чилийской селитры ограничивалось постепенным истощением запасов последней. Проблема уменьшения запасов селитры обострилась к концу XIX века. Только в начале XX века удалось изобрести процесс синтеза аммиака, пригодный для промышленности. Это осуществил Ф. Габер , начавший трудиться над этой задачей в 1904 году и к 1909 году создавший небольшой контактный аппарат, в котором использовал повышенное давление (в соответствии с принципом Ле-Шателье) и катализатор из осмия . 2 июля 1909 года Габер устроил испытания аппарата в присутствии К. Боша и А. Митташа , оба - от Баденского анилинового и содового завода (BASF), и получил аммиак. К. Бош к 1911 году создал крупномасштабную версию аппарата для BASF, а затем был построен и 9 сентября 1913 года вступил в строй первый в мире завод по синтезу аммиака, который был расположен в Оппау (ныне район в черте города Людвигсхафен-на-Рейне) и принадлежал BASF. В 1918 году Ф. Габер стал лауреатом Нобелевской премии по химии «за синтез аммиака из составляющих его элементов». В России и СССР первая партия синтетического аммиака была получена в 1928 году на Чернореченском химическом комбинате .

Происхождение названия

Аммиак (в европейских языках его название звучит как «аммониак») своим названием обязан оазису Аммона в Северной Африке , расположенному на перекрёстке караванных путей. В жарком климате мочевина (NH 2) 2 CO, содержащаяся в продуктах жизнедеятельности животных, разлагается особенно быстро. Одним из продуктов разложения и является аммиак. По другим сведениям, аммиак получил своё название от древнеегипетского слова амониан . Так называли людей, поклоняющихся богу Амону . Они во время своих ритуальных обрядов нюхали нашатырь NH 4 Cl, который при нагревании испаряет аммиак.

Жидкий аммиак

Жидкий аммиак, хотя и в незначительной степени, диссоциирует на ионы (автопротолиз), в чём проявляется его сходство с водой :

2 N H 3 → N H 4 + + N H 2 − {\displaystyle {\mathsf {2NH_{3}\rightarrow NH_{4}^{+}+NH_{2}^{-}}}}

Константа самоионизации жидкого аммиака при −50 °C составляет примерно 10 −33 (моль/л)².

2 N a + 2 N H 3 → 2 N a N H 2 + H 2 {\displaystyle {\mathsf {2Na+2NH_{3}\rightarrow 2NaNH_{2}+H_{2}}}}

Получающиеся в результате реакции с аммиаком амиды металлов содержат отрицательный ион NH 2 − , который также образуется при самоионизации аммиака. Таким образом, амиды металлов являются аналогами гидроксидов. Скорость реакции возрастает при переходе от Li к Cs. Реакция значительно ускоряется в присутствии даже небольших примесей H 2 O.

Металлоаммиачные растворы обладают металлической электропроводностью, в них происходит распад атомов металла на положительные ионы и сольватированные электроны, окруженные молекулами NH 3 . Металлоаммиачные растворы, в которых содержатся свободные электроны, являются сильнейшими восстановителями.

Комплексообразование

Благодаря своим электронодонорным свойствам молекулы NH 3 могут входить в качестве лиганда в комплексные соединения. Так, введение избытка аммиака в растворы солей d-металлов приводит к образованию их аминокомплексов:

C u S O 4 + 4 N H 3 → [ C u (N H 3) 4 ] S O 4 {\displaystyle {\mathsf {CuSO_{4}+4NH_{3}\rightarrow SO_{4}}}} N i (N O 3) 3 + 6 N H 3 → [ N i (N H 3) 6 ] (N O 3) 3 {\displaystyle {\mathsf {Ni(NO_{3})_{3}+6NH_{3}\rightarrow (NO_{3})_{3}}}}

Комплексообразование обычно сопровождается изменением окраски раствора. Так, в первой реакции голубой цвет (CuSO 4) переходит в темно-синий (окраска комплекса), а во второй реакции окраска изменяется из зелёной (Ni (NO 3) 2) в сине-фиолетовую. Наиболее прочные комплексы с NH 3 образуют хром и кобальт в степени окисления +3.

Биологическая роль

Аммиак является важным источником азота для живых организмов. Несмотря на высокое содержание свободного азота в атмосфере (более 75 %), очень мало живых существ способны использовать свободный, нейтральный двухатомный азот атмосферы, газ N 2 . Поэтому для включения азота атмосферы в биологический оборот, в частности в синтез аминокислот и нуклеотидов , необходим процесс, который называется «фиксацией азота ». Некоторые растения зависят от доступности аммиака и других нитрогенных остатков, выделяющихся в почву разлагающимися органическими остатками других растений и животных. Некоторые другие, такие, как азотфиксирующие бобовые, используют преимущества симбиоза с азотфиксирующими бактериями (ризобиями), которые способны образовывать аммиак из атмосферного азота .

У некоторых организмов аммиак образуется из атмосферного азота с помощью ферментов, называемых нитрогеназами. Этот процесс называется фиксацией азота . И хотя маловероятно, что когда-либо будут изобретены биомиметические методы, способные конкурировать по производительности с химическими методами производства аммиака из азота, тем не менее, учёные прилагают большие усилия к тому, чтобы как можно лучше понять механизмы биологической фиксации азота. Научный интерес к этой проблеме отчасти мотивируется необычной структурой активного каталитического центра азотфиксирующего фермента (нитрогеназы), которая содержит необычный биметаллический молекулярный ансамбль Fe 7 MoS 9 .

Аммиак является также конечным побочным продуктом метаболизма аминокислот, а именно продуктом их дезаминирования, катализируемого такими ферментами, как глутамат-дегидрогеназа. Экскреция аммиака в неизменённом виде является обычным путём детоксикации аммиака у водных существ (рыбы, водные беспозвоночные, отчасти амфибии). У млекопитающих, включая человека, аммиак обычно быстро превращается в мочевину , которая гораздо менее токсична и, в частности, имеет менее щелочную реакцию и меньшую реакционную способность в качестве восстановителя. Мочевина является основным компонентом сухого остатка мочи. Большинство птиц, пресмыкающихся, насекомых, паукообразных, однако, выделяют в качестве основного нитрогенного остатка не мочевину, а мочевую кислоту.

Аммиак также играет важную роль как в нормальной, так и в патологической физиологии животных. Аммиак производится в процессе нормального метаболизма аминокислот, однако весьма токсичен в высоких концентрациях . Печень животных преобразует аммиак в мочевину с помощью серии последовательных реакций, известных как цикл мочевины. Нарушение функции печени, такое, например, какое наблюдается при циррозе печени , может приводить к нарушению способности печени обезвреживать аммиак и образовывать из него мочевину, и, как следствие, к повышению уровня аммиака в крови, состоянию, называемому гипераммониемия. К аналогичному результату - повышению уровня свободного аммиака в крови и развитию гипераммониемии - приводит наличие врождённых генетических дефектов в ферментах цикла мочевины, таких, например, как орнитин-карбамилтрансфераза. К тому же результату может приводить нарушение выделительной функции почек при тяжёлой почечной недостаточности и уремии: вследствие задержки выделения мочевины её уровень в крови возрастает настолько, что «цикл мочевины» начинает работать «в обратную сторону» - избыток мочевины гидролизуется обратно почками в аммиак и углекислый газ, и, как следствие, уровень аммиака в крови возрастает. Гипераммониемия привносит свой вклад в нарушения сознания и развитие сопорозных и коматозных состояний при печёночной энцефалопатии и уремии, а также в развитие неврологических нарушений, часто наблюдаемых у больных с врождёнными дефектами ферментов цикла мочевины или с органическими ацидуриями .

Менее выраженная, однако клинически существенная, гипераммониемия может наблюдаться при любых процессах, при которых наблюдается повышенный катаболизм белков, например, при обширных ожогах , синдроме сдавления или размозжения тканей, обширных гнойно-некротических процессах, гангрене конечностей, сепсисе и т. д., а также при некоторых эндокринных нарушениях, таких, как сахарный диабет , тяжёлый тиреотоксикоз . Особенно высока вероятность возникновения гипераммониемии при этих патологических состояниях в тех случаях, когда патологическое состояние, помимо повышенного катаболизма белков, вызывает также выраженное нарушение детоксицирующей функции печени или выделительной функции почек.

Аммиак важен для поддержания нормального кислотно-щелочного баланса крови. После образования аммиака из глютамина , альфа-кетоглутарат может быть далее расщеплён с образованием двух молекул гидрокарбоната , которые затем могут использоваться как буфер для нейтрализации кислот, поступающих с пищей. Полученный из глютамина аммиак затем выделяется с мочой (как непосредственно, так и в виде мочевины), что, с учётом образования двух молекул бикарбоната из кетоглутарата, приводит в сумме к потере кислот и сдвигу pH крови в щелочную сторону. Кроме того, аммиак может диффундировать через почечные канальцы, соединяться с ионом водорода и экскретироваться совместно с ним (NH 3 + H + => NH 4 +), и тем самым ещё больше способствовать выведению кислот из организма .

Аммиак и ионы аммония являются токсическим побочным продуктом метаболизма у животных. У рыб и водных беспозвоночных аммиак выделяется непосредственно в воду. У млекопитающих (включая водных млекопитающих), земноводных и у акул аммиак в цикле мочевины преобразуется в мочевину, поскольку мочевина гораздо менее токсична, менее химически реакционноспособна и может более эффективно «храниться» в организме до момента возможности её выделения. У птиц и пресмыкающихся (рептилий) аммиак, образовавшийся в процессе метаболизма, преобразуется в мочевую кислоту, которая является твёрдым остатком и может быть выделена с минимальными потерями воды .

Физиологическое действие

По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Аммиак обладает как местным, так и резорбтивным действием.

Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это человек и воспринимает как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюнктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями. Кроме того, сжиженный аммиак при испарении поглощает тепло, и при соприкосновении с кожей возникает обморожение различной степени. Запах аммиака ощущается при концентрации 37 мг/м³ .

Применение

Аммиак относится к числу важнейших продуктов химической промышленности, ежегодное его мировое производство достигает 150 млн тонн. В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров , азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя .

Аммиак. Физические и химические свойства

Химические свойства

Благодаря наличию неподеленной электронной пары во многих реакциях аммиак выступает как комплексообразователь. Он присоединяет протон, образуя ион аммония.

Водный раствор аммиака («нашатырный спирт») имеет слабощелочную среду из-за протекания процесса:

O > +; Ko=1, 8?10 -5 . (16)

Взаимодействуя с кислотами, даёт соответствующие соли аммония:

2(O) + > (+ O. (17)

Аммиак также является очень слабой кислотой, способен образовывать с металлами соли -- амиды.

При нагревании аммиак проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется промышленности для получения азотной кислоты:

4 + 54NO + 6O. (18)

На восстановительной способности основано применение нашатыря Cl для очистки поверхности металла от оксидов при их пайке:

3CuO + 2Cl > 3Cu + 3O +2HCl +. (19)

С галогеналканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):

Cl > (гидрохлорид метиламмония). (20)

С карбоновыми кислотами, их ангидридами, галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами -- основания Шиффа, которые возможно восстановить до соответствующих аминов (восстановительноеаминирование).

При 1000 °C аммиак реагирует с углём, образуя синильную кислоту HCN и частично разлагаясь на азот и водород. Также он может реагировать с метаном, образуя ту же самую синильную кислоту:

Жидкий аммиак

Жидкий аммиак, хотя и в незначительной степени, диссоциирует на ионы, в чём проявляется его сходство с водой:

Жидкий аммиак, как и вода, является сильным ионизирующим растворителем, в котором растворяется ряд активных металлов: щелочные, щёлочноземельные, Mg, Al, а также Eu и Yb. Растворимость щелочных металлов в жидком составляет несколько десятков процентов. В жидком аммиаке также растворяются некоторые интерметаллиды содержащие щелочные металлы, например

Разбавленные растворы металлов в жидком аммиаке окрашены в синий цвет, концентрированные растворы имеют металлический блеск и похожи на бронзу. При испарении аммиака щелочные металлы выделяются в чистом виде, а щелочноземельные - в виде комплексов с аммиаком 2+ обладающих металлической проводимостью. При слабом нагревании эти комплексы разлагаются на металл и.

Растворенный в металл постепенно реагирует с образованием амида:

Комплексообразование

Благодаря своим электронно-донорным свойствам, молекулы могут входить в качестве лиганда в комплексные соединения. Так, введение избытка аммиака в растворы солей d-металлов приводит к образованию их аминокомплексов:

Комплексообразование обычно сопровождается изменением окраски раствора, так в первой реакции голубой цвет () переходит в темно- синий, а во второй реакции окраска изменяется из зелёной (Ni() в сине-фиолетовую. Наиболее прочные комплексы с образуют хром и кобальт в степени окисления (+3).

Растворы аммиакатов довольно устойчивы, за исключением аммиаката кобальта (II) желто-бурого цвета, который постепенно окисляется кислородом воздуха в аммиакат кобальта (III) вишнево-красного цвета. В присутствии окислителей эта реакция протекает мгновенно.

Образование и разрушение комплексного иона объясняется смещением равновесия его диссоциации. В соответствии с принципом Ле-Шателье равновесие в растворе аммиачного комплекса серебра смещается в сторону образования комплекса (влево) при увеличении концентрации и/или. При уменьшении концентрации этих частиц в растворе равновесие смещается вправо, и комплексный ион разрушается. Это может быть обусловлено связыванием центрального иона или лигандов в какие-либо соединения, более прочные, чем комплекс. Например, при добавлении азотной кислоты к раствору происходит разрушение комплекса вследствие образования ионов, в котором аммиак связан с ионом водорода более прочно:

Получение аммиака

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

Это так называемый процесс Гарбера. Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях - тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Применение катализатора (пористое железо с примесями и) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор. В промышленных условиях использован принцип циркуляции - аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления .

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

Обычно лабораторным способом получают слабым нагреванием смеси хлорида аммония с гашеной известью.

Для осушения аммиака его пропускают через смесь извести с едким натром.

Тема: Аммиак. Физические и химические свойства. Получение и применение.

Цели урока: знать строение молекулы аммиака, физические и химические свойства, области применения; уметь доказывать химические свойства аммиака: записывать уравнения реакций аммиака с кислородом, водой, кислотами и рассматривать их с точки зрения теории электролитической диссоциации и окислительно-восстановительных процессов.

Ход урока

1. Организационный момент урока.

2. Изучение нового материала.

Аммиак – NH 3

Аммиак (в европейских языках его название звучит как «аммониак») своим названием обязан оазису Аммона в Северной Африке, расположенному на перекрестке караванных путей. В жарком климате мочевина (NH 2 ) 2 CO, содержащаяся в продуктах жизнедеятельности животных, разлагается особенно быстро. Одним из продуктов разложения и является аммиак. По другим сведениям, аммиак получил своё название от древнеегипетского слова амониан. Так называли людей, поклоняющихся богу Амону. Они во время своих ритуальных обрядов нюхали нашатырь NH 4 Cl, который при нагревании испаряет аммиак.

1. Строение молекулы

Молекула аммиака имеет форму тригональной пирамиды с атомом азота в вершине . Три неспаренных p-электрона атома азота участвуют в образовании полярных ковалентных связей с 1s-электронами трёх атомов водорода (связи N−H), четвёртая пара внешних электронов является неподелённой, она может образовать донорно-акцепторную связь с ионом водорода, образуя ион аммония NH 4 + .

2. Физические свойства аммиака

При нормальных условиях - бесцветный газ с резким характерным запахом (запах нашатырного спирта), почти вдвое легче воздуха, ядовит. По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Аммиак обладает как местным, так и резорбтивным действием. Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это мы и воспринимаем как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. Растворимость NH 3 в воде чрезвычайно велика - около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды.

3. Получение аммиака

В лаборатории

В промышленности

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

NH 4 Cl + NaOH = NH 3 + NaCl + H 2 O

(NH 4 ) 2 SO 4 + Ca(OH) 2 = 2NH 3 + CaSO 4 + 2H 2 O

Внимание! Гидроксид аммония неустойчивое основание, разлагается:NH 4 OH ↔ NH 3 + H 2 O

При получении аммиака держите пробирку - приёмник дном кверху, так как аммиак легче воздуха:

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

N 2(г) + 3H 2(г) ↔ 2NH 3(г) + 45,9 к Дж

Условия:

катализатор – пористое железо

температура – 450 – 500 ˚С

давление – 25 – 30 МПа

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).

4. Химические свойства аммиака

Для аммиака характерны реакции:

1. с изменением степени окисления атома азота (реакции окисления)

2. без изменения степени окисления атома азота (присоединение)

Реакции с изменением степени окисления атома азота (реакции окисления)

N -3 → N 0 → N +2

NH 3 – сильный восстановитель.

с кислородом

1. Горение аммиака (при нагревании)

4NH 3 + 3O 2 → 2N 2 + 6H 2 0

2. Каталитическое окисление амииака (катализатор Pt – Rh, температура)

4NH 3 + 5O 2 → 4NO + 6H 2 O

с оксидами металлов

2 NH 3 + 3CuO = 3Cu + N 2 + 3 H 2 O

с сильными окислителями

2NH 3 + 3Cl 2 = N 2 + 6HCl (при нагревании)

аммиак – непрочное соединение, при нагревании разлагается

2NH 3 ↔ N 2 + 3H 2

Реакции без изменения степени окисления атома азота (присоединение - Образование иона аммония NH 4 + по донорно-акцепторному механизму )

5. Применение аммиака

По объемам производства аммиак занимает одно из первых мест; ежегодно во всем мире получают около 100 миллионов тонн этого соединения. Аммиак выпускается в жидком виде или в виде водного раствора – аммиачной воды, которая обычно содержит 25% NH 3 . Огромные количества аммиака далее используются для получения азотной кислоты, которая идет на производство удобрений и множества других продуктов. Аммиачную воду применяют также непосредственно в виде удобрения, а иногда поля поливают из цистерн непосредственно жидким аммиаком. Из аммиака получают различные соли аммония, мочевину, уротропин. Его применяют также в качестве дешевого хладагента в промышленных холодильных установках.

Аммиак используется также для получения синтетических волокон, например, нейлона и капрона. В легкой промышленности он используется при очистке и крашении хлопка, шерсти и шелка. В нефтехимической промышленности аммиак используют для нейтрализации кислотных отходов, а в производстве природного каучука аммиак помогает сохранить латекс в процессе его перевозки от плантации до завода. Аммиак используется также при производстве соды по методу Сольве. В сталелитейной промышленности аммиак используют для азотирования – насыщения поверхностных слоев стали азотом, что значительно увеличивает ее твердость.

Медики используют водные растворы аммиака (нашатырный спирт) в повседневной практике: ватка, смоченная в нашатырном спирте, выводит человека из обморочного состояния. Для человека аммиак в такой дозе не опасен.

3. Закрепление изученного материала

№1. Осуществить превращения по схеме:

а) Азот→ Аммиак → Оксид азота (II)

б) Нитрат аммония → Аммиак → Азот

в) Аммиак → Хлорид аммония → Аммиак → Сульфат аммония

Для ОВР составить е-баланс, для РИО полные, ионные уравнения.

№2. Напишите четыре уравнения химических реакций, в результате которых образуется аммиак.

4. Домашнее задание

П. 24 , упр . 2,3; тест

Аммиа́к - NH3, нитрид водорода, при нормальных условиях - бесцветный газ с резким характерным запахом (запах нашатырного спирта)

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).

Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях - тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит и больших капиталовложений. Кроме того, равновесие реакции даже при 700 °C устанавливается слишком медленно для практического её использования.

Применение катализатора (пористое железо с примесями Al2O3 и K2O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор. Выход аммиака при таких условиях составляет около 30 %. В промышленных условиях использован принцип циркуляции - аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления.

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония.

Обычно лабораторным способом аммиак получают слабым нагреванием смеси хлорида аммония с гашеной известью.

Для осушения аммиака его пропускают через смесь извести с едким натром.

Очень сухой аммиак можно получить, растворяя в нём металлический натрий и впоследствии перегоняя. Это лучше делать в системе, изготовленной из металла под вакуумом. Система должна выдерживать высокое давление (при комнатной температуре давление насыщенных паров аммиака около 10 атмосфер). В промышленности аммиак осушают в абсорбционных колоннах.

Расходные нормы на тонну аммиака

На производство одной тонны аммиака в России расходуется в среднем 1200 нм³ природного газа, в Европе - 900 нм³.

Аммиак в медицине

При укусах насекомых аммиак применяют наружно в виде примочек. 10 % водный раствор аммиака известен как нашатырный спирт.

Возможны побочные действия: при продолжительной экспозиции (ингаляционное применение) аммиак может вызвать рефлекторную остановку дыхания.

Местное применение противопоказано при дерматитах, экземах, других кожных заболеваниях, а также при открытых травматических повреждениях кожных покровов.

При случайном поражении слизистой оболочки глаза промыть водой (по 15 мин через каждые 10 мин) или 5 % раствором борной кислоты. Масла и мази не применяют. При поражении носа и глотки - 0,5 % раствор лимонной кислоты или натуральные соки. В случае приема внутрь пить воду, фруктовый сок, молоко, лучше - 0,5 % раствор лимонной кислоты или 1 % раствор уксусной кислоты до полной нейтрализации содержимого желудка.

Взаимодействие с другими лекарственными средствами неизвестно.

Интересные факты

Пары нашатырного спирта способны изменять окраску цветов. Например, голубые и синие лепестки становятся зелеными, ярко красные - черными.

Кр. точка 132.25 °C
Энтальпия образования -45.94 кДж/моль
Давление пара 8,5 ± 0,1 атм
Химические свойства
pK a 9.21
Растворимость в воде 89.9 (при 0 °C)
Классификация
Рег. номер CAS
PubChem
Рег. номер EINECS 231-635-3
SMILES
InChI
RTECS BO0875000
ChEBI
Номер ООН 1005
ChemSpider
Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.
100 ат 300 ат 1000 ат 1500 ат 2000 ат 3500 ат
400 °C 25,12 47,00 79,82 88,54 93,07 97,73
450 °C 16,43 35,82 69,69 84,07 89,83 97,18
500 °C 10,61 26,44 57,47 Нет данных
550 °C 6,82 19,13 41,16

Применение катализатора (пористое железо с примесями Al 2 O 3 и K 2 O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор . Выход аммиака при таких условиях составляет около 30 %. В промышленных условиях использован принцип циркуляции - аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления.

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

N H 4 C l + N a O H → N H 3 + N a C l + H 2 O {\displaystyle {\mathsf {NH_{4}Cl+NaOH\rightarrow NH_{3}\uparrow +NaCl+H_{2}O}}}

Обычно лабораторным способом аммиак получают слабым нагреванием смеси хлорида аммония с гашеной известью.

2 N H 4 C l + C a (O H) 2 → C a C l 2 + 2 N H 3 + 2 H 2 O {\displaystyle {\mathsf {2NH_{4}Cl+Ca(OH)_{2}\rightarrow CaCl_{2}+2NH_{3}\uparrow +2H_{2}O}}}

Для осушения аммиака его пропускают через смесь извести с едким натром.

Очень сухой аммиак можно получить, растворяя в нём металлический натрий и впоследствии перегоняя . Это лучше делать в системе, изготовленной из металла под вакуумом . Система должна выдерживать высокое давление (при комнатной температуре давление насыщенных паров аммиака около 10 атмосфер) . В промышленности аммиак осушают в абсорбционных колоннах .

Расходные нормы на тонну аммиака

На производство одной тонны аммиака в России расходуется в среднем 1200 нм³ природного газа, в Европе - 900 нм³ .

Белорусский «Гродно Азот» расходует 1200 нм³ природного газа на тонну аммиака, после модернизации ожидается снижение расхода до 876 нм³ .

Украинские производители потребляют от 750 нм³ до 1170 нм³ природного газа на тонну аммиака.

По технологии UHDE заявляется потребление 6,7 - 7,4 Гкал энергоресурсов на тонну аммиака .

Аммиак в медицине

При укусах насекомых аммиак применяют наружно в виде примочек. 10 % водный раствор аммиака известен как

Водорода, при нормальных условиях - бесцветный газ с резким характерным запахом (запах нашатырного спирта)

  • Галогены (хлор, йод) образуют с аммиаком опасные взрывчатые вещества - галогениды азота (хлористый азот, иодистый азот).
  • С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):
(гидрохлорид метиламмония)
  • С карбоновыми кислотами , их ангидридами , галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами - основания Шиффа , которые возможно восстановить до соответствующих аминов (восстановительное аминирование).
  • При 1000 °C аммиак реагирует с углём , образуя синильную кислоту HCN и частично разлагаясь на азот и водород. Также он может реагировать с метаном , образуя ту же самую синильную кислоту:

История названия

Аммиак (в европейских языках его название звучит как «аммониак») своим названием обязан оазису Аммона в Северной Африке , расположенному на перекрестке караванных путей. В жарком климате мочевина (NH 2) 2 CO, содержащаяся в продуктах жизнедеятельности животных, разлагается особенно быстро. Одним из продуктов разложения и является аммиак. По другим сведениям, аммиак получил своё название от древнеегипетского слова амониан . Так называли людей, поклоняющихся богу Амону . Они во время своих ритуальных обрядов нюхали нашатырь NH 4 Cl, который при нагревании испаряет аммиак.

Жидкий аммиак

Жидкий аммиак, хотя и в незначительной степени, диссоциирует на ионы (автопротолиз), в чём проявлется его сходство с водой :

Константа самоионизации жидкого аммиака при −50 °C составляет примерно 10 −33 (моль/л)².

Получающиеся в результате реакции с аммиаком амиды металлов содержат отрицательный ион NH 2 − , который также образуется при самоионизации аммиака. Таким образом, амиды металлов являются аналогами гидроксидов. Скорость реакции возрастает при переходе от Li к Cs. Реакция значительно ускоряется в присутствии даже небольших примесей H 2 O.

Металлоаммиачные растворы обладают металлической электропроводностью, в них происходит распад атомов металла на положительные ионы и сольватированные электроны, окруженные молекулами NH 3 . Металлоаммиачные растворы, в которых содержатся свободные электроны, являются сильнейшими восстановителями.

Комплексообразование

Благодаря своим электронодонорным свойствам, молекулы NH 3 могут входить в качестве лиганда в комплексные соединения. Так, введение избытка аммиака в растворы солей d-металлов приводит к образованию их аминокомплексов:

Комплексообразование обычно сопровождается изменением окраски раствора. Так, в первой реакции голубой цвет (CuSO 4) переходит в темно-синий (окраска комплекса), а во второй реакции окраска изменяется из зелёной (Ni(NO 3) 2) в сине-фиолетовую. Наиболее прочные комплексы с NH 3 образуют хром и кобальт в степени окисления +3.

Биологическая роль

Аммиак является конечным продуктом азотистого обмена в организме человека и животных. Он образуется при метаболизме белков , аминокислот и других азотистых соединений. Он высоко токсичен для организма, поэтому большая часть аммиака в ходе орнитинового цикла конвертируется печенью в более безвредное и менее токсичное соединение - карбамид (мочевину). Мочевина затем выводится почками, причём часть мочевины может быть конвертирована печенью или почками обратно в аммиак.

Аммиак может также использоваться печенью для обратного процесса - ресинтеза аминокислот из аммиака и кетоаналогов аминокислот. Этот процесс носит название «восстановительное аминирование». Таким образом из щавелевоуксусной кислоты получается аспарагиновая, из α-кетоглутаровой - глутаминовая и т. д.

Физиологическое действие

По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Аммиак обладает как местным, так и резорбтивным действием.

Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это человек и воспринимает как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюнктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями. Кроме того, сжиженный аммиак при испарении поглощает тепло, и при соприкосновении с кожей возникает обморожение различной степени. Запах аммиака ощущается при концентрации 37 мг/м³ .

Применение

Аммиак относится к числу важнейших продуктов химической промышленности, ежегодное его мировое производство достигает 150 млн тонн. В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров , азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя .

Расходные нормы на тонну аммиака

На производство одной тонны аммиака в России расходуется в среднем 1200 нм³ природного газа, в Европе - 900 нм³ .

Белорусский «Гродно Азот» расходует 1200 нм³ природного газа на тонну аммиака, после модернизации ожидается снижение расхода до 876 нм³.

Украинские производители потребляют от 750 нм³ до 1170 нм³ природного газа на тонну аммиака.

По технологии UHDE заявляется потребление 6,7 - 7,4 Гкал энергоресурсов на тонну аммиака .

Аммиак в медицине

При укусах насекомых аммиак применяют наружно в виде примочек. 10 % водный раствор аммиака известен как нашатырный спирт.

Возможны побочные действия: при продолжительной экспозиции (ингаляционное применение) аммиак может вызвать рефлекторную остановку дыхания.

Местное применение противопоказано при дерматитах, экземах, других кожных заболеваниях, а также при открытых травматических повреждениях кожных покровов.

При случайном поражении слизистой оболочки глаза промыть водой (по 15 мин через каждые 10 мин) или 5 % раствором борной кислоты. Масла и мази не применяют. При поражении носа и глотки - 0,5 % раствор лимонной кислоты или натуральные соки. В случае приема внутрь пить воду, фруктовый сок, молоко, лучше - 0,5 % раствор лимонной кислоты или 1 % раствор уксусной кислоты до полной нейтрализации содержимого желудка.

Взаимодействие с другими лекарственными средствами неизвестно.

Производители аммиака

Производители аммиака в России

Компания 2006, тыс. т 2007, тыс. т
ОАО «Тольяттиазот»]] 2 635 2 403,3
ОАО НАК «Азот» 1 526 1 514,8
ОАО «Акрон» 1 526 1 114,2
ОАО «Невинномысский азот », г. Невинномысск 1 065 1 087,2
ОАО «Минудобрения» (г. Россошь) 959 986,2
КОАО «АЗОТ» 854 957,3
ОАО «Азот» 869 920,1
ОАО «Кирово-Чепецкий хим. комбинат» 956 881,1
ОАО Череповецкий «Азот» 936,1 790,6
ЗАО «Куйбышевазот» 506 570,4
ОАО «Газпром Нефтехим Салават» 492 512,8
«Минеральные удобрения» (г. Пермь) 437 474,6
ОАО «Дорогобуж» 444 473,9
ОАО «Воскресенские минеральные удобрения» 175 205,3
ОАО «Щекиноазот» 58 61,1
ООО «МенделеевскАзот» - -
Итого 13 321,1 12 952,9

На долю России приходится около 9 % мирового выпуска аммиака. Россия - один из крупнейших мировых экспортеров аммиака. На экспорт поставляется около 25 % от общего объёма производства аммиака, что составляет около 16 % мирового экспорта.

Производители аммиака на Украине

  • Облака Юпитера состоят из аммиака.

См. также

Примечания

Ссылки

  • //
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Литература

  • Ахметов Н. С. Общая и неорганическая химия. - М.: Высшая школа, 2001.
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека