Обчислення другої чудової межі. Калькулятор онлайн.Рішення меж

Термін "чудова межа" широко використовується в підручниках та методичних посібниках для позначення важливих тотожностей, які допомагають суттєво спростити роботуза знаходженням меж.

Але щоб зуміти навестисвою межу до чудового, потрібно до нього гарненько придивитися, адже вони зустрічаються не в прямому вигляді, а часто у вигляді наслідків, забезпечені додатковими доданками та множниками. Втім, спочатку теорія, потім приклади і все у вас вийде!

Перша чудова межа

Сподобалось? Додати до закладок

Перша чудова межа записується так (невизначеність виду $0/0$):

$$ \lim\limits_(x\to 0)\frac(\sin x)(x)=1.

$$

Наслідки з першої чудової межі

$$ \lim\limits_(x\to 0)\frac(x)(\sin x)=1.

$$ $$ \lim\limits_(x\to 0)\frac(\sin (ax))(\sin (bx))=\frac(a)(b). $$ $$ \lim\limits_(x\to 0)\frac(\tan x)(x)=1.

$$ $$ \lim\limits_(x\to 0)\frac(\arcsin x)(x)=1.$$ $$ \lim\limits_(x\to 0)\frac(\arctan x)(x)=1.

$$ $$ \lim\limits_(x\to 0)\frac(1-\cos x)(x^2/2)=1.

$$

Приклади рішень: 1 чудова межа

приклад 1. Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$ $3/8$.

Рішення. Перший крок завжди однаковий - підставляємо граничне значення $x=0$ у функцію та отримуємо:

$$ $$ \lim\limits_(x\to 0)\frac(\arcsin x)(x)=1.$$\left[ \frac(\sin 0)(0) \right] = \left[\frac(0)(0)\right].$$

Набули невизначеності виду $\left[\frac(0)(0)\right]$, яку слід розкрити. Якщо подивитися уважно, вихідна межа дуже схожа на першу чудову, але не збігається з ним. Наше завдання – довести до схожості. Перетворюємо так - дивимося на вираз під синусом, робимо таке ж у знаменнику (умовно кажучи, помножили та поділили на $3x$), далі скорочуємо та спрощуємо:

Набули невизначеності виду $\left[\frac(0)(0)\right]$. Перетворимо межу, використовуючи у спрощенні першу чудову межу (тричі!):

$$\lim\limits_(x\to 0)\frac(1-\cos 3x)(\tan 2x\cdot \sin 4x) = \lim\limits_(x\to 0)\frac( 2 \sin^2 (3x/2))(\sin 2x\cdot \sin 4x)\cdot \cos 2x = $$ $$ = 2\lim\limits_(x\to 0)\frac( \sin^2 (3x/2) )((3x/2)^2) \cdot \frac( 2x)(\sin 2x) \cdot \frac( 4x)( \sin 4x)\cdot \frac( (3x/2)^2)( 2x \ cdot 4x) \cdot \cos 2x = $$ $$ =2\lim\limits_(x\to 0) 1 \cdot 1 \cdot 1 \cdot \frac( (9/4)x^2)( 8x^2 ) \cdot \cos 2x= 2 \cdot \frac( 9)( 32) \lim\limits_(x\to 0) \cos 2x=\frac(9)(16). $$

Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$ $9/16$.

приклад 3. Знайти межу $$\lim\limits_(x\to 0)\frac(\sin (2x^3+3x))(5x-x^5).$$

$$ $$ \lim\limits_(x\to 0)\frac(\arcsin x)(x)=1.А якщо під тригонометричною функцією складний вираз? Чи не біда, і тут діємо аналогічно. Спочатку перевіримо тип невизначеності, підставляємо $x=0$ у функцію та отримуємо:

$$\left[ \frac(\sin (0+0))(0-0)\right] = \left[\frac(0)(0)\right].$$

Набули невизначеності виду $\left[\frac(0)(0)\right]$. Помножимо і поділимо на $2x^3+3x$:

$$ \lim\limits_(x\to 0)\frac(\sin (2x^3+3x))(5x-x^5)=\lim\limits_(x\to 0)\frac(\sin (2x ^3+3x))((2x^3+3x)) \cdot \frac(2x^3+3x)(5x-x^5)=\lim\limits_(x\to 0) 1 \cdot \frac( 2x^3+3x)(5x-x^5)= \left[\frac(0)(0)\right] = $$

Знову набули невизначеності, але в цьому випадку це просто дріб. Скоротимо на $x$ чисельник і знаменник:

$$ =\lim\limits_(x\to 0) \frac(2x^2+3)(5-x^4)= \left[\frac(0+3)(5-0)\right] =\ frac(3)(5). $$

Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$ $3/5$.

Друга чудова межа

Друга чудова межа записується так (невизначеність виду $1^\infty$):

$$ \lim\limits_(x\to \infty) \left(1+\frac(1)(x)\right)^(x)=e, \quad \text(або) \quad \lim\limits_( x\to 0) \left(1+x\right)^(1/x)=e.

$$

Наслідки другої чудової межі

$$ \lim\limits_(x\to \infty) \left(1+\frac(a)(x)\right)^(bx)=e^(ab).

$$ $$ \lim\limits_(x\to 0)\frac(\ln (1+x))(x)=1. $$ $$ \lim\limits_(x\to 0)\frac(e^x -1)(x)=1.

$$ $$ \lim\limits_(x\to 0)\frac(\arcsin x)(x)=1.$$ $$ \lim\limits_(x\to 0)\frac(a^x-1)(x \ln a)=1, a>0, a \ne 1. $$ $$ \lim\limits_( x\to 0)\frac((1+x)^(a)-1)(ax)=1.

$$

Приклади рішень: 2 чудова межа

$$ \lim\limits_(x\to \infty)\left(1-\frac(2)(3x)\right)^(x+3) = \lim\limits_(x\to \infty)\left( 1+\frac(1)((-3x/2))\right)^(\frac(-3x/2)(-3x/2)(x+3))= $$ $$ = \lim\limits_ (x\to \infty)\left(\left(1+\frac(1)((-3x/2))\right)^((-3x/2))\right)^\frac(x+3 )(-3x/2)= $$

Вираз у дужках фактично і є другою чудовою межею $\lim\limits_(t\to \infty) \left(1+\frac(1)(t)\right)^(t)=e$, тільки $t=- 3x/2$, тому

$$ = \lim\limits_(x\to \infty)\left(e\right)^\frac(x+3)(-3x/2)= \lim\limits_(x\to \infty)e^\ frac(1+3/x)(-3/2)=e^(-2/3). $$

Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$$e^(-2/3)$.

Приклад 5. Знайти межу $$\lim\limits_(x\to \infty)\left(\frac(x^3+2x^2+1)(x^3+x-7)\right)^(x).$$

$$ $$ \lim\limits_(x\to 0)\frac(\arcsin x)(x)=1.Підставляємо $x=\infty$ у функцію і отримуємо невизначеність виду $\left[ \frac(\infty)(\infty)\right]$. А нам потрібно $ \ left $. Тому почнемо з перетворення виразу у дужках:

$$ \lim\limits_(x\to \infty)\left(\frac(x^3+2x^2+1)(x^3+x-7)\right)^(x) = \lim\limits_ (x\to \infty)\left(\frac(x^3+(x-7)-(x-7)+2x^2+1)(x^3+x-7)\right)^(x ) = \lim\limits_(x\to \infty)\left(\frac((x^3+x-7)+(-x+7+2x^2+1))(x^3+x-7 )\right)^(x) = $$ $$ = \lim\limits_(x\to \infty)\left(1+\frac(2x^2-x+8)(x^3+x-7) \right)^(x) = \lim\limits_(x\to \infty)\left(\left(1+\frac(2x^2-x+8)(x^3+x-7)\right) ^(\frac(x^3+x-7)(2x^2-x+8))\right)^(x \frac(2x^2-x+8)(x^3+x-7)) = $$

Вираз у дужках фактично і є другою чудовою межею $\lim\limits_(t\to \infty) \left(1+\frac(1)(t)\right)^(t)=e$, тільки $t=\ frac(x^3+x-7)(2x^2-x+8) \to \infty$, тому

$$ = \lim\limits_(x\to \infty)\left(e\right)^(x \frac(2x^2-x+8)(x^3+x-7))= \lim\limits_ (x\to \infty)e^( \frac(2x^2-x+8)(x^2+1-7/x))= \lim\limits_(x\to \infty)e^( \frac (2-1/x+8/x^2)(1+1/x^2-7/x^3))=e^(2). $$

Чудових меж існує кілька, але найвідомішими є перший і другий чудові межі. Чудовість цих меж у тому, що вони мають широке застосування і з допомогою можна знайти й інші межі, які у численних завданнях. Цим ми і займатимемося в практичній частині цього уроку. Для вирішення завдань шляхом приведення до першої або другої чудової межі не потрібно розкривати невизначеності, що містяться в них, оскільки значення цих меж вже давно вивели великі математики.

Першою чудовою межеюназивається межа відношення синуса нескінченно малої дуги до тієї ж дуги, вираженої в радіанній мірі:

Переходимо до вирішення завдань на першу чудову межу. Зауважимо: якщо під знаком межі знаходиться тригонометрична функція, це майже вірна ознака того, що цей вираз можна привести до першої чудової межі.

$$ $$ \lim\limits_(x\to 0)\frac(\sin (ax))(\sin (bx))=\frac(a)(b).Знайти межу.

Рішення. Підстановка замість xнуля призводить до невизначеності:

.

У знаменнику - синус, отже, вираз можна призвести до першої чудової межі. Починаємо перетворення:

.

У знаменнику - синус трьох ікс, а в чисельнику лише один ікс, отже, потрібно отримати три ікс і в чисельнику. Для чого? Щоб уявити 3 x = aі отримати вираз.

І приходимо до різновиду першої чудової межі:

тому що не має значення, яка літера (змінна) у цій формулі стоїть замість ікса.

Помножуємо ікс на три і відразу ділимо:

.

Відповідно до поміченої першої чудової межі робимо заміну дробового виразу:

Тепер можемо остаточно вирішити цю межу:

.

Рішення.Знайти межу.

Рішення. Безпосередня підстановка знову призводить до невизначеності "нуль ділити на нуль":

.

Щоб отримати першу чудову межу, потрібно, щоб ікс під знаком синуса в чисельнику і просто ікс у знаменнику були з тим самим коефіцієнтом. Нехай цей коефіцієнт дорівнюватиме 2. Для цього представимо нинішній коефіцієнт при іксі як і далі, роблячи дії з дробами, отримуємо:

.

приклад 3.Знайти межу.

Рішення. При підстановці знову отримуємо невизначеність "нуль ділити на нуль":

.

Напевно, вам уже зрозуміло, що з вихідного виразу можна отримати першу чудову межу, помножену на першу чудову межу. Для цього розкладаємо квадрати ікса в чисельнику і синуса в знаменнику на однакові множники, а щоб отримати у іксів і синуса однакові коефіцієнти, ікси в чисельникі ділимо на 3 і відразу множимо на 3. Отримуємо:

.

$$ $$ \lim\limits_(x\to 0)\frac(\ln (1+x))(x)=1.Знайти межу.

Рішення. Знову отримуємо невизначеність "нуль ділити на нуль":

.

Можемо отримати відношення двох перших чудових меж. Ділимо і чисельник, і знаменник на ікс. Потім, щоб коефіцієнти при синусах і при іксах збігалися, верхній ікс множимо на 2 і відразу ділимо на 2, а нижній ікс множимо на 3 і відразу ділимо на 3. Отримуємо:

Приклад 5.Знайти межу.

Рішення. І знову невизначеність "нуль ділити на нуль":

Пам'ятаємо з тригонометрії, що тангенс - це ставлення синуса до косінус, а косинус нуля дорівнює одиниці. Виробляємо перетворення та отримуємо:

.

Приклад 6.Знайти межу.

Рішення. Тригонометрична функція під знаком межі знову наштовхує на думку про застосування першої чудової межі. Представляємо його як ставлення синуса до косінус.

З вищевказаної статті Ви зможете дізнатися, що ж таке межа, і з чим її їдять – це дуже важливо. Чому? Можна не розуміти, що таке визначники та успішно їх вирішувати, можна зовсім не розуміти, що таке похідна та знаходити їх на «п'ятірку». Але якщо Ви не розумієте, що таке межа, то з вирішенням практичних завдань доведеться туго. Також не зайвим буде ознайомитись із зразками оформлення рішень та моїми рекомендаціями щодо оформлення. Вся інформація викладена у простій та доступній формі.

А для цілей цього уроку нам знадобляться такі методичні матеріали: Чудові межіі Тригонометричні формули. Їх можна знайти на сторінці. Найкраще методички роздрукувати - це значно зручніше, до того ж до них часто доведеться звертатися в офлайні.

Чим чудові межі? Чудовість цих меж полягає в тому, що вони доведені найбільшими розумами знаменитих математиків, і вдячним нащадкам не доводиться страждати страшними межами з нагромадженням тригонометричних функцій, логарифмів, ступенів. Тобто при знаходженні меж ми користуватимемося готовими результатами, які доведені теоретично.

Чудових меж існує кілька, але на практиці у студентів-заочників у 95% випадків фігурують дві чудові межі: Перша чудова межа, Друга чудова межа. Слід зазначити, що це назви, що історично склалися, і, коли, наприклад, говорять про «першу чудову межу», то мають на увазі під цим цілком певну річ, а не якусь випадкову, взяту зі стелі межу.

Перша чудова межа

Розглянемо наступну межу: (замість рідної літери «хе» я використовуватиму грецьку літеру «альфа», це зручніше з погляду подачі матеріалу).

Відповідно до нашого правила знаходження меж (див. статтю Межі. Приклади рішень) Пробуємо підставити нуль у функцію: в чисельнику у нас виходить нуль (синус нуля дорівнює нулю), у знаменнику, очевидно, теж нуль. Таким чином, ми стикаємося з невизначеністю виду, яку, на щастя, не треба розкривати. У курсі математичного аналізу доводиться, що:

Цей математичний факт має назву Першої чудової межі. Аналітичний доказ межі наводити не буду, а ось його геометричний зміст розглянемо на уроці про нескінченно малих функціях.

Нерідко в практичних завданнях функції можуть бути по-іншому, це нічого не змінює:

– та сама перша чудова межа.

Але самостійно переставляти чисельник та знаменник не можна! Якщо дана межа у вигляді, то і вирішувати його потрібно в такому вигляді, нічого не переставляючи.

Насправді як параметра може бути як змінна , а й елементарна функція, складна функція. Важливо лише, щоб вона прагнула нуля.

Приклади:
, , ,

Тут , , , , і все гуд – перша чудова межа застосовується.

А ось наступний запис – єресь:

Чому? Тому що багаточлен не прагне нуля, він прагне п'ятірки.

До речі, питання на засипку, а чому дорівнює межа ? Відповідь можна знайти наприкінці уроку.

На практиці не все так гладко, майже ніколи студенту не запропонують вирішити халявну межу та отримати легкий залік. Хммм… Пишу ці рядки, і спала на думку дуже важлива думка – все-таки «халявні» математичні визначення та формули начебто краще пам'ятати напам'ять, це може надати неоціненну допомогу на заліку, коли питання вирішуватиметься між «двійкою» та «трійкою», і викладач вирішить поставити студенту якесь просте питання або запропонувати вирішити найпростіший приклад («а може він(а) все-таки знає чого?!»).

Переходимо до розгляду практичних прикладів:

Приклад 1

Знайти межу

Якщо ми помічаємо в межі синус, то це нас відразу має наштовхувати на думку про можливість застосування першої чудової межі.

Спочатку пробуємо підставити 0 у вираз під знак межі (робимо це подумки або на чернетці):

Отже, у нас є невизначеність виду, її обов'язково вказуємов оформленні рішення. Вираз під знаком межі у нас схоже на першу чудову межу, але це не зовсім він, під синусом знаходиться , а в знаменнику.

У таких випадках першу чудову межу нам потрібно організувати самостійно, використовуючи штучний прийом. Хід міркувань може бути таким: "під синусом у нас, значить, у знаменнику нам теж потрібно отримати".
А робиться це дуже просто:

Тобто знаменник штучно множиться в даному випадку на 7 і ділиться на ту ж сімку. Тепер запис у нас набрала знайомих обрисів.
Коли завдання оформляється від руки, то перша чудова межа бажано помітити простим олівцем:


Що сталося? По суті, обведений вираз у нас перетворився на одиницю і зник у творі:

Тепер тільки залишилося позбутися триповерховості дробу:

Хто забув спрощення багатоповерхових дробів, будь ласка, освіжіть матеріал у довіднику Гарячі формули шкільного курсу математики .

Готово. Остаточна відповідь:

Якщо не хочеться використовувати позначки олівцем, то рішення можна оформити так:



Використовуємо першу чудову межу

Приклад 2

Знайти межу

Знову ми бачимо межі дріб і синус. Пробуємо підставити в чисельник і знаменник нуль:

Справді, у нас невизначеність і, отже, треба спробувати організувати першу чудову межу. На уроці Межі. Приклади рішеньми розглядали правило, що коли у нас є невизначеність, то потрібно розкласти чисельник та знаменник на множники. Тут – те саме, ступеня ми представимо як твори (множників):

Аналогічно попередньому прикладу, обводимо олівцем чудові межі (тут їх дві), і вказуємо, що вони прагнуть одиниці:

Власне, відповідь готова:

У наступних прикладах, я не займатимуся мистецтвами в Пейнті, думаю, як правильно оформляти рішення в зошиті – Вам уже зрозуміло.

Приклад 3

Знайти межу

Підставляємо нуль у вираз під знаком межі:

Отримано невизначеність, яку потрібно розкривати. Якщо в межі є тангенс, то майже завжди його перетворюють на синус і косинус за відомою тригонометричною формулою (до речі, з котангенсом роблять приблизно те саме, див. методичний матеріал Гарячі тригонометричні формулина сторінці Математичні формули, таблиці та довідкові матеріали).

В даному випадку:

Косинус нуля дорівнює одиниці, і його легко позбутися (не забуваємо помітити, що він прагне одиниці):

Отже, якщо межі косинус є МНОЖИТЕЛЕМ, його, грубо кажучи, треба перетворити на одиницю, що зникає у творі.

Тут все вийшло простіше, без будь-яких примножень і поділів. Перша чудова межа теж перетворюється на одиницю і зникає у творі:

У результаті отримано нескінченність, буває таке.

Приклад 4

Знайти межу

Пробуємо підставити нуль у чисельник та знаменник:

Отримана невизначеність (косинус нуля, як ми пам'ятаємо, дорівнює одиниці)

Використовуємо тригонометричну формулу. Візьміть на замітку! Межі із застосуванням цієї формули чомусь зустрічаються дуже часто.

Постійні множники винесемо за значок межі:

Організуємо першу чудову межу:


Тут у нас тільки одна чудова межа, яка перетворюється на одиницю і зникає у творі:

Позбавимося триповерховості:

Межа фактично вирішена, вказуємо, що синус, що залишився, прагне до нуля:

Приклад 5

Знайти межу

Цей приклад складніший, спробуйте розібратися самостійно:

Деякі межі можна звести до 1-ї чудової межі шляхом заміни змінної, про це можна прочитати трохи пізніше в статті Методи розв'язання меж.

Друга чудова межа

Теоретично математичного аналізу доведено, що:

Цей факт має назву другої чудової межі.

Довідка: - Це ірраціональне число.

Як параметр може бути як змінна , а й складна функція. Важливо лише, щоб вона прагнула нескінченності.

Приклад 6

Знайти межу

Коли вираз під знаком межі перебуває у ступені – це перша ознака того, що потрібно спробувати застосувати другу чудову межу.

Але спочатку, як завжди, пробуємо підставити нескінченно велике число у вираз, за ​​яким принципом це робиться, розібрано на уроці. Межі. Приклади рішень.

Неважко помітити, що при основа ступеня , а показник – , тобто є, невизначеність виду:

Ця невизначеність якраз і розкривається за допомогою другої чудової межі. Але, як часто буває, друга чудова межа не лежить на блюдечку з блакитною облямівкою, і його потрібно штучно організувати. Розмірковувати можна так: у цьому прикладі параметр , отже, у показнику нам теж треба організувати . Для цього зводимо основу в ступінь , і щоб вираз не змінилося - зводимо в ступінь :

Коли завдання оформляється від руки, позначаємо олівцем:


Практично все готово, страшний ступінь перетворився на симпатичну букву:

При цьому сам значок межі переміщуємо до показника:

Приклад 7

Знайти межу

Увага! Межа подібного типу зустрічається дуже часто, будь ласка, дуже уважно вивчіть цей приклад.

Пробуємо підставити нескінченно велике число у вираз, що стоїть під знаком межі:

В результаті отримано невизначеність. Але друга чудова межа застосовується до невизначеності виду. Що робити? Потрібно перетворити основу ступеня. Розмірковуємо так: у знаменнику у нас, значить, у чисельнику теж потрібно організувати.

Доведення:

Доведемо спочатку теорему для випадку послідовності

За формулою бінома Ньютона:

Вважаючи отримаємо

З цієї рівності (1) випливає, що зі збільшенням n число позитивних доданків у правій частині збільшується. Крім того, при збільшенні n число зменшується, тому величини зростають. Тому послідовність зростаюча, при цьому (2)*Покажемо, що вона обмежена. Замінимо кожну дужку у правій частині рівності на одиницю, права частина збільшиться, отримаємо нерівність

Посилимо отриману нерівність, замінимо 3,4,5, …, що стоять у знаменниках дробів, числом 2: Суму в дужці знайдемо за формулою суми членів геометричної прогресії: Тому (3)*

Отже, послідовність обмежена зверху, при цьому виконуються нерівності (2) та (3): Отже, виходячи з теореми Вейерштрасса (критерій збіжності послідовності) послідовність монотонно зростає і обмежена, отже має межу, що позначається буквою e. Тобто.

Знаючи, що друга чудова межа вірна для натуральних значень x, доведемо другу чудову межу для речовинних x, тобто доведемо, що . Розглянемо два випадки:

1. Нехай Кожне значення x укладено між двома позитивними цілими числами: де - це ціла частина x. => =>

Якщо , то Тому, відповідно до межі Маємо

За ознакою (про межу проміжної функції) існування меж

2. Нехай. Зробимо підстановку − x = t, тоді

Із двох цих випадків випливає, що для речового x.

Наслідки:

9 .) Порівняння нескінченно малих. Теорема про заміну нескінченно малих на еквівалентні в межі та теорема про головну частину нескінченно малих.

Нехай функції a ( x) та b( x) - Б.М. при x ® x 0 .

ВИЗНАЧЕННЯ.

1) a( x) називається нескінченно малого вищого порядку ніж b (x) якщо

Записують: a ( x) = o(b( x)) .

2) a( x) і b( x)називаються нескінченно малими одного порядку, якщо

де СÎℝ та C¹ 0 .

Записують: a ( x) = O(b( x)) .

3) a( x) і b( x) називаються еквівалентними , якщо

Записують: a ( x) ~ b ( x).

4) a( x) називається нескінченно малою порядку k відноси-
дуже нескінченно малої
b( x),
якщо нескінченно малі a( x)і(b( x)) k мають одне порядок, тобто. якщо

де СÎℝ та C¹ 0 .

ТЕОРЕМА 6 (про заміну нескінченно малих на еквівалентні).

Нехай a( x), b( x), a 1 ( x), b 1 ( x)- Б.М. при x ® x 0 . Якщо a( x) ~ a 1 ( x), b( x) ~ b 1 ( x),

то

Доказ: Нехай a( x) ~ a 1 ( x), b( x) ~ b 1 ( x)тоді

ТЕОРЕМА 7 (про головну частину нескінченно малої).

Нехай a( x)і b( x)- Б.М. при x ® x 0 , причому b( x)- Б.М. вищого порядку ніж a( x).

= , a оскільки b( x) - вищого порядку ніж a ( x), то, тобто. з ясно, що a( x) + b( x) ~ a( x)

10) Безперервність функції у точці (мовою меж эпсилон-дельта, геометричне) Одностороння безперервність. Безперервність на інтервалі, відрізку. Властивості безперервних функцій.

1. Основні визначення

Нехай f(x) визначена в деякій околиці точки x 0 .

ВИЗНАЧЕННЯ 1. Функція f(x) називається безперервний у точці x 0 якщо справедлива рівність

Зауваження.

1) У силу теореми 5 §3 рівність (1) можна записати у вигляді

Умова (2) – визначення безперервності функції у точці мовою односторонніх меж.

2) Рівність (1) можна також записати у вигляді:

Кажуть: «якщо функція безперервна у точці x 0 , то знак межі та функцію можна поміняти місцями».

ВИЗНАЧЕННЯ 2 (мовою e-d).

Функція f(x) називається безперервний у точці x 0 якщо"e>0 $d>0 таке, що

якщо xÎU( x 0, d) (тобто. | xx 0 | < d),

то f(x)ÎU( f(x 0), e) (тобто | | f(x) – f(x 0) | < e).

Нехай x, x 0 Î D(f) (x 0 – фіксована, x –довільна)

Позначимо: D x= x – x 0 – приріст аргументу

D f(x 0) = f(x) – f(x 0) – збільшення функції в точціx 0

ВИЗНАЧЕННЯ 3 (геометричне).

Функція f(x) на зується безперервний у точці x 0 якщо в цій точці нескінченно малому прирощенню аргументу відповідає нескінченно мале збільшення функції, тобто.

Нехай функція f(x) визначено на проміжку [ x 0 ; x 0 + d) (на проміжку ( x 0 – d; x 0 ]).

ВИЗНАЧЕННЯ. Функція f(x) називається безперервний у точці x 0 справа (зліва ), якщо справедлива рівність

Очевидно, що f(x) безперервна в точці x 0 Û f(x) безперервна в точці x 0 праворуч та ліворуч.

ВИЗНАЧЕННЯ. Функція f(x) називається безперервний на інтервал е ( a; b) якщо вона безперервна в кожній точці цього інтервалу.

Функція f(x) називається безперервною на відрізку [a; b] якщо вона безперервна на інтервалі (a; b) і має односторонню безперервність у граничних точках(Тобто безперервна в точці aправоруч, у точці b- зліва).

11) Точки розриву, їхня класифікація

ВИЗНАЧЕННЯ. Якщо функція f(x) визначена в деякій околиці точки x 0 , але не є безперервною в цій точці, то f(x) називають розривною в точці x 0 , а саму точку x 0 називають точкою розриву функції f(x) .

Зауваження.

1) f(x) може бути визначена в неповній околиці точки x 0 .

Тоді розглядають відповідну односторонню безперервність функції.

2) З визначення Þ точка x 0 є точкою розриву функції f(x) у двох випадках:

а) U( x 0 , d)Î D(f) , але для f(x) не виконується рівність

б) U * ( x 0 , d)Î D(f) .

Для елементарних функцій можливе лише випадок б).

Нехай x 0 – точка розриву функції f(x) .

ВИЗНАЧЕННЯ. Крапка x 0 називається точкою розриву I роду якщо функція f(x)має в цій точці кінцеві межі зліва та справа.

Якщо при цьому ці межі дорівнюють, то точка x 0 називається точкою усуненого розриву , в іншому випадку - точкою стрибка .

ВИЗНАЧЕННЯ. Крапка x 0 називається точкою розриву II роду якщо хоча б одна з односторонніх меж функції f(x)у цій точці дорівнює¥ чи не існує.

12) Властивості функцій, безперервних на відрізку (теореми Вейєрштрасса (без док-ва) та Коші

Теорема Вейєрштраса

Нехай функція f(x) безперервна на відрізку тоді

1)f(x)обмежена на

2)f(x) приймає на проміжку своє найменше та найбільше значення

Визначення: Значення функції m=f називається найменшим, якщо m≤f(x) для будь-якого x€ D(f).

Значення функції m=f називається найбільшим, якщо m≥f(x) для будь-якого x€ D(f).

Найменше\найбільше значення функція може приймати у кількох точках відрізка.

f(x 3)=f(x 4)=max

Теорема Коші.

Нехай функція f(x) безперервна на відрізку і х – число, укладене між f(a) та f(b), тоді існує хоча б одна точка х 0 € така, що f(x 0) = g

Формула другої чудової межі має вигляд lim x → ∞ 1 + 1 x x = e. Інша форма запису має такий вигляд: lim x → 0 (1 + x) 1 x = e .

Коли говоримо про другий чудовому межі, нам доводиться мати справу з невизначеністю виду 1 ∞ , тобто. одиницею нескінченно.

Yandex.RTB R-A-339285-1

Розглянемо завдання, у яких нам знадобиться вміння обчислювати другу чудову межу.

Приклад 1

Знайдіть межу lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 .

Рішення

Підставимо потрібну формулу і виконаємо обчислення.

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 - 2 ∞ 2 + 1 ∞ 2 + 1 4 = 1 - 0 ∞ = 1 ∞

У нас у відповіді вийшла одиниця в міру нескінченність. Щоб визначитися з методом розв'язання, використовуємо таблицю невизначеностей. Виберемо другу чудову межу і зробимо заміну змінних.

t = - x 2 + 1 2 ⇔ x 2 + 1 4 = - t 2

Якщо x → ∞, тоді t → -∞.

Подивимося, що в нас вийшло після заміни:

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 ∞ = lim x → ∞ 1 + 1 t - 1 2 t = lim t → ∞ 1 + 1 t t - 1 2 = e - 1 2

Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$ lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = e - 1 2 .

Приклад 2

Обчисліть межу lim x → ∞ x - 1 x + 1 x.

Рішення

Підставимо нескінченність і отримаємо таке.

lim x → ∞ x - 1 x + 1 x = lim x → ∞ 1 - 1 x 1 + 1 x x = 1 - 0 1 + 0 ∞ = 1 ∞

У відповіді у нас знову вийшло те саме, що й у попередньому завданні, отже, ми можемо знову скористатися другою чудовою межею. Далі нам потрібно виділити в основі статечної функції цілу частину:

x - 1 x + 1 = x + 1 - 2 x + 1 = x + 1 x + 1 - 2 x + 1 = 1 - 2 x + 1

Після цього межа набуває наступного вигляду:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x

Замінюємо змінні. Припустимо, що t = - x + 1 2 ⇒ 2 t = - x - 1 ⇒ x = - 2 t - 1; якщо x → ∞, то t → ∞.

Після цього записуємо, що в нас вийшло у вихідній межі:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x = lim x → ∞ 1 + 1 t - 2 t - 1 = = lim x → ∞ 1 + 1 t - 2 t · 1 + 1 t - 1 = lim x → ∞ 1 + 1 t - 2 t · lim x → ∞ 1 + 1 t - 1 = = lim x → ∞ 1 + 1 t t - 2 · 1 + 1 ∞ = e - 2 · (1 + 0) - 1 = e - 2

Щоб виконати це перетворення, ми використовували основні властивості меж і ступенів.

Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$ lim x → ∞ x - 1 x + 1 x = e-2.

Приклад 3

Обчисліть межу lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 .

Рішення

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + 1 x 3 1 + 2 x - 1 x 3 3 2 x - 5 x 4 = = 1 + 0 1 + 0 - 0 3 0 - 0 = 1 ∞

Після цього нам потрібно виконати перетворення функції для застосування другої чудової межі. У нас вийшло таке:

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = 1 ∞ = lim x → ∞ x 3 - 2 x 2 - 1 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

Оскільки зараз у нас є однакові показники ступеня в чисельнику і знаменнику дробу (рівні шести), то межа дробу на нескінченності дорівнюватиме відношенню даних коефіцієнтів при старших ступенях.

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 6 2 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3

При заміні t = x 2 + 2 x 2 - 1 - 2 x 2 + 2 у нас вийде друга чудова межа. Значить, що:

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3 = lim x → ∞ 1 + 1 t t - 3 = e - 3

Обчислити межу $$\lim\limits_(x\to 0)\frac(\sin 3x)(8x).$$ lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = e-3.

Висновки

Невизначеність 1 ∞, тобто. одиниця в нескінченній мірі, є статечною невизначеністю, отже, її можна розкрити, використовуючи правила знаходження меж показово статечних функцій.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

КАТЕГОРІЇ

ПОПУЛЯРНІ СТАТТІ

2024 «kingad.ru» - УЗД дослідження органів людини