Генетика группы крови и их полиморфизмы. Антигенные системы крови Агглютиногены второй группы крови системы аво

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента.

С открытием венским врачом К.Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К.Ландштейнер впервые обнаружил, что плазма, или сыворотка, одних людей способна агглютинировать (склеивать) эритроциты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме - природных антител, или агглютининов, именуемых a и b. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае происходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или четыре группы крови: I - 0 (αβ), II - A (β), III - B (α), IV - АВ (0).

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины, их также два вида и они обозначаются, как и агглютинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37-40°С. Вот почему при переливании несовместимой крови у человека уже через 30-40 с наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные аглютиногены и агглютинины, происходит агглютинация, но не наблюдается гемолиза.

В плазме людей с II, III, IV группами крови имеются антиагглютиногены, покинувшие эритроцит и ткани. Обозначаются они, как и агглютиногены, буквами А и В

Серологический состав основных групп крови (система АВО)

Как видно из приводимой таблицы, I группа крови не имеет агглютиногенов, а потому по международной классификации обозначается как группа 0, II - носит наименование A, III - В, IV - АВ.

Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учитываться агглютинины и гемолизины, находящиеся в плазме, а у донора - агглютиногены, содержащиеся в эритроцитах. Для решения вопроса о совместимости групп крови смешивают исследуемую кровь с сывороткой, полученной от людей с различными группами крови. Агглютинация происходит в случае смешивания сыворотки I группы с эритроцитами II, III и IV групп, сыворотки II группы - с эритроцитами III и IV групп, сыворотки III группы - с эритроцитами 11 и IV групп.

Следовательно, кровь I группы совместима со всеми другими группами крови, поэтому человек, имеющий I группу крови, называется универсальным донором. С другой стороны, эритроциты

IV группы крови не должны давать реакции агглютинации при смешивании с плазмой (сывороткой) людей с любой группой крови, поэтому люди с IV группой крови называются универсальными реципиентами.

Почему же при решении вопроса о совместимости не принимают в расчет агглютинины и гемолизины донора? Это объясняется тем, что агглютинины и гемолизины при переливании небольших доз крови (200-300 мл) разводятся в большом объеме плазмы (2500-2800 мл) реципиента и связываются его антиагглютининами, а потому не должны представлять опасности для эритроцитов.

В повседневной практике для решения вопроса о группе переливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10-20% людей имеется высокая концентрация очень активных агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания небольшого количества иногруппной крови.

Постгрансфузионные осложнения иногда возникают из-за ошибок при определении групп крови. Установлено, что агглютиногены А и В существуют в разных вариантах, различающихся по своему строению и антигенной активности. Большинство из них получило цифровое обозначение (A 1 , А 2 , А 3 и т.д., B 1 , В 2 и т.д.). Чем больше порядковый номер агглютиногена, тем меньшую активность он проявляет. И хотя разновидности агглютиногенов А и В встречаются относительно редко, при определении групп крови они могут быть не обнаружены, что может привести к переливанию несовместимой крови.

Следует также учитывать, что большинство человеческих эритроцитов несет антиген Н. Этот АГ всегда находится на поверхности клеточных мембран у лиц с группой крови 0, а также присутствует в качестве скрытой детерминанты на клетках людей с группами крови А, В и АВ. Н - антиген, из которого образуются антигены А и В. У лиц с 1 группой крови антиген доступен действию анти-Н-антител, которые довольно часто встречаются у людей со II и IV группами крови и относительно редко у лиц с III группой. Это обстоятельство может послужить причиной гемотрансфузионных осложнений при переливании крови 1 группы людям с другими группами крови.

Концентрация агглютиногенов на поверхности мембраны эритроцитов чрезвычайно велика. Так, один эритроцит группы крови A 1 содержит в среднем 900000-1700000 антигенных детерминант, или рецепторов, к одноименным агглютининам. С увеличением порядкового номepa агглютиногена число таких детерминант уменьшается. Эритроцит группы А² имеет всего 250000-260000 антигенных детерминант, что также объясняет меньшую активность этого агглютиногена.

В настоящее время система АВО часто обозначается как АВН, а вместо терминов «агглютиногены» и «агглютинины» применяются термины «антигены» и «антитела» (например, АВН-антигены и АВН-антитела).

Эта система является основной, определяющей совместимость или несовместимость переливаемой крови. В нее входя два генетически детерминированных важных антигена: А и В - и два вида антител к ним, агглютинины а и в. Сочетания агглютиногенов и агглютининов определяют 4 группы системы АВО. Эта система единственная, где в плазме у неиммунных людей имеются естественные антитела к отсутствующему антигену. Агглютиноген А у большинства людей является хорошо вы­раженным (обладает большой антигенной силой): с антителами анти-А (а) он дает резко выраженную реакцию агглютинации эритроцитов. Приблизительно у 12% лиц групп А(11) и AB(IV) антиген имеет слабые антигенные свойства, его обозначают как А2 антиген. Таким образом, имеется группа антигенов A: A1 (сильный) и более слабые А2, A3, А4 и др. О существовании слабых антигеном А следует помнить при определении групп крови, так как эрит­роциты с такими антигенами способны давать лишь позднюю и слабовыраженную агглютинацию, что может привести к ошиб­кам. Слабые разновидности антигена В встречаются очень редко. Антитела системы АВО а (анти-А) и в (анти-В) являются нормальным свойством плазмы крови, качественно не изменяющимся в течение жизни человека, а и в - это полные, холодовые анти­тела. В большинстве случаев они не обнаруживаются у новорожденных и появляются в течение первых трех месяцев жизни или даже года. Полного развития групповые агглютинины достигают к 18 годам, а в старости титр (уровень) их снижается, что наблю­дается также при иммунодефицитных состояниях. Кроме существующих в норме (естественных) групповых ангитсл а и в в ряде случаев возникают иммунные антитела анти-А и анти-В. Наиболее частой причиной этого является беремен­ность, при которой мать и плод имеют разные группы крови, чаще, если мать 1(0) группы, плод 11(A) или Ш(В). Определение группы крови необходимо для совместимого переливания крови. При этом необходимо придерживаться правила: эритроциты донора не должны содержать антигена, соответствующего антителам реципиента, т. е. А и а, В и в, так как иначе произойдет массивное разрушение введенных эрит­роцитов антителами больного - гемолиз, что может привести к смерти реципиента. Групповые антитела донора можно не учитывать, так как они разводятся плазмой реципиента. Следова­тельно, кровь группы O(I), не содержащую агглютиногенов, можно переливать людям с любой группой крови. Лица, имеющие 0(1) группу крови, считаются «универсальными до- норами». Кровь группы А(П) можно переливать реципиентам группы А(П) и группы AB(IV), не имеющей в плазме агглюти­нинов. Кровь группы В(Ш) может быть перелита лицам с группой В(Ш) и AB(IV).



Определение групп крови системы АВО производится сле­дующими методами.

I. Определение группы крови при помощи стандартных изогемагглютинирующих сывороток. При этом способе в крови устанав­ливают наличие или отсутствие агглю­тиногенов и, исходя из этого, делают заключение о групповой принадлеж­ности исследуемой крови.

2. Определение группы крови пе­рекрестным способом, т. е. одновре­менно при помощи стандартных изогемагглютинирующих сывороток и стан­дартных эритроцитов. При этом способе, так же как и при первом, определяют наличие или отсутст­вие агглютиногенов и, кроме того, при помощи стандартных эритроцитов устанавливают наличие или отсутствие групповых агглютининов.

3. Определение группы крови с помощью моноклональных антител (ЦОЛИКЛОНов).

ОШИБКИ ПРИ ОПРЕДЕЛЕНИИ ГРУПП КРОВИ

Технические ошибки. Нарушение изложенных правил опредсления групп крови может привести к неправильной оценке ре­зультатов реакции. Отступлением от правил могут явиться:

Использование недоброкачественных стандартных сывороток или эритроцитов (истекший срок годности, загрязнение ими высыхание сывороток);

Перепутывание проб исследуемой крови;

Ошибочное расположение стандартных сывороток или фоцитов в штативах;

Ошибочный порядок нанесения стандартных реагентов на пластину;

Неправильное соотношение количества сыворотки и эритроцитов (не 10:1);

Исследование при температуре менее 15 °С (наступает холодовая агглютинация) или более 25 °С (происходит замедление агглютинации);

Несоблюдение времени, необходимого для проведения реакции (5 мин);

Не осуществляют добавление физиологического раствора с последующим покачиванием пластинки;

Не используют контрольную реакцию с сывороткой АВо(IV) группы;

Применение загрязненных или мокрых пипеток, палочек, пластин.

Во всех случаях нечеткого или сомнительного результата необходимо повторное определение группы крови перекрестным методом с использованием стандартных сывороток других серий.

Ошибки, связанные с биологическими особенностями исследуемой крови.

Неправильное определение группы А 2 и А 2 В. Эритроциты со слабым антигеном А с антисывороткой образуют мелкие, мед­ленно появляющиеся агглютинаты. Реакция может быть учтена как отрицательная, т. е. группа А 2 ошибочно регистрируется как О(1), а А 2 В - как В(Ш). Особенно велик риск такой ошибки при одновременном наличии технических погрешностей (нару­шено соотношение сыворотки и эритроцитов 10:1, температура выше 25 °С, учет результатов ранее 5 мин).

Ошибки, связанные с наличием неспецифической агглю- тинабельности исследуемых эритроцитов. Такое явление наблюдается у больных злокачественными опухолями, лейкозами, сепсисом, ожогами, циррозом печени, аутоиммунной гемолитиче­ской анемией и обусловлено диспротеинемией. Выявляет нали­чие неспецифической агглютинации контроль с сывороткой АВо (IV) группы. В этих случаях необходимо вновь определить групповую принадлежность перекрестным методом. В капли, где на­блюдается агглютинация, можно добавить подогретый до 37° физиологический раствор. При необходимости, можно отмыть теп­лым (37°) физиологическим раствором исследуемые эритроциты и вновь определить группу крови.

Ошибки, связанные с наличием экстраагглютининов. В сыворотке крови лиц групп А2(П) и A2B(IV) приблизительно в 1% случаев обнаруживают антитела к А1 антигену - а1. Это осложняег определение группы крови перекрестным методом, так как сыворотка таких лиц агглютинирует стандартные эритроциты А(П) группы, т. е. проявляет себя как сыворотка 0(1) группы.

При некоторых заболеваниях наблюдается снижение агглютинабельности эритроцитов, особенно группы А(П).

При иммунодефицитных состояниях у стариков наблюдается снижение уровня групповых агглютининов.

Во всех случаях получения сомнительного результата определение групповой принадлежности крови должно производиться повторно перекрестным методом с использованием сывороток более высокой активности.

18.Антигены системы резус. Группы системы резус. Клиническое значение. Методы определения антигенов резус и возможные ошибки.

Антигены резус являются вторыми по значению в трансфузионной практике после групп крови системы АВО В период активного внедрения в клинику гемотрансфузий значительно воз­росло число посттрансфузионных осложнений после повторныхпереливаний совместимой по антигенам АВО крови. В систему резус входят шесть антигенов, для обозначения которых парал­лельно используются двеноменклатуры: Винера (Rh 0 , rh", rh", Hr 0 , hr", hr"); Фишера и Рейса (D, С, E, d, с, e).

Rh 0 - D, rh" - C, rh" - E, Hr 0 - d, hr" - c, hr" - e.

Поскольку в этой системе наиболее активным является антиген Rho(D), его называют резус-фактором. Именно в зависимости от наличия или отсутствия этого фактора людей разделяют на резус-положительных (Rh+) и резус-отрицательных (Rh-). Такое деление принято только в отношении реципиентов. Антигены rh"(C) и rh"(E) менее активны, чем Rho(D), но к ним также могут вырабатываться антитела у людей, не содержащих антигенов С и Е в эритроцитах. Поэтому к эритроцитам резус отрицательных доноров требования более строгие. Эритроциты не должны содержать не только антиген D, но также и С и Е. Антигены Hro(d), hr"(c), hr"(e) характеризуются низкой активностью, хотя антитела hr"(c) могут быть причиной изоиммунологических конфликтов. У 1-3% резус-положительных лиц в эритроцитах имеет слабый вариант антигена D - D", который определяет наличие мелкой, сомнительной агглютинации при определении резуc- фактора. В этих случаях резус-принадлежность крови реципиента или беременной женщины указывают как резус-отрицательную(Rh-), а резус-принадлежность крови донора как резус-положительную (Rh+). Не допускается переливание крови с ангеном D u резус-отрицательным реципиентам. Формируются антигены резус на 8-10 неделе эмбриогенеза, причем антигенность их даже может превышать активность ан­тигенов у взрослых. Система резус в отличие от системы АВО не имеет естест­венных антител. Антитела антирезус возникают только после иммунизации резус-отрицательного организма в результате переливания резус-положительной крови или беременности резус-положительным плодом. В организме сенсибилизированных лиц антитела к резус-антигенам сохраняются несколько лет, иногда на протяжении всей жизни. В большинстве случаев титр антител антирезус постепенно снижается, но опять резко возрастает при повторном попадании в организм резус-положительной крови. Резус-антитела различаются по специфичности (анти-D, ан- III С и т. д.) и по серологическим свойствам (полные и непол­ные). Полные антитела вызывают агглютинацию эритроцитов в солевой среде при комнатной температуре. Для проявления агглютинации под действием неполных антител требуются особые условия: повышенная температура, коллоидная среда (желатин, сывороточный белок). Полные антитела (IgM) синтезируются в начале иммунной реакции и вскоре исчезают из крови. Неполные антитела (IgG, IgA) появляются позже, синтезируются долго и являются причиной развития гемолитической болсзни новорожденных, так как проходят через плаценту и повреждают клетки плода.

Определение резус-принадлежности крови

Метод определения резус-фактора зависит от формы резус-антител в стандартной сыворотке и способа ее изготовления. К сыворотке антирезус прикладывается сопроводительная инст­рукция с описанием того метода, для которого предназначена данная серия выдаваемой сыворотки.

При каждом исследовании для проверки специфичности и активности сыворотки антирезус необходимо ставить контроль. Для контроля применяются стандартные резус-положительные эритроциты группы 0(1) или той же группы, что и исследуемая кровь, и стандартные резус-отрицательные эритроциты обязательно той же группы, что и исследуемая кровь.

При определении резус-принадлежности двумя сериями стан­дартных сывороток в тех случаях, когда они используются раз­ными методами, результат учитывается как истинный при совпадении его в обеих сериях исследований после проверки контрольных образцов, подтверждающих специфичность и активность каждой серии сыворотки антирезус, т. е. при отсутствии агглютинации со стандартными резус-отрицательными эритро цитами одноименной группы и наличии агглютинации со стандартными резус-положительными эритроцитами одноименной группы или группы 0(1) и в контрольных пробах без сыворотки (реагента) антирезус. Если при определении резус-принаддеж ности наблюдается слабая или сомнительная реакция, то следует повторно исследовать кровь данного лица этими же и другими сериями сыворотки антирезус и желательно включить сыворотку содержащую полные антитела. Если при этом все серии сывороток, содержащих неполные антитела, дадут также слабую или сомнительную реакцию, а с полными антителами реакция будет отрицательная, это значит, что эритроциты содержат слабую paзновидность антигена резус, так называемый фактор D u . В этих случаях резус-принадлежность крови больного или беременной женщины указывают как резус-отрицательную (Rh-), a резус- принадлежность крови донора как резус-положительную (Rh+), не допуская таким образом переливания его крови резус-отрицательным реципиентам.

Определение резус-фактора можно проводить также следующими методиками.

Определение резус-фактора Rh 0 (D) реакцией конглютинации с применением желатина (в пробирке с подогревом до 46-48 °С).

Определение резус-фактора Rho(D) реакцией конглютинации в сывороточной среде на плоскости с подогревом.

Определение резус-фактора Rh 0 (D) реакцией агглютинации в солевой среде в маленьких пробирках. Реакция агглютинации в солевой среде пригодна для работы только с сывороткой, содержащей полные резус-антитела.

Определение резус-фактора Rh 0 (D) с помощью моноклональных антител.

Определение резус-фа ктора Rho(D) с помощью непрямой пробы Кумбса.

19 Анемии. Классификация и краткая характеристика. Этиология и патогенез анемий. Анемия (от греческого anemia - бескровие) - большая груп­па заболеваний, которая характеризуется снижением количества гемоглобина или гемоглобина и эритроцитов в единице объема крови. Анемии различны по этиологии, механизмам развития, клинико-гематологической картине, поэтому есть много различных классификаций, но они недостаточно совершенны. Л. И. Идельсон предложил рабочую классификацию анемий для врачей-клиницистов: 1) острые постгеморрагические анемии; 2) железодефицитные анемии; 3) анемии, связанные с нарушением синтеза или утилизации порфиринов (сидеробластные); 4) анемии, связанные с нарушением синтеза ДНК, РНК (мегалобластные); 5) гемолитические анемии; 6) анемии, связанные с угнетением пролиферации клеток костного мозга (гипопластические, апластические); 7) анемии, связанные с замещением кроветворного костного мозга опухолевым процессом (метапластические).

Анемия может быть как самостоятельным заболеванием, так и сопутствующим симптомом или осложнением некоторых внутренних болезней, инфекционных и онкологических заболевании. Бывают полифакторные анемии, т. е. смешанного генеза, например: гемолитическая анемия с дефицитом железа, апластическая анемия с гемолитическим компонентом и др.

В зависимости от:

1)величины цветового показателя различают анемии:

Нормохромные (цветовой показатель 0,9-1,1);

Гипохромные (цветовой показатель меньше 0,85);

Гиперхромные (цветовой показатель больше 1,15);

2)величины среднего диаметра эритроцитов:

Нормоцитарные (средний диаметр эритроцитов 7,2-7,5 мкм)

Микроцитарные (средний диаметр эритроцитов меньше 6,5 мкм),

Макроцитарные (средний диаметр эритроцитов больше 8,0 мкм),

Мегалоцитарные (средний диаметр эритроцитов равен больше 12 мкм);

3)величины среднего объема эритроцитов в фемтолитрах (фл, 1 фл равен 1 мкм 3):

Нормоцитарные (средний объем эритроцитов 87±5 фл);

Микроцитарные (средний объем эритроцитов меньше 80 фл);

Макроцитарные (средний объем эритроцитов больше 95 фл);

4) уровня ретикулоцитов в периферической крови.

Регенераторные (количество ретикулоцитов 0,5-5%);

Гиперрегенераторные (количество ретикулоцитов больше 5%);

Гипо- и арегенераторные (количество ретикулоцитов сни­жено или они отсутствуют, несмотря на тяжелое течение анемии).

Уровень ретикулоцитов является показателем регенераторной функции костного мозга в отношении эритропоэза.

К нормохромным анемиям относятся острые постгеморраги­ческие (в первые дни после кровопотери), гипо- и апластические, несфероцитарные гемолитические, аутоиммунные гемоли­тические, метапластические (при лейкозах, миеломной болезни и др.), а также анемии, развивающиеся при эндокринных нару­шениях (гипофункция надпочечников), болезнях почек, хрони­ческих инфекциях.

К гипохромным анемиям относятся железодефицитные, си- деробластные, некоторые миелотоксические, гемолитические (талассемия).

Гиперхромными бывают В12-(фолиево)-дефицитные, некото­рые гемолитические анемии (наследственный микросфероцитоз, если среди эритроцитов в мазке преобладают микросфероциты). Иногда витамин-В1 2 -дефицитная анемия бывает нормохромной.

К нормоцитарным относятся острые постгеморрагические, апластические, аутоиммунные гемолитические анемии и др.

К микроцитарным относятся железодефицитные, сидеробластпые анемии, к макроцитарным - вигамин-В12-(фолиево)-дефицитные анемии и др.

К регенераторным относят постгеморрагические анемии; к гиперрегенераторным - гемолитические анемии, особенно со­стояние после гемолитического криза; к гипо- и арегенераторным - гипопластические, апластические анемии.

Костный мозг реагирует на развитие железодефицитных, ге­молитических анемий раздражением, гиперплазией красного рост­ка. При гипопластических анемиях отмечается прогрессирующее падение эритропоэза вплоть до полного его истощения.

20.Лабораторная диагностика железонасыщенных и железоненасыщенных анемий. Железодефицитная анемия. Виды дефицита железа. Лабораторные тесты, отражающие дефицит железа в организме. Картина периферической крови и костного мозга при ЖДА. Лабораторная диагностика сидеробластных анемии. Обмен и роль железа в организме

Железо имеет большое значение для организма, входит в со­став гемоглобина, миоглобина, дыхательных ферментов. Оно распределяется по основным фондам.

Гемоглобиновый фонд. Железо гемоглобина составляет 60- 65% от общего содержания железа в организме.

Запасной фонд. Это железо ферритина и гемосидерина, кото­рые депонированы в печени, селезенке, костном мозге, мышцах. Составляет 30-40% от уровня железа в организме. Ферритин - водорастворимый комплекс трехвалентного железа и белка апоферритина, содержащий 20% железа. Представляет собой ла­бильную фракцию запасного фонда железа. При необходимости легко используется для нужд эритропоэза. Гемосидерин - не­растворимый в воде белок, по составу близок к ферритину, но содержит большее количество железа - 25-30%. Является ста­бильной, прочно фиксированной фракцией запасов железа в организме.

Транспортный фонд представлен железом, связанным с транспортным белком трансферрином. Составляет 1% от содер­жания железа в организме.

Тканевой фонд представлен железом железосодержащих фер­ментов (цитохромы, пероксидаза и др.), миоглобина. Составляет 1% от содержания железа в организме.

Общее содержание железа в организме взрослых равно 4-5 г. Оно поступает в организм с пищевым рационом. Содержится в продуктах животного и растительного происхождения (мясо, особенно говядина, печень, яйца, бобовые, яблоки, курага и др.). Железо всасывается гораздо лучше из продуктов животного про­исхождения, чем растительного, так как оно содержится в них в форме гема. Так, из мяса всасывается 20-25%, из рыбы - 11%, из растительных продуктов - 3-5% содержащегося в них железа. Всасыванию железа способствуют аскорбиновая кислота, орга­нические кислоты (лимонная, яблочная и др.), ингибируют вса­сывание танин, высокое содержание жира в рационе. Всасыва­ние железа из пищевых продуктов лимитировано. За сутки вса­сывается 2-2,5 мг железа, кратковременно после сильного кро­вотечения может всасываться до 3 мг железа. Основное количест­во железа всасывается в 12-перстной кишке и в начальной части тощей кишки. Малое количество железа может всосаться во всех отделах тонкого кишечника.

Всасывание железа происходит в два этапа: 1) слизистая обо­лочка кишечника захватывает железо, поступающее с пищевым рационом; 2) железо из слизистой оболочки кишечника перехо­дит в кровь, нагружается на трансферрин и доставляется к мес­там использования и в депо. Трансферрин также переносит железо из его фондов и клеток системы фагоцитирующих мононук леаров, в которых происходит деструкция эритроцитов, в костный мозг, где оно частично используется для синтеза гемоглобина, а частично откладывается в виде железа запасов, а также в другие места хранения железа. Обычно с железом связывается 1/3 часть трансферрина. Ее называют связанным трансферрином или сы­вороточным железом. В норме содержание железа в сыворотке у мужчин и женщин составляет, соответственно, 13-30 и 12-25 мкмоль/л. Часть трансферрина, не связанную с желе­зом, называют свободным трансферрином или ненасыщенной, латентной железосвязывающей способностью сыворотки. Мак­симальное количество железа, которое мог бы присоединить трансферрин до своего насыщения, обозначают как общую железосвязывающую способность сыворотки (ОЖСС) (в норме 30-85 мкмоль/л). Разница между показателями ОЖСС и сывороточным железом отражает латентную железосвязывающую способ­ность, а отношение сывороточного железа к ОЖСС, выраженное в процентах, отражает процент насыщения трансферрина желе­зом (норма 16-50%). Для суждения о величине запасов железа и организме проводят:

Исследование уровня ферритина в сыворотке радиоимун ными методами;

Десфераловый тест. Десферал (десфероксамин) является комплексоном, который после введения в организм избира­тельно связывается с железом запасов, т. е. с железом ферри­тина, и выводит его с мочой. Больному однократно внутри­мышечно вводят 500 мг десферала, собирают суточную мочу и определяют в ней содержание железа. После введения десферала с мочой в норме выводится от 0,8 до 1,2 мг железа, в то время как у больных железодефицитной анемией или при на­личии скрытого дефицита железа количество выделяемого е мочой железа резко снижается;

Подсчет в пунктате костного мозга количества сидеробла- стов, а в периферической крови - сидероцитов. Сидеробласты - это нормобласты, т. е. ядросодержащие клетки красного ряда, в цитоплазме которых выявляются синего цвета гранулы железа запасов - ферритина. В норме 20-40% нормобластов являются сидеробластами. Сидероциты - это эритроциты, в которых обнаруживаются гранулы ферритина. В норме в периферической кровг: до 1% сидероцитов. Гранулы ферритина в сидеробластах и сидероцитах выявляются при специальной окраске берлинской лазурью.

Организму свойственны физиологические потери железа с мочой, калом, желчью, слущившимися клетками слизистой ки шсчника, с потом, при стрижке волос, ногтей. Женщины теряют железо с месячными.

Развитию железодефицитной анемии предшествует скрытый (латентный) дефицит железа. У больных появляются жалобы и клинические признаки, характерные для железодефицитной пиемии, но менее выраженные (слабость, умеренная бледность кожных покровов и видимых слизистых оболочек, головные боли, сердцебиение, часто извращение вкуса и обоняния, сухость кожи, ломкость ногтей и др.). При обследовании еще не обна­руживается изменений в содержании гемоглобина, эритроцитов и других показателей периферической крови. Но выявляются нарушения в обмене железа: снижается сывороточное железо, Повышаются общая и латентная железосвязывающие способности сыворотки, уменьшается процент насыщения трансферрина, снижается уровень железа запасов. Это сидеропения без анемии. Скрытый дефицит железа может развиться в любом возрасте, особенно часто им страдают женщины, подростки и дети. Если скрытый дефицит железа не компенсируется, а углубляется, раз­минается железодефицитная анемия.

На чтение 5 мин. Просмотров 2.2k.

Классификация крови человека, в зависимости от ее характеристик, имеет практическое значение при проведении хирургических вмешательств, в ходе которых требуется ее переливание, при трансплантологии органов и тканей, в судебной медицине для установления факта отцовства, материнства и в случае потери детей в раннем возрасте, а также для планирования беременности.

Групповая принадлежность человека определяется антигенами, находящимися на поверхности красных кровяных телец (эритроцитов), является наследуемым признаком и не меняется в течение нашей жизни. Мировое медицинское сообщество признает различные системы групп крови человека, но общепринятой является определение группы крови по системе АВО.

Классификация

Согласно данной системе кровь делится на подвиды О, А, В и АВ, в зависимости от наличия или отсутствия в ней антигенов А и В.

Открытие и изучение групповой идентификации выявило неравномерное распределение антигенов А и В среди разных рас и народностей человечества. Например, жители северной Европы в своем большинстве — обладатели антигена А. 80% американских индейцев имеют первую группу, а третья и четвертая у них не встречаются. Коренные жители Австралии — люди с первой группой. А среди жителей Центральной и Восточной Азии преобладает третья.

Это дает возможность этнографам изучить происхождение существующих рас и народов, проследить их расселение и миграцию по планете.

Как часто Вы сдаете анализ крови?

Poll Options are limited because JavaScript is disabled in your browser.

    Только по назначению лечащего врача 30%, 671 голос

    Один раз в год и считаю этого достаточно 17%, 374 голоса

    Как минимум два раза в год 15%, 325 голосов

    Чаще чем два раза в год но меньше шести раз 11%, 249 голосов

    Я слежу за своим здоровьем и сдаю раз в месяц 7%, 151 голос

    Боюсь эту процедуру и стараюсь не сдавать 4%, 96 голосов

21.10.2019


Кроме того, благодаря современным медицинским наблюдениям, установлена закономерность между групповой идентификацией людей и частотой некоторых заболеваний. Эти исследования могут привести к важным открытиям в медицине.

Группа 0

Первая, или AB0 означает, что в ее составе отсутствуют антигены А или В. Долгое время предполагали, что по этой причине кровь данного вида может переливаться всем пациентам, независимо от их групповой принадлежности, поэтому ее обладателей называли универсальными донорами. Согласно исследованиям антропологов, она является самой древней, ее признаки обнаружены еще у первобытных людей, занимавшиеся охотой и собирательством. 40-50% населения всего земного шара являются представителями данного группового подвида.

Считается, что ее носители имеют сильную иммунную систему, менее подвержены инфекциям, но чаще других людей страдают артритом, аллергией и язвенной болезнью.

Группа А

Красные кровяные тельца второй группы крови по системе АВ0 содержат антиген А. Их нельзя использовать как донорский материал для носителей тех групп, где данный антиген отсутствует.

Занимает второе место по распространенности — 30-40%человечества. Сильные стороны здоровья — хороший метаболизм и здоровое пищеварение. Среди носителей ангтигена А чаще диагностируют нарушения в работе печени, желчного пузыря, сердечно-сосудистые заболевания и диабет.

Группа В

В свою очередь, красные кровяные тельца третьей группы крови по системе АВ0 содержат антигены В, которые встречаются только у 10-20%мирового населения.

Важная информация: Что означает 3 (третья B iii) положительная (отрицательная) группа крови у мужчин и женщин

Среди представителей этого класса человечества отмечают склонность к возникновению хронической усталости и наличию аутоиммунных заболеваний, соглашаясь вместе с тем, что они являются обладателями крепкой и здоровой пищеварительной системы.

Группа АВ

В крови этого вида присутствуют антигены и А, и В, поэтому ее обладателей называют универсальными реципиентами.

Является самой редкой, ее носители составляют лишь 5% населения. Им присуща сильная иммунная система, но одновременно с этим возможно возникновение различных сердечно-сосудистых заболеваний.

Наследование групповой принадлежности по системе ABO происходит по классическим законам генетики:

  • Если у родителей отсутствуют антигены А, В, их не будет и у ребенка.
  • В семьях, где родители (один или оба) — обладатели крови АВ (IV), не может родиться ребенок с кровью 0.
  • Если у матери и отца вторая группа, то у ребенка будет первая или вторая.

В зависимости от наличия или отсутствия в красных кровяных тельцах человека антигенов А и В, его плазма может содержать антитела, отвечающие за уничтожение чужеродных антигенов. Любое использование крови реципиента или ее составляющих должно производиться лишь с учетом групповой совместимости с донором.

В современной клинической практике переливают кровь, эритроциты и плазму того же вида, что и у пациента. В некоторых экстренных случаях эритроциты группы 0 можно переливать реципиентам других подвидов. Эритроциты группы А можно использовать для переливания пациентам групповой принадлежности А и АВ, а эритроциты от донора В — реципиентам В и АВ. Речь идет только об эритроцитах, использование плазмы и цельной крови для пациентов другой групповой принадлежности может нанести непоправимый вред их здоровью.

Карты совместимости
Кровь донора реципиент
А В АВ
+
А +
В +
АВ +
Эритроцицы донора реципиент
А В АВ
+ + + +
А + +
В + +
АВ +

Чтобы избежать осложнений при переливании крови даже одноименной группы, проводят предварительную биологическую пробу: пациенту вводят по 25 мл донорского материала 3 раза с перерывами в 3 минуты, наблюдая при этом за состоянием больного. Дальнейшее переливание необходимого общего количества материалов производят только при отсутствии признаков ухудшения состояния человека.

Как определяют группу

Чтобы определить, носителем какой группы крови АВО является человек, достаточно материала, взятого из его пальца. На белую пластинку наносят тес-реагенты анти-А и анти-В, смешивают их с образцами испытуемого и оценивают полученный результат через 3-5 минут.

Если в первом образце образуются сгустки, т.е. происходит склеивание эритроцитов (агглютинация), а во втором случае эритроциты не склеиваются, это означает, что у человека имеется антиген А и отсутствует антиген В. В этом случае у донора первая группа (А). Аналогично определяются и другие группы.

В настоящее время у человека известно более 200 различных групповых антигенов крови. Сочетания их индивидуальны у каждого человека. В эритроцитах содержится 15 независящих друг от друга антигенных систем, лейкоциты содержат более 90 антигенов с общим числом фенотипов более 50 миллионов. Собственные антигенные системы имеют тромбоциты и белки плазмы.

В клинической практике знание антигенных систем крови отвечает двум потребностям:

    определения трансфузионной совместимости, т.е. подбор среды, которая бы не разрушалась в сосудистом русле;

    избежание введения лишних антигенов, которые сенсибилизируют организм и могут дать реакции при повторном переливании.

У пациентов, которым ранее не переливали кровь, а также у женщин, у которых не было беременностей с резус-конфликтом достаточен подбор по системе АВО и резус-антигену D .Пациентам с отягощенным гемотрансфузионным и акушерским анамнезом (относятся к группе риска) необходимо проведение индивидуального подбора.

Однако, существует еще целый ряд эритроцитарных групп крови.

Система аво

Открытие системы АВО Ландштейнером (1901) и Янским (1907) стало основой научного подхода к подбору донора при гемотрансфузии.

Существуют два групповых агглютиногена А и В и два групповых агглютинина - α и β. Агглютинин α является антителом по отношению к агглютиногену А, а агглютинин β является антителом по отношению к агглютиногену В.

С химической точки зрения агглютиногены являются мукополисахаридами (М=200 тыс.Д) и гликопептидами, расположенными в строме и оболочке эритроцитов. Характерное группе вещество содержится не только в строме эритроцитов, но и на клетках отдельных тканей.

Антиген А имеет разновидности: А 1 – «сильный», А 2 - «слабый» и еще более слабые варианты А 3 , А 4 , А х. Благодаря разновидностям образуются подгруппы. В практике возможны ошибки при определении группы крови прямым способом, когда группу А 2 β(II) можно принять за Оαβ(I), А 2 В(IV) - за Вα(III).

Кроме антигенов А и В в систему АВО входит еще антиген Н, присутствующий на эритроцитах всех четырех групп, при чем в наибольшем количестве - группы 0, не имеющей других антигенов. Вследствие этого антиген Н иногда называют «нулевым агглютиногеном». Исключение составляет фенотип Бомбей, у которого антиген Н отсутствует. Таким образом, систему АВО правильнее было бы назвать АВН.

Анти-А и анти-В антитела могут быть естественными (регулярными = агглютинины) и иммунными (приобретенными в результате сенсибилизации). Титр естественных анти-А антител (агглютинин α) колеблется в норме от 1/8 до 1/256, анти-В антител (агглютинин β) - от 1/8 до 1/128. У детей, лиц пожилого возраста, при некоторых патологических состояниях (лимфогрануломатоз, хронический лимфолейкоз, агаммаглобулинемия) титр антител может значительно снижаться. Естественные агглютинины являются полными антителами, относятся к Ig M, вызывают агглютинацию в среде изотонического солевого раствора. Иммунные антитела - неполные, относятся к Ig A и Ig G, вызывают агглютинацию только в белковой среде (Свойства полных и неполных антител см. в Приложениях).

Анти-А и анти-В антитела имеют разновидности соответственно разновидностям агглютиногенов А и В, образующих подгруппы. Особое значение в трансфузиологии имеет агглютиноген А 2 , поскольку у 1-2% лиц с группой крови А 2 (II) и у 25% лиц с группой крови А 2 В(IV) определяются экстраагглютинины.

В редких случаях (1-2 человека на 1 тыс. населения) наблюдается одновременное наличие эритроцитов двух групп, продуцируемых двумя стволовыми клетками. Соответствующие агглютинины в плазме при этом отсутствуют. Данное состояние получило название «кровяной химеры ». Никакими патологическими проявлениями естественные кровяные химеры не сопровождаются. При многократных переливаниях эритроцитов «универсального донора» - группы 0αβ(I) пациенту с иной группой крови может развиться так называемая «трансфузионная кровяная химера». Определение групповой принадлежности при наличии кровяной химеры затруднено и обычно в полной мере возможно только в условиях специализированной серологической лаборатории.

Хотя весь полиморфизм - результат различий в последовательности ДНК, некоторые полиморфные локусы исследованы проверкой изменений в белках, кодируемых этими аллелями, а не изучением различий в ДНК-последовательности самих аллелей. Считают, что любой человек вероятно гетерозиготен по аллелям, определяющим структурно различающиеся полипептиды, приблизительно в 20% всех локусов; при сравнении индивидуумов из разных этнических групп полиморфизм обнаруживают даже в большей доле белков.

Таким образом, в пределах человеческого вида существует поразительная степень биохимической индивидуальности в характеристиках ферментов и других продуктов генов. Кроме того, поскольку продукты многих биохимических путей взаимодействуют, можно правдоподобно предположить, что каждый человек, независимо от состояния его здоровья, имеет уникальные, генетически определяемые биохимические характеристики и, таким образом, уникально отвечает на влияния окружающей среды, диетические и фармакологические факторы.

Это понятие химической индивидуальности , впервые выдвинутое столетие назад замечательным британским врачом Арчибальдом Гарродом, оказалось правильным.

Здесь мы обсудим несколько полиморфизмов , имеющих медицинское значение: группы крови АВО и резус-фактор Rh (важные в определении совместимости для переливаний крови) и МНС (играющий важную роль в пересадке органов и тканей). Исследования изменений в белках, а не в кодирующей их ДНК, дают реальную пользу; в конце концов, именно различные белковые продукты различных полиморфных аллелей часто ответственны за различные фенотипы и, следовательно, определяют, как генетические изменения в локусе влияют на взаимодействие организма и среды.

Группы крови и их полиморфизмы

Первые примеры генетически предопределенных изменений белков были обнаружены в эритроцитах, так называемые антигены групп крови. Известно большое число полиморфизмов в компонентах человеческой крови, особенно в АВО и Rh антигенах эритроцитов. В частности, системы АВО и Rh важны при переливании крови, пересадке тканей и органов и при гемолитической болезни новорожденного.

Система АВО групп крови

Человеческая кровь может относиться к одной из четырех групп, в соответствии с наличием на поверхности эритроцитов двух антигенов, А и В, и присутствия в плазме двух соответствующих антител, анти-А и анти-В. Существует четыре основных фенотипа: 0, А, В и АВ. Люди с группой А имеют на эритроцитах антиген А, с группой В имеют антиген В, с группой АВ - как антигены А, так и В, и наконец с группой 0 не имеют ни одного антигена.

Одна из характеристик групп АВО не распространяется на другие системы групп крови - это реципрокные отношения между наличием антигенов на эритроцитах и антител в сыворотке. Когда на эритроцитах отсутствует антиген А, сыворотка содержит анти-А антитела; когда отсутствует антиген В, сыворотка содержит анти-В антитела. Причина реципрокного отношения неизвестна, но полагают, что образование анти-А и анти-В антител - ответ на присутствие А- и В-подобных антигенов в окружающей среде (например, в бактериях).

Определяются локусом в хромосоме 9. Аллели А, В и 0 в этом локусе - классический пример мультиаллелизма, когда три аллеля, два из которых (А и В) наследуются как кодоминантные, а третий (0) - как рецессивный признак, определяют четыре фенотипа. Антигены А и В определяются действием аллелей А и В на поверхностный гликопротеид эритроцитов, названный антигеном Н.

Специфичность антигенов определяется концевыми углеводами, добавляемыми к субстрату Н. Аллель В кодирует гликозилтрансферазу, преимущественно опознающую сахар D-галактозу и добавляющую его к концу цепочки олигосахаридов, содержащейся в антигене Н, тем самым создавая антиген В. Аллель А кодирует немного отличающуюся форму фермента, распознающую и добавляющую к субстрату вместо D-галактозы N-ацетилгалактозамин, создавая тем самым антиген А. Третий аллель, 0, кодирует мутантную версию трансферазы, не обладающую трансферазной активностью и не влияющую на субстрат Н.

Определены молекулярные различия в гене гликозилтрансферазы , ответственной за аллели А, В и 0. Последовательность из четырех различных нуклеотидов, различающаяся между аллелями А и В, приводит к изменениям аминокислот, изменяющим специфичность гликозилтрансферазы. Аллель 0 имеет однонуклеотидную делецию в кодирующей области гена АВО, вызывающую мутацию сдвига рамки и инактивирующую активность трансферазы у людей с группой 0. Теперь, когда известны ДНК-последовательности, определение групповой принадлежности по системе АВО можно выполнять непосредственно на уровне генотипа, а не фенотипа, особенно когда есть технические трудности в серологическом анализе, что часто случается в судебной практике или при установлении отцовства.

На видео представлена техника определения группы крови стандартными сыворотками:

Первичное медицинское значение системы АВО - в переливании крови и пересадке тканей или органов. В системе групп крови АВО есть совместимые и несовместимые комбинации. Совместимая комбинация - когда эритроциты донора не несут антиген А или В, соответствующий антителу в сыворотке реципиента. Хотя теоретически существуют «универсальные» доноры (группа 0) и «универсальные» реципиенты (группа АВ), пациенту переливают кровь его собственной группы АВО, за исключением экстренных ситуаций.

Постоянное присутствие анти-А и анти-В антител объясняет неудачи многих ранних попыток переливания крови, поскольку эти антитела могут вызывать быстрое уничтожение АВО-несовместимых клеток. При пересадке тканей и органов для успешного приживания необходима совместимость донора и реципиента по группе АВО и HLA (описанной позже).

Система Rh групп крови

По клиническому значению система Rh сравнима с системой АВО из-за своей роли в развитии гемолитической болезни новорожденных и в несовместимости при переливаниях крови. Название Rh происходит от обезьян резусов (Rhesus), использовавшихся в экспериментах, приведших к открытию системы. Проще говоря, популяция разделяется на Rh-положительных индивидуумов, экспрессирующих в эритроцитах антиген Rh D, полипептид, закодированный геном (RHD) в хромосоме 1, и Rh-отрицательных, не экспрессирующих этот антиген. Отрицательный Rh-фенотип обычно вызван гомозиготностью по нефункциональному аллелю гена RHD. Частота Rh-отрицательных индивидуумов сильно изменяется в разных этнических группах. Например, 17% белых и 7% афроамериканцев Rh-отрицательны, тогда как среди японцев - всего 0,5%.

Гемолитическая болезнь новорожденных и группы крови

Главное клиническое значение системы Rh - то, что Rh-отрицательные лица могут легко формировать анти-Rh антитела после встречи с Rh-положительными эритроцитами. Это становится проблемой, когда Rh-отрицательная беременная вынашивает Rh-положительный плод. В норме в течение беременности небольшие количества крови плода пересекают плацентарный барьер и попадают в материнский кровоток. Если мать Rh-отрицательна, а плод Rh-положителен, мать формирует антитела, возвращающиеся к плоду и повреждающие его эритроциты, вызывая гемолитическую болезнь новорожденных с серьезными последствиями.

У Rh-отрицательных беременных риск иммунизации Rh-положительными эритроцитами плода может минимизироваться введением антирезус иммуноглобулина на сроке 28-32 нед гестации и дополнительно вскоре после родов. Иммуноглобулин человека антирезус удаляет Rh-положительные клетки плода из кровотока матери прежде, чем они ее сенсибилизируют. Антирезус иммуноглобулин также вводят после выкидышей, абортов или инвазивных процедур типа БВХ или амниоцентеза, в случаях, когда Rh-положительные клетки плода попадают в материнский кровоток. Открытие системы Rh и ее роли в развитии гемолитической болезни новорожденных - важный вклад генетики в медицину.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека