Аналіз даних із використанням методу найменших квадратів. Метод найменших квадратів у Excel

Метод найменших квадратів

На заключному уроці теми ми познайомимося з найвідомішим додатком ФНП, яке знаходить найширше застосування у різних галузях науки та практичної діяльності. Це може бути фізика, хімія, біологія, економіка, соціологія, психологія і таке інше. Волею долі мені часто доводиться мати справу з економікою, і тому сьогодні я оформлю вам путівку до дивовижної країни під назвою Економетрика=) …Як це не хочете?! Там дуже добре – треба тільки наважитися! …Але ось те, що ви, напевно, точно хочете – так це навчитися вирішувати завдання методом найменших квадратів. І особливо старанні читачі навчаться вирішувати їх не тільки безпомилково, але ще й ДУЖЕ ШВИДКО;-) Але спочатку загальна постановка задачі+ супутній приклад:

Нехай у деякій предметної області досліджуються показники, які мають кількісне вираз. У цьому є підстави вважати, що показник залежить від показника . Це може бути як наукової гіпотезою, і грунтуватися на елементарному здоровому глузді. Залишимо, проте, науку осторонь і досліджуємо більш апетитні області - зокрема, продовольчі магазини. Позначимо через:

– торгову площу продовольчого магазину, кв.м.,
- Річний товарообіг продовольчого магазину, млн. руб.

Цілком зрозуміло, що чим більша площа магазину, тим у більшості випадків буде більшим його товарообіг.

Припустимо, що після проведення спостережень/дослідів/підрахунків/танців з бубном у нашому розпорядженні виявляються числові дані:

З гастрономами, гадаю, все зрозуміло: - це площа 1-го магазину, - його річний товарообіг, - площа 2-го магазину, - його річний товарообіг і т.д. До речі, зовсім не обов'язково мати доступ до секретних матеріалів – досить точну оцінку товарообігу можна отримати засобами математичної статистики. Втім, не відволікаємось, курс комерційного шпигунства – він уже платний =)

Табличні дані також можна записати у вигляді точок та зобразити у звичній для нас декартовій системі .

Відповімо на важливе питання: скільки точок потрібно якісного дослідження?

Чим більше тим краще. Мінімально допустимий набір складається з 5-6 пікселів. Крім того, при невеликій кількості даних у вибірку не можна включати «аномальні» результати. Так, наприклад, невеликий елітний магазин може рятувати на порядки більше «своїх колег», спотворюючи тим самим загальну закономірність, яку потрібно знайти!



Якщо дуже просто - нам потрібно підібрати функцію, графікякою проходить якомога ближче до точок . Таку функцію називають апроксимуючою (апроксимація – наближення)або теоретичною функцією . Взагалі кажучи, тут одразу з'являється очевидний «претендент» – багаточлен високого ступеня, графік якого проходить через всі точки. Але цей варіант складний, а часто й просто некоректний (т.к. графік буде весь час «петляти» і погано відображатиме головну тенденцію).

Таким чином, розшукувана функція повинна бути досить простою і в той же час відображати залежність адекватно. Як ви здогадуєтеся, один із методів знаходження таких функцій і називається методом найменших квадратів. Спочатку розберемо його суть у загальному вигляді. Нехай деяка функція наближає експериментальні дані:


Як оцінити точність наближення? Обчислимо і різниці (відхилення) між експериментальними та функціональними значеннями (Вивчаємо креслення). Перша думка, яка спадає на думку – це оцінити, наскільки велика сума, але проблема полягає в тому, що різниці можуть бути і негативні. (наприклад, ) та відхилення внаслідок такого підсумовування будуть взаємознищуватись. Тому як оцінка точності наближення напрошується прийняти суму модуліввідхилень:

або в згорнутому вигляді: (раптом хто не знає: – це значок суми, а - Допоміжна змінна-«лічильник», яка набуває значення від 1 до ) .

Наближаючи експериментальні точки різними функціями, ми будемо отримувати різні значення і, очевидно, де ця сума менша – та функція і точніше.

Такий метод існує і називається він методом найменших модулів. Однак на практиці набув значно більшого поширення метод найменших квадратів, В якому можливі негативні значення ліквідуються не модулем, а зведенням відхилень у квадрат:



, після чого зусилля спрямовані на підбір такої функції, щоб сума квадратів відхилень була якнайменше. Власне, звідси й назва методу.

І зараз ми повертаємося до іншого важливого моменту: як зазначалося вище, функція, що підбирається, повинна бути досить проста - але ж і таких функцій теж чимало: лінійна , гіперболічна , експоненційна , логарифмічна , квадратична і т.д. І, звичайно, тут одразу б хотілося «скоротити поле діяльності». Який клас функцій вибрати на дослідження? Примітивний, але ефективний прийом:

- Найпростіше зобразити точки на кресленні та проаналізувати їх розташування. Якщо вони мають тенденцію розташовуватися по прямій, слід шукати рівняння прямої з оптимальними значеннями та . Іншими словами, завдання полягає у знаходженні ТАКИХ коефіцієнтів – щоб сума квадратів відхилень була найменшою.

Якщо ж точки розташовані, наприклад, по гіперболі, то свідомо зрозуміло, що лінійна функція даватиме погане наближення. У цьому випадку шукаємо найбільш «вигідні» коефіцієнти для рівняння гіперболи – ті, що дають мінімальну суму квадратів .

А тепер зверніть увагу, що в обох випадках мова йде про функції двох змінних, аргументами якої є параметри залежностей, що розшукуються:

І по суті нам потрібно вирішити стандартне завдання – знайти мінімум функції двох змінних.

Згадаймо про наш приклад: припустимо, що «магазинні» точки мають тенденцію розташовуватися по прямій лінії і є підстави вважати наявність лінійної залежностітоварообігу від торгової площі Знайдемо ТАКІ коефіцієнти «а» та «бе», щоб сума квадратів відхилень була найменшою. Все як завжди - спочатку приватні похідні 1-го порядку. Згідно правилу лінійностідиференціювати можна прямо під значком суми:

Якщо хочете використовувати дану інформацію для реферату або курсовика - буду дуже вдячний за посилання в списку джерел, такі докладні викладки знайдете мало де:

Складемо стандартну систему:

Скорочуємо кожне рівняння на «двійку» і, крім того, «розвалюємо» суми:

Примітка : самостійно проаналізуйте, чому «а» та «бе» можна винести за значок суми До речі, формально це можна зробити і із сумою

Перепишемо систему у «прикладному» вигляді:

після чого починає промальовуватися алгоритм розв'язання нашого завдання:

Координати точок ми знаємо? Знаємо. Суми знайти можемо? Легко. Складаємо найпростішу систему двох лінійних рівнянь із двома невідомими(«а» та «бе»). Систему вирішуємо, наприклад, методом Крамера, у результаті отримуємо стаціонарну точку . Перевіряючи достатня умова екстремумуможна переконатися, що в даній точці функція досягає саме мінімуму. Перевірка пов'язана з додатковими викладками і тому залишимо її за кадром (при необхідності кадр, що бракує, можна подивитисятут ) . Робимо остаточний висновок:

Функція найкращим чином (принаймні, порівняно з будь-якою іншою лінійною функцією)наближає експериментальні точки . Грубо кажучи, її графік відбувається максимально близько до цих точок. У традиціях економетрикиотриману апроксимуючу функцію також називають рівнянням парної лінійної регресії .

Розглянуте завдання має велике практичне значення. У ситуації з нашим прикладом, рівняння дозволяє прогнозувати, який товарообіг («Ігрек»)буде біля магазину при тому чи іншому значенні торгової площі (Тому чи іншому значенні «ікс»). Так, отриманий прогноз буде лише прогнозом, але у багатьох випадках він виявиться досить точним.

Я розберу лише одне завдання з «реальними» числами, оскільки жодних труднощів у ній немає – всі обчислення на рівні шкільної програми 7-8 класу. У 95 відсотків випадків вам буде запропоновано знайти саме лінійну функцію, але в самому кінці статті я покажу, що нітрохи не складніше знайти рівняння оптимальної гіперболи, експоненти та деяких інших функцій.

По суті, залишилося роздати обіцяні плюшки – щоб ви навчилися вирішувати такі приклади не лише безпомилково, а ще й швидко. Уважно вивчаємо стандарт:

Завдання

В результаті дослідження взаємозв'язку двох показників отримані такі пари чисел:

Методом найменших квадратів знайти лінійну функцію, яка найкраще наближає емпіричні (досвідчені)дані. Зробити креслення, на якому в декартовій прямокутній системі координат побудувати експериментальні точки та графік апроксимуючої функції . Знайти суму квадратів відхилень між емпіричними та теоретичними значеннями. З'ясувати, чи буде функція кращою (з погляду методу найменших квадратів)наближати експериментальні точки.

Зауважте, що «іксові» значення – натуральні, і це має характерний змістовний зміст, про який я розповім трохи згодом; але вони, зрозуміло, можуть і дробовими. Крім того, залежно від змісту того чи іншого завдання як «іксові», так і «ігрові» значення повністю або частково можуть бути негативними. Ну а у нас дане «безлике» завдання, і ми починаємо його Рішення:

Коефіцієнти оптимальної функції знайдемо як розв'язання системи:

З метою більш компактного запису змінну-«лічильник» можна опустити, оскільки і так зрозуміло, що підсумовування здійснюється від 1 до .

Розрахунок потрібних сум зручніше оформити у табличному вигляді:


Обчислення можна провести на мікрокалькуляторі, але краще використовувати Ексель - і швидше, і без помилок; дивимося короткий відеоролик:

Таким чином, отримуємо наступну систему:

Тут можна помножити друге рівняння на 3 та від 1-го рівняння почленно відняти 2-е. Але це везіння - на практиці системи частіше не подарункові, і в таких випадках рятує метод Крамера:
Отже, система має єдине рішення.

Виконаємо перевірку. Розумію, що не хочеться, але навіщо пропускати помилки там, де їх можна стовідсотково не пропустити? Підставимо знайдене рішення в ліву частину кожного рівняння системи:

Отримано праві частини відповідних рівнянь, отже система вирішена правильно.

Таким чином, шукана апроксимуюча функція: – з всіх лінійних функційекспериментальні дані найкраще наближає саме вона.

На відміну від прямий залежності товарообігу магазину від його площі, знайдена залежність є зворотній (Принцип «що більше – тим менше»), і цей факт відразу виявляється по негативному кутовому коефіцієнту. Функція повідомляє нам про те, що зі збільшення якогось показника на 1 одиницю значення залежного показника зменшується в середньомуна 0,65 одиниць. Як то кажуть, що вище ціна на гречку, то менше її продано.

Для побудови графіка апроксимуючої функції знайдемо два її значення:

і виконаємо креслення:

Побудована пряма називається лінією тренду (а саме – лінією лінійного тренду, тобто у загальному випадку тренд – це не обов'язково пряма лінія). Всім знайомий вислів «бути в тренді», і, гадаю, що цей термін не потребує додаткових коментарів.

Обчислимо суму квадратів відхилень між емпіричними та теоретичними значеннями. Геометрично – це сума квадратів довжин «малинових» відрізків (два з яких настільки малі, що їх навіть не видно).

Обчислення зведемо до таблиці:


Їх можна знову ж таки провести вручну, про всяк випадок наведу приклад для 1-ї точки:

але набагато ефективніше вчинити вже відомим чином:

Ще раз повторимо: у чому сенс отриманого результату?З всіх лінійних функційу функції показник є найменшим, тобто у своїй родині це найкраще наближення. І тут, до речі, не випадкове заключне питання завдання: а раптом запропонована експоненційна функція краще наближатиме експериментальні точки?

Знайдемо відповідну суму квадратів відхилень – щоб розрізняти, я позначу їх літерою «епсілон». Техніка така сама:

І знову на будь-який пожежний обчислення для 1-ї точки:

В Екселі користуємося стандартною функцією EXP (Синтаксис можна подивитися в екселевський Довідці).

Висновок: , отже, експоненційна функція наближає експериментальні точки гірше, ніж пряма .

Але тут слід зазначити, що «гірше» – це ще не означає, що погано. Зараз збудував графік цієї експоненційної функції – і він теж проходить близько до точок - Так, що без аналітичного дослідження і сказати важко, яка функція точніше.

На цьому рішення закінчено, і я повертаюся до питання про натуральні значення аргументу. У різних дослідженнях, зазвичай, економічних чи соціологічних, натуральними «іксами» нумерують місяці, роки чи інші рівні часові проміжки. Розглянемо, наприклад, таке завдання:

Є такі дані про роздрібний товарообіг магазину за перше півріччя:

Використовуючи аналітичне вирівнювання по прямій, визначте обсяг товарообігу за липень.

Так без проблем: нумеруємо місяці 1, 2, 3, 4, 5, 6 і використовуємо звичайний алгоритм, в результаті чого отримуємо рівняння – єдине, коли йдеться про час, зазвичай використовують букву «те» (хоча це не критично). Отримане рівняння показує, що у першому півріччі товарообіг збільшувався загалом на 27,74 д.е. за місяць. Отримаємо прогноз на липень (місяць №7): д.е.

І подібних завдань – темрява темрява. Бажаючі можуть скористатися додатковим сервісом, а саме моїм екселевський калькулятор (демо версія), Котрий вирішує розібране завдання практично миттєво!Робоча версія програми доступна з обмінуабо за символічну плату.

На закінчення уроку коротка інформація про перебування залежностей інших видів. Власне, і розповідати особливо нема чого, оскільки принциповий підхід і алгоритм рішення залишаються колишніми.

Припустимо, розташування експериментальних точок нагадує гіперболу. Тоді щоб знайти коефіцієнти кращої гіперболи, необхідно визначити мінімум функції – охочі можуть провести докладні обчислення і дійти схожої системи:

З формально-технічної точки зору вона виходить із «лінійної» системи (позначимо її «зірочкою»)заміною «ікса» на . Ну а вже суми-то розрахуєте, після чого до оптимальних коефіцієнтів «а» та «бе» рукою подати.

Якщо є всі підстави вважати, що точки розташовуються по логарифмічній кривій, то для розшуку оптимальних значень і знаходимо мінімум функції . Формально в системі (*) потрібно замінити на:

Під час обчислень в Екселі використовуйте функцію LN. Признаюся, мені не складе особливих труднощів створити калькулятори для кожного з цих випадків, але все-таки буде краще, якщо ви самі «запрограмуєте» обчислення. Відеоматеріали уроку на допомогу.

З експоненційною залежністю ситуація трохи складніша. Щоб звести справу до лінійного випадку, прологарифмуємо функцію та скористаємося властивостям логарифму:

Тепер, зіставляючи отриману функцію з лінійною функцією , приходимо висновку, що у системі (*) потрібно замінити на , а – на . Для зручності позначимо:

Зверніть увагу, що система дозволяється щодо і , і тому після знаходження коріння потрібно не забути знайти сам коефіцієнт .

Щоб наблизити експериментальні точки оптимальною параболою слід знайти мінімум функції трьох змінних. Після здійснення стандартних дій отримуємо наступну «робочу» систему:

Так, звичайно, сум тут більше, але при використанні улюбленої програми труднощів взагалі ніяких. І насамкінець розповім, як за допомогою Екселю швидко виконати перевірку та побудувати потрібну лінію тренду: створюємо точкову діаграму, виділяємо мишею будь-яку з точок. і через праве клацання вибираємо опцію «Додати лінію тренду». Далі вибираємо тип діаграми та на вкладці «Параметри»активуємо опцію "Показувати рівняння на діаграмі". ОК

Як завжди статтю хочеться завершити якоюсь красивою фразою, і я вже мало не надрукував «Будьте в тренді!». Але вчасно передумав. І не через те, що вона є шаблонною. Не знаю, кому як, а мені щось зовсім не хочеться слідувати американському, що пропагується, і особливо європейському тренду =) Тому я побажаю кожному з вас дотримуватися своєї власної лінії!

http://www.grandars.ru/student/vysshaya-matematika/metod-naimenshih-kvadratov.html

Метод найменших квадратів є одним з найбільш поширених та найбільш розроблених внаслідок своєї простоти та ефективності методів оцінки параметрів лінійнихеконометричних моделей. Разом з тим, при його застосуванні слід дотримуватись певної обережності, оскільки побудовані з його використанням моделі можуть не задовольняти цілий ряд вимог до якості їх параметрів і, внаслідок цього, недостатньо добре відображати закономірності розвитку процесу.

Розглянемо процедуру оцінки параметрів лінійної економетричної моделі за допомогою методу найменших квадратів докладніше. Така модель у загальному вигляді може бути представлена ​​рівнянням (1.2):

y t = a 0 + a 1 x 1t + ... + a n x nt + ε t.

Вихідними даними в оцінці параметрів a 0 , a 1 ,..., a n є вектор значень залежної змінної y= (y 1 , y 2 , ... , y T)" і матриця значень незалежних змінних

у якій перший стовпець, що складається з одиниць, відповідає коефіцієнту моделі .

Назву свій метод найменших квадратів отримав, виходячи з основного принципу, якому повинні задовольняти отримані на його основі оцінки параметрів: сума квадратів помилки моделі має бути мінімальною.

Приклади розв'язання задач методом найменших квадратів

приклад 2.1.Торговельне підприємство має мережу, що складається з 12 магазинів, інформацію про діяльність яких представлено у табл. 2.1.

Керівництво підприємства хотіло б знати, як залежить розмір річного товарообігу від торгової площі магазину.

Таблиця 2.1

Номер магазину Річний товарообіг, млн руб. Торгова площа, тис. м2
19,76 0,24
38,09 0,31
40,95 0,55
41,08 0,48
56,29 0,78
68,51 0,98
75,01 0,94
89,05 1,21
91,13 1,29
91,26 1,12
99,84 1,29
108,55 1,49

Рішення шляхом найменших квадратів.Позначимо - річний товарообіг-го магазину, млн руб.; - торгова площа магазину, тис. м 2 .

Рис.2.1. Діаграма розсіювання для прикладу 2.1

Для визначення форми функціональної залежності між змінними та побудуємо діаграму розсіювання (рис. 2.1).

З діаграми розсіювання можна дійти невтішного висновку про позитивну залежність річного товарообігу від торгової площі (тобто. зростатиме зі зростанням ). Найбільш підходяща форма функціонального зв'язку - лінійна.

Інформація щодо подальших розрахунків представлена ​​у табл. 2.2. За допомогою методу найменших квадратів оцінимо параметри лінійної однофакторної економетричної моделі

Таблиця 2.2

t y t x 1t y t 2 x 1t 2 x 1t y t
19,76 0,24 390,4576 0,0576 4,7424
38,09 0,31 1450,8481 0,0961 11,8079
40,95 0,55 1676,9025 0,3025 22,5225
41,08 0,48 1687,5664 0,2304 19,7184
56,29 0,78 3168,5641 0,6084 43,9062
68,51 0,98 4693,6201 0,9604 67,1398
75,01 0,94 5626,5001 0,8836 70,5094
89,05 1,21 7929,9025 1,4641 107,7505
91,13 1,29 8304,6769 1,6641 117,5577
91,26 1,12 8328,3876 1,2544 102,2112
99,84 1,29 9968,0256 1,6641 128,7936
108,55 1,49 11783,1025 2,2201 161,7395
S 819,52 10,68 65008,554 11,4058 858,3991
Середнє 68,29 0,89

Таким чином,

Отже, зі збільшенням торгової площі на 1 тис. м 2 за інших рівних умов середньорічний товарообіг збільшується на 67,8871 млн руб.

приклад 2.2.Керівництво підприємства помітило, що річний товарообіг залежить тільки від торгової площі магазину (див. приклад 2.1), а й від середнього числа відвідувачів. Відповідна інформація представлена ​​у табл. 2.3.

Таблиця 2.3

Рішення.Позначимо - середня кількість відвідувачів магазину на день, тис. чол.

Для визначення форми функціональної залежності між змінними та побудуємо діаграму розсіювання (рис. 2.2).

З діаграми розсіяння можна дійти невтішного висновку про позитивну залежність річного товарообігу від середньої кількості відвідувачів щодня (тобто. зростатиме зі зростанням ). Форма функціональної залежності – лінійна.

Мал. 2.2. Діаграма розсіювання для прикладу 2.2

Таблиця 2.4

t x 2t x 2t 2 y t x 2t x 1t x 2t
8,25 68,0625 163,02 1,98
10,24 104,8575 390,0416 3,1744
9,31 86,6761 381,2445 5,1205
11,01 121,2201 452,2908 5,2848
8,54 72,9316 480,7166 6,6612
7,51 56,4001 514,5101 7,3598
12,36 152,7696 927,1236 11,6184
10,81 116,8561 962,6305 13,0801
9,89 97,8121 901,2757 12,7581
13,72 188,2384 1252,0872 15,3664
12,27 150,5529 1225,0368 15,8283
13,92 193,7664 1511,016 20,7408
S 127,83 1410,44 9160,9934 118,9728
Середнє 10,65

Загалом необхідно визначити параметри двофакторної економетричної моделі

у t = a 0 + a 1 х 1t + a 2 х 2t + ε t

Інформація, потрібна для подальших розрахунків, подана у табл. 2.4.

Оцінимо параметри лінійної двофакторної економетричної моделі за допомогою методу найменших квадратів.

Таким чином,

Оцінка коефіцієнта = 61,6583 показує, що за інших рівних умов зі збільшенням торгової площі на 1 тис. м 2 річний товарообіг збільшиться в середньому на 61,6583 млн руб.

Оцінка коефіцієнта = 2,2748 показує, що з інших рівних умов із збільшенням середньої кількості відвідувачів на 1 тис. чол. на день річний товарообіг збільшиться в середньому на 2,2748 млн. руб.

приклад 2.3.Використовуючи інформацію, подану у табл. 2.2 та 2.4, оцінити параметр однофакторної економетричної моделі

де - Центроване значення річного товарообігу-го магазину, млн руб.; - Центроване значення середньоденного числа відвідувачів t-го магазину, тис. чол. (Див. Приклади 2.1-2.2).

Рішення.Додаткова інформація, необхідна для розрахунків, подана у табл. 2.5.

Таблиця 2.5

-48,53 -2,40 5,7720 116,6013
-30,20 -0,41 0,1702 12,4589
-27,34 -1,34 1,8023 36,7084
-27,21 0,36 0,1278 -9,7288
-12,00 -2,11 4,4627 25,3570
0,22 -3,14 9,8753 -0,6809
6,72 1,71 2,9156 11,4687
20,76 0,16 0,0348 3,2992
22,84 -0,76 0,5814 -17,413
22,97 3,07 9,4096 70,4503
31,55 1,62 2,6163 51,0267
40,26 3,27 10,6766 131,5387
Сума 48,4344 431,0566

Використовуючи формулу (2.35), отримаємо

Таким чином,

http://www.cleverstudents.ru/articles/mnk.html

приклад.

Експериментальні дані про значення змінних хі унаведено у таблиці.

В результаті їх вирівнювання отримано функцію

Використовуючи метод найменших квадратів, апроксимувати ці дані лінійною залежністю y=ax+b(Знайти параметри аі b). З'ясувати, яка з двох ліній краще (у сенсі способу менших квадратів) вирівнює експериментальні дані. Зробити креслення.

Рішення.

У нашому прикладі n=5. Заповнюємо таблицю для зручності обчислення сум, що входять до формул шуканих коефіцієнтів.

Значення у четвертому рядку таблиці отримані множенням значень 2-го рядка на значення 3-го рядка для кожного номера i.

Значення у п'ятому рядку таблиці отримані зведенням у квадрат значень другого рядка для кожного номера i.

Значення останнього стовпця таблиці – це суми значень рядків.

Використовуємо формули методу найменших квадратів для знаходження коефіцієнтів аі b. Підставляємо у них відповідні значення з останнього стовпця таблиці:

Отже, y = 0.165x+2.184- пряма апроксимуюча.

Залишилося з'ясувати, яка з ліній y = 0.165x+2.184або краще апроксимує вихідні дані, тобто провести оцінку шляхом найменших квадратів.

Доведення.

Щоб при знайдених аі bфункція приймала найменше значення, необхідно, щоб у цій точці матриця квадратичної форми диференціала другого порядку для функції була позитивно визначеною. Покажемо це.

Диференціал другого порядку має вигляд:

Тобто

Отже, матриця квадратичної форми має вигляд

причому значення елементів не залежать від аі b.

Покажемо, що матриця є позитивно визначеною. Для цього потрібно, щоб кутові мінори були позитивними.

Кутовий мінор першого порядку . Нерівність сувора, тому що точки

  • Tutorial

Вступ

Я математик-програміст. Найбільший стрибок у своїй кар'єрі я зробив, коли навчився говорити: "Я нічого не розумію!"Зараз мені не соромно сказати світилу науки, що читає лекцію, що я не розумію, про що воно, світило, мені говорить. І це дуже складно. Так, зізнатися у своєму незнанні складно та соромно. Кому сподобається визнаватись у тому, що він не знає азів чогось там. Через свою професію я повинен бути присутнім на великій кількості презентацій та лекцій, де, зізнаюся, в переважній більшості випадків мені хочеться спати, бо я нічого не розумію. А я не розумію тому, що величезна проблема поточної ситуації в науці криється в математиці. Вона припускає, що всі слухачі знайомі з усіма областями математики (що абсурдно). Зізнатися в тому, що ви не знаєте, що таке похідна (про те, що це трохи пізніше) - соромно.

Але я навчився говорити, що не знаю, що таке множення. Так, я не знаю, що таке подалгебра над алгеброю Лі. Так, я не знаю, навіщо потрібні у житті квадратні рівняння. До речі, якщо ви впевнені, що ви знаєте, то нам є над чим поговорити! Математика – це серія фокусів. Математики намагаються заплутати та залякати публіку; там, де немає збентеження, немає репутації, немає авторитету. Так, це престижно говорити якомога абстрактнішою мовою, що є по собі повна нісенітниця.

Чи знаєте ви, що таке похідна? Найімовірніше ви мені скажете про межу різницевого відношення. На першому курсі матуху СПбГУ Віктор Петрович Хавін мені визначивпохідну як коефіцієнт першого члена ряду Тейлора функції у точці (це була окрема гімнастика, щоб визначити ряд Тейлора без похідних). Я довго сміявся над таким визначенням, поки не зрозумів, про що воно. Похідна не що інше, як просто міра того, наскільки функція, яку ми диференціюємо, схожа на функцію y=x, y=x^2, y=x^3.

Я зараз маю честь читати лекції студентам, які боятьсяматематики. Якщо ви боїтеся математики – нам з вами по дорозі. Як тільки ви намагаєтеся прочитати якийсь текст, і вам здається, що він надмірно складний, то знайте, що він написано хронічно. Я стверджую, що немає жодної галузі математики, про яку не можна говорити «на пальцях», не втрачаючи при цьому точності.

Завдання найближчим часом: я доручив своїм студентам зрозуміти, що таке лінійно-квадратичний регулятор. Не посоромтеся, витратите три хвилини свого життя, сходіть на заслання. Якщо ви нічого не зрозуміли, то нам з вами по дорозі. Я (професійний математик-програміст) також нічого не зрозумів. І я запевняю, що в цьому можна розібратися «на пальцях». На даний момент я не знаю, що це таке, але я запевняю, що ми зможемо розібратися.

Отже, перша лекція, яку я збираюся прочитати своїм студентам після того, як вони з жахом вдадуться до мене зі словами, що лінійно-квадратичний регулятор - це страшна бяка, яку ніколи в житті не подужати, це методи найменших квадратів. Чи вмієте ви розв'язувати лінійні рівняння? Якщо ви читаєте цей текст, то, швидше за все, ні.

Отже, дано дві точки (x0, y0), (x1, y1), наприклад, (1,1) і (3,2), завдання знайти рівняння прямої, що проходить через ці дві точки:

ілюстрація

Ця пряма повинна мати рівняння наступного типу:

Тут альфа і бета нам невідомі, але відомі дві точки цієї прямої:

Можна записати це рівняння у матричному вигляді:

Тут слід створити ліричний відступ: що таке матриця? Матриця це не що інше, як двовимірний масив. Це спосіб зберігання даних, більше ніяких значень йому не варто надавати. Це залежить від нас, як саме інтерпретувати якусь матрицю. Періодично я її інтерпретуватиму як лінійне відображення, періодично як квадратичну форму, а ще іноді просто як набір векторів. Це все буде уточнено у контексті.

Давайте замінимо конкретні матриці на їхнє символьне уявлення:

Тоді (alpha, beta) може бути легко знайдено:

Більш конкретно для наших попередніх даних:

Що веде до наступного рівняння прямої, що проходить через точки (1,1) та (3,2):

Окей, тут зрозуміло. А давайте знайдемо рівняння прямої, що проходить через триточки: (x0, y0), (x1, y1) та (x2, y2):

Ой-ой-ой, але ж у нас три рівняння на дві невідомі! Стандартний математик скаже, що рішення немає. А що скаже програміст? А він спершу перепише попередню систему рівнянь у наступному вигляді:

У нашому випадку вектори i,j,b тривимірні, отже, (загалом) рішення цієї системи немає. Будь-який вектор (alpha i i beta i j) лежить у площині, натягнутій на вектори (i, j). Якщо b не належить цій площині, то рішення немає (рівності у рівнянні не досягти). Що робити? Давайте шукати компроміс. Давайте позначимо через e(alpha, beta)наскільки саме ми не досягли рівності:

І намагатимемося мінімізувати цю помилку:

Чому квадрат?

Ми шукаємо не просто мінімум норми, а мінімум квадрата норми. Чому? Сама точка мінімуму збігається, а квадрат дає гладку функцію (квадратичну функцію від агрументів (alpha, beta)), тоді як просто довжина дає функцію як конуса, недиференційовану в точці мінімуму. Брр. Квадрат зручніший.

Очевидно, що помилка мінімізується, коли вектор eортогональний площині, натягнутій на вектори. iі j.

Ілюстрація

Іншими словами: ми шукаємо таку пряму, що сума квадратів довжин відстаней від усіх точок до цієї прямої мінімальна:

UPDATE: тут у мене одвірок, відстань до прямої має вимірюватися по вертикалі, а не ортогональною проекцією. Ось цей коментатор має рацію.

Ілюстрація

Зовсім іншими словами (обережно, погано формалізовано, але на пальцях має бути ясно): ми беремо всі можливі прямі між усіма парами точок і шукаємо середню пряму між усіма:

Ілюстрація

Інше пояснення на пальцях: ми прикріплюємо пружинку між усіма точками даних (тут у нас три) і пряме, що ми шукаємо, і пряма рівноважного стану є саме те, що ми шукаємо.

Мінімум квадратичної форми

Отже, маючи цей вектор bта площину, натягнуту на стовпці-вектори матриці A(в даному випадку (x0,x1,x2) та (1,1,1)), ми шукаємо вектор eз мінімуму квадрата довжини. Очевидно, що мінімум можна досягти тільки для вектора. e, ортогональної площини, натягнутої на стовпці-вектори матриці. A:

Інакше кажучи, ми шукаємо такий вектор x=(alpha, beta), що:

Нагадую, цей вектор x=(alpha, beta) є мінімумом квадратичної функції ||e(alpha, beta)||^2:

Тут не зайвим буде згадати, що матрицю можна інтерпретувати у тому числі як і квадратичну форму, наприклад, одинична матриця ((1,0),(0,1)) може бути інтерпретована як функція x^2 + y^2:

квадратична форма

Вся ця гімнастика відома під ім'ям лінійної регресії.

Рівняння Лапласа з граничною умовою Діріхле

Тепер найпростіше реальне завдання: є якась тріангульована поверхня, необхідно її згладити. Наприклад, давайте завантажимо модель моєї особи:

Початковий коміт доступний. Для мінімізації зовнішніх залежностей я взяв код свого софтверного рендерера вже на хабрі. Для вирішення лінійної системи я користуюся OpenNL, це відмінний солвер, який, щоправда, дуже складно встановити: потрібно скопіювати два файли (.h+.c) у папку з вашим проектом. Все згладжування робиться наступним кодом:

For (int d=0; d<3; d++) { nlNewContext(); nlSolverParameteri(NL_NB_VARIABLES, verts.size()); nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE); nlBegin(NL_SYSTEM); nlBegin(NL_MATRIX); for (int i=0; i<(int)verts.size(); i++) { nlBegin(NL_ROW); nlCoefficient(i, 1); nlRightHandSide(verts[i][d]); nlEnd(NL_ROW); } for (unsigned int i=0; i&face = faces[i]; for (int j = 0; j<3; j++) { nlBegin(NL_ROW); nlCoefficient(face[ j ], 1); nlCoefficient(face[(j+1)%3], -1); nlEnd(NL_ROW); } } nlEnd(NL_MATRIX); nlEnd(NL_SYSTEM); nlSolve(); for (int i=0; i<(int)verts.size(); i++) { verts[i][d] = nlGetVariable(i); } }

X, Y та Z координати відокремлені, я їх згладжую окремо. Тобто, я вирішую три системи лінійних рівнянь, кожне має кількість змінних рівною кількістю вершин у моїй моделі. Перші n рядків матриці A мають лише одну одиницю на рядок, а перші n рядків вектора b мають оригінальні координати моделі. Тобто, я прив'язую по пружинці між новим становищем вершини і старим становищем вершини - нові не повинні занадто далеко йти від старих.

Всі наступні рядки матриці A (faces.size()*3 = кількості ребер всіх трикутників у сітці) мають одне входження 1 та одне входження -1, причому вектор b має нульові компоненти навпаки. Це означає, що я вішаю пружинку на кожне ребро нашої трикутної сітки: всі ребра намагаються отримати одну й ту саму вершину як відправну та фінальну точку.

Ще раз: змінними є всі вершини, причому вони можуть далеко відходити від початкового становища, але заодно намагаються стати схожими друг на друга.

Ось результат:

Все було б добре, модель дійсно згладжена, але вона відійшла від свого початкового краю. Давайте трохи змінимо код:

For (int i=0; i<(int)verts.size(); i++) { float scale = border[i] ? 1000: 1; nlBegin(NL_ROW); nlCoefficient(i, scale); nlRightHandSide(scale*verts[i][d]); nlEnd(NL_ROW); }

У нашій матриці A я для вершин, що знаходяться на краю, не додаю рядок з розряду v_i = verts[i][d], а 1000*v_i = 1000*verts[i][d]. Що це змінює? А змінює це нашу квадратичну форму помилки. Тепер одиничне відхилення від вершини краю коштуватиме не одну одиницю, як раніше, а 1000*1000 одиниць. Тобто, ми повісили сильнішу пружинку на крайні вершини, рішення воліє розтягнути інші. Ось результат:

Давайте вдвічі посилимо пружинки між вершинами:
nlCoefficient (face [j], 2); nlCoefficient(face[(j+1)%3], -2);

Логічно, що поверхня стала гладкішою:

А тепер ще в сто разів сильніше:

Що це? Уявіть, що ми вмочили дротяне кільце в мильну воду. У результаті мильна плівка, що утворилася, намагатиметься мати найменшу кривизну, наскільки це можливо, торкаючись-таки кордону - нашого дротяного кільця. Саме це ми й отримали, зафіксувавши кордон та попросивши отримати гладку поверхню всередині. Вітаю вас, ми тільки-но вирішили рівняння Лапласа з граничними умовами Діріхле. Круто звучить? А насправді лише одну систему лінійних рівнянь вирішити.

Рівняння Пуассона

Давайте ще круте ім'я згадаємо.

Припустимо, що у мене є така картинка:

Всім гарна, тільки стілець мені не подобається.

Розріжу картинку навпіл:



І виділю руками стілець:

Потім все, що біле в масці, притягну до лівої частини картинки, а заразом по всій картинці скажу, що різниця між двома сусідніми пікселями повинна дорівнювати різниці між двома сусідніми пікселями правої картинки:

For (int i=0; i

Ось результат:

Код та зображення доступні

Метод найменших квадратів (МНК, англ. Ordinary Least Squares, OLS)- математичний метод, застосовуваний на вирішення різних завдань, заснований на мінімізації суми квадратів відхилень деяких функцій від шуканих змінних. Він може використовуватися для «вирішення» перевизначених систем рівнянь (коли кількість рівнянь перевищує кількість невідомих), для пошуку рішення у разі звичайних (не перевизначених) нелінійних систем рівнянь, для апроксимації точкових значень певної функції. МНК є одним з базових методів регресійного аналізу для оцінки невідомих параметрів регресійних моделей за вибірковими даними.

Енциклопедичний YouTube

    1 / 5

    ✪ Метод найменших квадратів. Тема

    ✪ Мітін І. В. - Обробка результатів фіз. експерименту - Метод найменших квадратів (Лекція 4)

    ✪ Метод найменших квадратів, урок 1/2. Лінійна функція

    ✪ Економетрика. Лекція 5. Метод найменших квадратів

    ✪ Метод найменших квадратів. Відповіді

    Субтитри

Історія

На початок ХІХ ст. вчені не мали певних правил для вирішення системи рівнянь, в якій число невідомих менше, ніж число рівнянь; до цього часу використовувалися приватні прийоми, що залежали від виду рівнянь і від дотепності обчислювачів, і тому різні обчислювачі, виходячи з тих самих даних спостережень, приходили до різних висновків. Гаусс (1795) належить перше застосування методу, а Лежандр (1805) незалежно відкрив і опублікував його під сучасною назвою (фр. Méthode des moindres quarrés). Лаплас пов'язав метод з теорією ймовірностей, а американський математик Едрейн (1808) розглянув його теоретико-імовірнісні додатки. Метод поширений і вдосконалений подальшими дослідженнями Енке, Бесселя, Ганзена та інших.

Сутність методу найменших квадратів

Нехай x (\displaystyle x)- набір n (\displaystyle n)невідомих змінних (параметрів), f i (x) (\displaystyle f_(i)(x)), , m > n (\displaystyle m>n)- Сукупність функцій від цього набору змінних. Завдання полягає у підборі таких значень x (\displaystyle x), щоб значення цих функцій були максимально близькими до деяких значень y i (\displaystyle y_(i)). Фактично йдеться про «вирішенні» перевизначеної системи рівнянь f i (x) = y i (\displaystyle f_(i)(x)=y_(i)), i = 1, …, m (\displaystyle i=1,\ldots,m)у вказаному сенсі максимальної близькості лівої та правої частин системи. Сутність МНК полягає у виборі як «заходи близькості» суми квадратів відхилень лівих і правих частин | f i (x) − y i | (\displaystyle |f_(i)(x)-y_(i)|). Таким чином, сутність МНК може бути виражена таким чином:

∑ i e i 2 = ∑ i (y i − fi (x)) 2 → min x (\displaystyle \sum _(i)e_(i)^(2)=\sum _(i)(y_(i)-f_( i)(x))^(2)\rightarrow \min _(x)).

Якщо система рівнянь має рішення, то мінімум суми квадратів дорівнюватиме нулю і можуть бути знайдені точні рішення системи рівнянь аналітично або, наприклад, різними чисельними методами оптимізації. Якщо система перевизначена, тобто, кажучи нестрого, кількість незалежних рівнянь більша за кількість шуканих змінних, то система не має точного рішення і метод найменших квадратів дозволяє знайти деякий «оптимальний» вектор x (\displaystyle x)у сенсі максимальної близькості векторів y (\displaystyle y)і f(x) (\displaystyle f(x))або максимальної близькості вектора відхилень e (\displaystyle e)нанівець (близькість розуміється у сенсі евклідова відстані).

Приклад - система лінійних рівнянь

Зокрема, метод найменших квадратів може використовуватися для вирішення системи лінійних рівнянь

A x = b (\displaystyle Ax = b),

де A (\displaystyle A)прямокутна матриця розміру m × n , m > n (\displaystyle m\times n,m>n)(тобто число рядків матриці A більше кількості шуканих змінних).

Така система рівнянь у випадку немає решения. Тому цю систему можна «вирішити» лише у сенсі вибору такого вектора. x (\displaystyle x), щоб мінімізувати відстань між векторами A x (\displaystyle Ax)і b (\displaystyle b). Для цього можна застосувати критерій мінімізації суми квадратів різниць лівої та правої частин рівнянь системи, тобто (A x − b) T (A x − b) → min (\displaystyle (Ax-b)^(T)(Ax-b)\rightarrow \min ). Неважко показати, що вирішення цього завдання мінімізації призводить до вирішення наступної системи рівнянь

x = (A T A) − 1 A T b (\displaystyle A^(T)Ax=A^(T)b\Rightarrow x=(A^(T)A)^(-1)A^ (T)b).

МНК у регресійному аналізі (апроксимація даних)

Нехай є n (\displaystyle n)значень деякої змінної y (\displaystyle y)(це можуть бути результати спостережень, експериментів тощо) та відповідних змінних x (\displaystyle x). Завдання полягає в тому, щоб взаємозв'язок між y (\displaystyle y)і x (\displaystyle x)апроксимувати деякою функцією, відомою з точністю до деяких невідомих параметрів b (\displaystyle b), тобто фактично визначити найкращі значення параметрів b (\displaystyle b), що максимально наближають значення f (x, b) (\displaystyle f(x,b))до фактичних значень y (\displaystyle y). Фактично це зводиться до випадку «вирішення» перевизначеної системи рівнянь щодо b (\displaystyle b):

F (x t , b) = y t , t = 1 , … , n (\displaystyle f(x_(t),b)=y_(t),t=1,\ldots ,n).

У регресійному аналізі та зокрема в економетриці використовуються ймовірнісні моделі залежності між змінними

Y t = f (x t , b) + ε t (\displaystyle y_(t)=f(x_(t),b)+\varepsilon _(t)),

де ε t (\displaystyle \varepsilon _(t))- так звані випадкові помилкимоделі.

Відповідно, відхилення значень, що спостерігаються y (\displaystyle y)від модельних f (x, b) (\displaystyle f(x,b))передбачається вже у самій моделі. Сутність МНК (звичайного, класичного) у тому, щоб знайти такі параметри b (\displaystyle b), При яких сума квадратів відхилень (помилок, для регресійних моделей їх часто називають залишками регресії) e t (\displaystyle e_(t))буде мінімальною:

b ^ O S = arg ⁡ min b RS S (b) (\displaystyle (\hat (b))_(OLS)=\arg \min _(b)RSS(b)),

де RS S (\displaystyle RSS)- англ. Residual Sum of Squares визначається як:

RS (b) = e T e = ∑ t = 1 n e t 2 = ∑ t = 1 n (y t − f (x t , b)) 2 (\displaystyle RSS(b)=e^(T)e=\sum _ (t=1)^(n)e_(t)^(2)=\sum _(t=1)^(n)(y_(t)-f(x_(t),b))^(2) ).

У випадку вирішення цього завдання може здійснюватися чисельними методами оптимізації (мінімізації). У цьому випадку говорять про нелінійному МНК(NLS або NLLS - англ. Non-Linear Least Squares). У багатьох випадках можна одержати аналітичне рішення. Для вирішення задачі мінімізації необхідно знайти стаціонарні точки функції RS S (b) (\displaystyle RSS(b)), продиференціювавши її за невідомими параметрами b (\displaystyle b), прирівнявши похідні до нуля і вирішивши отриману систему рівнянь:

∑ t = 1 n (y t − f (x t , b)) ∂ f (x t , b) ∂ b = 0 (\displaystyle \sum _(t=1)^(n)(y_(t)-f(x_ (t),b))(\frac (\partial f(x_(t),b))(\partial b))=0).

МНК у разі лінійної регресії

Нехай регресійна залежність є лінійною:

t = ∑ j = 1 k b j x t j + ε = x t T b + ε t (\displaystyle y_(t)=\sum _(j=1)^(k)b_(j)x_(tj)+\varepsilon =x_( t)^(T)b+\varepsilon _(t)).

Нехай y- вектор-стовпець спостережень пояснюваної змінної, а X (\displaystyle X)- це (n × k) (\displaystyle ((n\times k)))-матриця спостережень чинників (рядки матриці - вектори значень чинників у цьому спостереженні, по стовпчикам - вектор значень даного чинника переважають у всіх спостереженнях). Матричне представлення лінійної моделі має вигляд:

y = X b + ε (\displaystyle y=Xb+\varepsilon).

Тоді вектор оцінок змінної, що пояснюється, і вектор залишків регресії дорівнюватимуть

y ^ = X b , e = y − y ^ = y − X b (\displaystyle (\hat(y))=Xb,\quad e=y-(\hat(y))=y-Xb).

відповідно сума квадратів залишків регресії дорівнюватиме

RS = e T e = (y − X b) T (y − X b) (\displaystyle RSS=e^(T)e=(y-Xb)^(T)(y-Xb)).

Диференціюючи цю функцію за вектором параметрів b (\displaystyle b)і прирівнявши похідні до нуля, отримаємо систему рівнянь (у матричній формі):

(X T X) b = X T y (\displaystyle (X^(T)X)b=X^(T)y).

У розшифрованій матричній формі ця система рівнянь виглядає так:

(∑ x t 1 2 ∑ x t 1 x t 2 ∑ x t 1 x t 3 … ∑ x t 1 x t k ∑ x t 2 x t 1 ∑ x t 2 2 ∑ x t 2 x t 3 … ∑ ∑ x t 3 x t 2 ∑ x t 3 2 … ∑ x t 3 x t k ⋮ ⋮ ⋮ ⋱ ⋮ ∑ x t k x t 1 ∑ x t k x t 2 ∑ x t k x t 3 … ∑ x t k 2) (b 1 b t b ∑ x t 2 y t ∑ x t 3 y t ⋮ ∑ x t k y t) , (\displaystyle (\begin(pmatrix)\sum x_(t1)^(2)&\sum x_(t1)x_(t2)&\sum x_(t1)x_(t3)&\ldots &\sum x_(t1)x_(tk)\\\sum x_(t2)x_(t1)&\sum x_(t2)^(2)&\sum x_(t2)x_(t3)&\ldots &\ sum x_(t2)x_(tk)\\\sum x_(t3)x_(t1)&\sum x_(t3)x_(t2)&\sum x_(t3)^(2)&\ldots &\sum x_ (t3)x_(tk)\\\vdots &\vdots &\vdots &\ddots &\vdots \\\sum x_(tk)x_(t1)&\sum x_(tk)x_(t2)&\sum x_ (tk)x_(t3)&\ldots &\sum x_(tk)^(2)\\\end(pmatrix))(\begin(pmatrix)b_(1)\\b_(2)\\b_(3 )\\\vdots \\b_(k)\\\end(pmatrix))=(\begin(pmatrix)\sum x_(t1)y_(t)\\\sum x_(t2)y_(t)\\ \sum x_(t3)y_(t)\\\vdots \\\sum x_(tk)y_(t)\\\end(pmatrix)),)де всі суми беруться за всіма допустимими значеннями t (\displaystyle t).

Якщо модель включена константа (як завжди), то x t 1 = 1 (\displaystyle x_(t1)=1)при всіх t (\displaystyle t)тому у лівому верхньому кутку матриці системи рівнянь знаходиться кількість спостережень n (\displaystyle n), а інших елементах першого рядка і першого стовпця - просто суми значень змінних: ∑ x t j (\displaystyle \sum x_(tj))та перший елемент правої частини системи - ∑ y t (\displaystyle \sum y_(t)).

Вирішення цієї системи рівнянь і дає загальну формулу МНК-оцінок для лінійної моделі:

b ^ O L S = (X T X) − 1 X T y = (1 n X T X) − 1 1 n X T y = V x − 1 C x y (\displaystyle(\hat(b))_(OLS)=(X^(T) )X)^(-1)X^(T)y=\left((\frac(1)(n))X^(T)X\right)^(-1)(\frac(1)(n ))X^(T)y=V_(x)^(-1)C_(xy)).

Для аналітичних цілей виявляється корисним останнє уявлення цієї формули (у системі рівнянь при розподілі на n замість сум фігурують середні арифметичні). Якщо у регресійній моделі дані центровані, то цьому поданні перша матриця має сенс вибіркової ковариационной матриці чинників, а друга - вектор ковариаций чинників із залежною змінною. Якщо дані ще й нормованіна СКО (тобто зрештою стандартизовано), то перша матриця має сенс вибіркової кореляційної матриці факторів, другий вектор - вектора вибіркових кореляцій факторів із залежною змінною.

Важлива властивість МНК-оцінок для моделей з константою- лінія побудованої регресії проходить через центр тяжкості вибіркових даних, тобто виконується рівність:

y ? (\hat(b))_(j)(\bar(x))_(j)).

Зокрема, у крайньому випадку, коли єдиним регресором є константа, отримуємо, що МНК-оцінка єдиного параметра (власне константи) дорівнює середньому значенню змінної, що пояснюється. Тобто середнє арифметичне, відоме своїми добрими властивостями із законів великих чисел, також є МНК-оцінкою – задовольняє критерію мінімуму суми квадратів відхилень від неї.

Найпростіші окремі випадки

У разі парної лінійної регресії y t = a + b x t + ε t (\displaystyle y_(t)=a+bx_(t)+\varepsilon _(t))Коли оцінюється лінійна залежність однієї змінної від іншої, формули розрахунку спрощуються (можна обійтися без матричної алгебри). Система рівнянь має вигляд:

(1 x x x x 2) (a b) = (y x x y) (displaystyle (begin(pmatrix)1) (x^(2)))\\\end(pmatrix))(\begin(pmatrix)a\b\\end(pmatrix))=(\begin(pmatrix)(\bar (y))\\ (\overline (xy))\\\end(pmatrix))).

Звідси нескладно знайти оцінки коефіцієнтів:

( b ^ = Cov ⁡ (x , y) Var ⁡ (x) = x y − − x ¯ y ¯ x 2 − − x 2 , a ^ = y ¯ − b x ¯ . (\displaystyle (\begin(cases)) (\hat (b))=(\frac (\mathop (\textrm (Cov)) (x,y))(\mathop (\textrm (Var)) (x)))=(\frac ((\overline (xy))-(\bar (x))(\bar (y)))((\overline (x^(2)))-(\overline (x))^(2))),\\( \hat(a))=(\bar(y))-b(\bar(x)).\end(cases)))

Незважаючи на те, що в загальному випадку моделі з константою краще, в деяких випадках з теоретичних міркувань відомо, що константа a (\displaystyle a)повинна дорівнювати нулю. Наприклад, у фізиці залежність між напругою та силою струму має вигляд U = I ⋅ R (\displaystyle U=I\cdot R); Вимірюючи напругу і силу струму, необхідно оцінити опір. У такому разі йдеться про модель y = b x (\displaystyle y = bx). У цьому випадку замість системи рівнянь маємо єдине рівняння

(∑ x t 2) b = ∑ x t y t (\displaystyle \left(\sum x_(t)^(2)\right)b=\sum x_(t)y_(t)).

Отже, формула оцінки єдиного коефіцієнта має вигляд

B ^ = ∑ t = 1 n x t y t ∑ t = 1 n x t 2 = x y x 2 (displaystyle (hat (b))= )y_(t))(\sum _(t=1)^(n)x_(t)^(2)))=(\frac (\overline (xy))(\overline (x^(2)) ))).

Випадок поліноміальної моделі

Якщо дані апроксимуються поліноміальною функцією регресії однієї змінної f (x) = b 0 + ∑ i = 1 k b i x i (\displaystyle f(x)=b_(0)+\sum \limits _(i=1)^(k)b_(i)x^(i)), то, сприймаючи ступеня x i (\displaystyle x^(i))як незалежні фактори для кожного i (\displaystyle i)можна оцінити параметри моделі, виходячи із загальної формули оцінки параметрів лінійної моделі. Для цього в загальну формулу достатньо врахувати, що за такої інтерпретації x t i x t j = x t i x t j = x t i + j (\displaystyle x_(ti)x_(tj)=x_(t)^(i)x_(t)^(j)=x_(t)^(i+j)і x t j y t = x t j y t (\displaystyle x_(tj)y_(t)=x_(t)^(j)y_(t)). Отже, матричні рівняння в даному випадку набудуть вигляду:

(n ∑ n x t … ∑ n x t k ∑ n x t ∑ n x i 2 … ∑ m x i k + 1 ⋮ ⋮ ⋱ ⋮ ∑ n x t k ∑ n x t k + 1 … ∑ = [ ∑ n y t ∑ n x t y t ⋮ ∑ n x t k y t ]. (\displaystyle (\begin(pmatrix)n&\sum \limits _(n)x_(t)&\ldots &\sum \limits _(n)x_(t)^(k)\\\sum \limits _( n)x_(t)&\sum \limits _(n)x_(i)^(2)&\ldots &\sum \limits _(m)x_(i)^(k+1)\\\vdots & \vdots &\ddots &\vdots \\\sum \limits _(n)x_(t)^(k)&\sum \limits _(n)x_(t)^(k+1)&\ldots &\ sum \limits _(n)x_(t)^(2k)\end(pmatrix))(\begin(bmatrix)b_(0)\\b_(1)\\\vdots \\b_(k)\end( bmatrix))=(\begin(bmatrix)\sum \limits _(n)y_(t)\\\sum \limits _(n)x_(t)y_(t)\\\vdots \\\sum \limits _(n)x_(t)^(k)y_(t)\end(bmatrix)).)

Статистичні властивості МНК оцінок

Насамперед, зазначимо, що для лінійних моделей МНК-оцінки є лінійними оцінками, як це випливає з вищенаведеної формули. Для незміщеності МНК-оцінок необхідно і достатньо виконання найважливішої умови регресійного аналізу: умовне за факторами математичне очікування випадкової помилки має бути рівне нулю. Ця умова, зокрема, виконана, якщо

  1. математичне очікування випадкових помилок дорівнює нулю, та
  2. фактори та випадкові помилки - незалежні, випадкові, величини.

Друга умова - умова екзогенності факторів - важлива. Якщо це властивість не виконано, можна вважати, що будь-які оцінки будуть вкрай незадовільними: де вони навіть заможними (тобто навіть дуже великий обсяг даних Демшевського не дозволяє отримати якісні оцінки у разі). У класичному випадку робиться сильніша припущення про детермінованість факторів, на відміну від випадкової помилки, що автоматично означає виконання умови екзогенності. У випадку для спроможності оцінок достатньо виконання умови екзогенності разом із збіжністю матриці V x (\displaystyle V_(x))до деякої невиродженої матриці зі збільшенням обсягу вибірки до нескінченності.

Для того, щоб крім спроможності та незміщеності, оцінки (звичайного) МНК були ще й ефективними (найкращими в класі лінійних незміщених оцінок) необхідно виконання додаткових властивостей випадкової помилки:

Дані припущення можна сформулювати для коваріаційної матриці вектора випадкових помилок V (ε) = σ 2 I (\displaystyle V(\varepsilon)=\sigma ^(2)I).

Лінійна модель, що задовольняє такі умови, називається класичною. МНК-оцінки для класичної лінійної регресії є незміщеними, заможними та найбільш ефективними оцінками в класі всіх лінійних незміщених оцінок (в англомовній літературі іноді вживають абревіатуру BLUE (Best Linear Unbiased Estimator) - найкраща лінійна незміщена оцінка; у вітчизняній літературі частіше наводиться теорема Гаусса-Маркова). Як неважко показати, ковариационная матриця вектора оцінок коефіцієнтів дорівнюватиме:

V (b ^ O L S) = σ 2 (X T X) − 1 (\displaystyle V((\hat(b))_(OLS))=\sigma ^(2)(X^(T)X)^(-1 )).

Ефективність означає, що ця ковариационная матриця є «мінімальної» (будь-яка лінійна комбінація коефіцієнтів, і зокрема самі коефіцієнти, мають мінімальну дисперсію), тобто у класі лінійних незміщених оцінок оцінки МНК-найкращі. Діагональні елементи цієї матриці – дисперсії оцінок коефіцієнтів – важливі параметри якості отриманих оцінок. Однак розрахувати матрицю коваріації неможливо, оскільки дисперсія випадкових помилок невідома. Можна довести, що незміщеною та заможною (для класичної лінійної моделі) оцінкою дисперсії випадкових помилок є величина:

S 2 = R S S / (n − k) (\displaystyle s^(2)=RSS/(n-k)).

Підставивши це значення формулу для ковариационной матриці і отримаємо оцінку ковариационной матриці. Отримані оцінки також є незміщеними та заможними. Важливо також те, що оцінка дисперсії помилок (а отже дисперсій коефіцієнтів) та оцінки параметрів моделі є незалежними випадковими величинами, що дозволяє отримати тестові статистики для перевірки гіпотез про коефіцієнти моделі.

Необхідно відзначити, що якщо класичні припущення не виконані, МНК-оцінки параметрів не є найбільш ефективними і де W (\displaystyle W)- Деяка симетрична позитивно визначена вагова матриця. Звичайний МНК є окремим випадком даного підходу, коли вагова матриця пропорційна одиничній матриці. Як відомо, для симетричних матриць (або операторів) є розкладання W = P T P (\displaystyle W=P^(T)P). Отже, вказаний функціонал можна подати так e T P T P e = (P e) T P e = e ∗ T e ∗ (\displaystyle e^(T)P^(T)Pe=(Pe)^(T)Pe=e_(*)^(T)e_( *)), тобто цей функціонал можна як суму квадратів деяких перетворених «залишків». Отже, можна назвати клас методів найменших квадратів - LS-методи (Least Squares).

Доведено (теорема Айткена), що для узагальненої лінійної регресійної моделі (у якій на коварійну матрицю випадкових помилок не накладається жодних обмежень) найефективнішими (у класі лінійних незміщених оцінок) є оцінки т.з. узагальненого МНК (ОМНК, GLS - Generalized Least Squares)- LS-метода з ваговою матрицею, що дорівнює зворотній коварійній матриці випадкових помилок: W = V ε − 1 (\displaystyle W=V_(\varepsilon )^(-1)).

Можна показати, що формула ОМНК оцінок параметрів лінійної моделі має вигляд

B ^ G L S = (X T V − 1 X) − 1 X T V − 1 y (\displaystyle (\hat(b))_(GLS)=(X^(T)V^(-1)X)^(-1) X^(T)V^(-1)y).

Коваріаційна матриця цих оцінок відповідно дорівнюватиме

V (b ^ G L S) = (X T V − 1 X) − 1 (\displaystyle V((\hat(b))_(GLS))=(X^(T)V^(-1)X)^(- 1)).

Фактично сутність ОМНК полягає у певному (лінійному) перетворенні (P) вихідних даних та застосуванні звичайного МНК до перетворених даних. Ціль цього перетворення - для перетворених даних випадкові помилки вже задовольняють класичним припущенням.

Зважений МНК

У випадку діагональної вагової матриці (а значить і матриці коварійної випадкових помилок) маємо так званий зважений МНК (WLS - Weighted Least Squares). У даному випадку мінімізується зважена сума квадратів залишків моделі, тобто кожне спостереження отримує «вагу», обернено пропорційну дисперсії випадкової помилки в даному спостереженні: e T W e = ∑ t = 1 n e t 2 σ t 2 (\displaystyle e^(T)We=\sum _(t=1)^(n)(\frac (e_(t)^(2)))(\ sigma _(t)^(2)))). Фактично дані перетворюються зважуванням спостережень (розподілом на величину, пропорційну передбачуваному стандартному відхилення випадкових помилок), а зваженим даним застосовується звичайний МНК.

ISBN 978-5-7749-0473-0.

  • Економетрики. Підручник/За ред. Єлісєєвої І. І. - 2-ге вид. - М.: Фінанси та статистика, 2006. - 576 с. - ISBN 5-279-02786-3.
  • Александрова Н. В.Історія математичних термінів, понять, позначень: словник-довідник. - 3-тє вид. - М.: ЛКІ, 2008. - 248 с. - ISBN 978-5-382-00839-4.І.В Мітін, Русаков В.С. Аналіз та обробка експериментальних даних-5-е видання-24с.
  • Наблизимо функцію многочленом 2-го ступеня. Для цього обчислимо коефіцієнти нормальної системи рівнянь:

    , ,

    Складемо нормальну систему найменших квадратів, яка має вигляд:

    Рішення системи легко перебуває: , .

    Таким чином, многочлен другого ступеня виявлено: .

    Теоретична довідка

    Повернутися на сторінку<Введение в вычислительную математику. Примеры>

    Приклад 2. Знаходження оптимального ступеня багаточлену.

    Повернутися на сторінку<Введение в вычислительную математику. Примеры>

    Приклад 3. Виведення нормальної системи рівнянь знаходження параметрів емпіричної залежності.

    Виведемо систему рівнянь для визначення коефіцієнтів та функції , що здійснює середньоквадратичну апроксимацію заданої функції за точками. Складемо функцію і запишемо для неї необхідну умову екстремуму:

    Тоді нормальна система набуде вигляду:

    Отримали лінійну систему рівнянь щодо невідомих параметрів і легко вирішується.

    Теоретична довідка

    Повернутися на сторінку<Введение в вычислительную математику. Примеры>

    приклад.

    Експериментальні дані про значення змінних хі унаведено у таблиці.

    В результаті їх вирівнювання отримано функцію

    Використовуючи метод найменших квадратів, апроксимувати ці дані лінійною залежністю y=ax+b(Знайти параметри аі b). З'ясувати, яка з двох ліній краще (у сенсі способу менших квадратів) вирівнює експериментальні дані. Зробити креслення.

    Суть методу найменших квадратів (МНК).

    Завдання полягає у знаходженні коефіцієнтів лінійної залежності, при яких функція двох змінних аі bнабуває найменшого значення. Тобто, за даними аі bсума квадратів відхилень експериментальних даних від знайденої прямої буде найменшою. У цьому суть методу найменших квадратів.

    Таким чином, рішення прикладу зводиться до знаходження екстремуму функції двох змінних.

    Висновок формул знаходження коефіцієнтів.

    Складається та вирішується система із двох рівнянь із двома невідомими. Знаходимо приватні похідні функції за змінними аі b, Прирівнюємо ці похідні до нуля.

    Вирішуємо отриману систему рівнянь будь-яким методом (наприклад методом підстановкиабо методом Крамера) і отримуємо формули для знаходження коефіцієнтів методом найменших квадратів (МНК).

    За даними аі bфункція набуває найменшого значення. Доказ цього факту наведено нижче в кінці сторінки.

    Ось і весь спосіб найменших квадратів. Формула для знаходження параметра aмістить суми , , , та параметр n- Кількість експериментальних даних. Значення цих сум рекомендуємо обчислювати окремо.

    Коефіцієнт bзнаходиться після обчислення a.

    Настав час згадати про вихідний приклад.

    Рішення.

    У нашому прикладі n=5. Заповнюємо таблицю для зручності обчислення сум, що входять до формул шуканих коефіцієнтів.

    Значення у четвертому рядку таблиці отримані множенням значень 2-го рядка на значення 3-го рядка для кожного номера i.

    Значення у п'ятому рядку таблиці отримані зведенням у квадрат значень другого рядка для кожного номера i.

    Значення останнього стовпця таблиці – це суми значень рядків.

    Використовуємо формули методу найменших квадратів для знаходження коефіцієнтів аі b. Підставляємо у них відповідні значення з останнього стовпця таблиці:

    Отже, y = 0.165x+2.184- Шукана апроксимуюча пряма.

    Залишилося з'ясувати, яка з ліній y = 0.165x+2.184або краще апроксимує вихідні дані, тобто провести оцінку шляхом найменших квадратів.

    Оцінка похибки способу менших квадратів.

    Для цього потрібно обчислити суми квадратів відхилень вихідних даних від цих ліній і менше значення відповідає лінії, яка краще в сенсі методу найменших квадратів апроксимує вихідні дані.

    Оскільки , то пряма y = 0.165x+2.184краще наближає вихідні дані.

    Графічна ілюстрація методу найменших квадратів (МНК).

    На графіках все чудово видно. Червона лінія – це знайдена пряма y = 0.165x+2.184, синя лінія – це , Рожеві точки - це вихідні дані.

    Навіщо це потрібно, до чого всі ці апроксимації?

    Я особисто використовую для вирішення завдань згладжування даних, задач інтерполяції та екстраполяції (у вихідному прикладі могли б попросити знайти значення спостережуваної величини yпри x=3або при x=6методом МНК). Але докладніше поговоримо про це пізніше в іншому розділі сайту.

    На початок сторінки

    Доведення.

    Щоб при знайдених аі bфункція приймала найменше значення, необхідно, щоб у цій точці матриця квадратичної форми диференціала другого порядку для функції була позитивно визначеною. Покажемо це.

    Диференціал другого порядку має вигляд:

    Тобто

    Отже, матриця квадратичної форми має вигляд

    причому значення елементів не залежать від аі b.

    Покажемо, що матриця є позитивно визначеною. Для цього потрібно, щоб кутові мінори були позитивними.

    Кутовий мінор першого порядку . Нерівність сувора, оскільки точки несупадні. Надалі це матимемо на увазі.

    Кутовий мінор другого порядку

    Доведемо, що методом математичної індукції.

    Висновок: знайдені значення аі bвідповідають найменшому значенню функції , отже, є параметрами для методу найменших квадратів.

    Нема коли розбиратися?
    Замовте рішення

    На початок сторінки

    Розробка прогнозу з допомогою методу найменших квадратів. Приклад розв'язання задачі

    Екстраполяція — це метод наукового дослідження, який ґрунтується на поширенні минулих та справжніх тенденцій, закономірностей, зв'язків на майбутній розвиток об'єкта прогнозування. До методів екстраполяції відносяться метод ковзної середньої, метод експоненційного згладжування, метод найменших квадратів.

    Сутність методу найменших квадратів полягає в мінімізації суми квадратичних відхилень між спостережуваними та розрахунковими величинами. Розрахункові величини перебувають за підібраним рівнянням – рівнянням регресії. Чим менша відстань між фактичними значеннями та розрахунковими, тим точніший прогноз, побудований на основі рівняння регресії.

    Теоретичний аналіз сутності явища, що вивчається, зміна якого відображається тимчасовим рядом, служить основою для вибору кривої. Іноді беруться до уваги міркування характері зростання рівнів ряду. Так, якщо зростання випуску продукції очікується в арифметичній прогресії, згладжування проводиться по прямій. Якщо ж виявляється, що зростання йде в геометричній прогресії, то згладжування треба проводити за показовою функцією.

    Робоча формула методу найменших квадратів : У t+1 = а * Х + b, де t + 1 – прогнозний період; Уt+1 – прогнозований показник; a та b - коефіцієнти; Х - умовне позначення часу.

    Розрахунок коефіцієнтів a і b здійснюється за такими формулами:

    де, УФ - фактичні значення низки динаміки; n – число рівнів часового ряду;

    Згладжування часових рядів шляхом найменших квадратів служить відображення закономірності розвитку досліджуваного явища. В аналітичному вираженні тренда час сприймається як незалежна змінна, а рівні низки виступають як функція цієї незалежної змінної.

    Розвиток явища залежить немає від цього, скільки років минуло з відправного моменту, як від того, які чинники впливали його розвиток, у напрямі і з якою інтенсивністю. Звідси ясно, що розвиток явища у часі постає як наслідок цих чинників.

    Правильно встановити тип кривої, тип аналітичної залежності від часу – одне з найскладніших завдань передпрогнозного аналізу .

    Підбір виду функції, що описує тренд, параметри якої визначаються методом найменших квадратів, проводиться в більшості випадків емпірично шляхом побудови ряду функцій і порівняння їх між собою за величиною середньоквадратичної помилки, що обчислюється за формулою:

    де УФ - фактичні значення низки динаміки; Ур - розрахункові (згладжені) значення низки динаміки; n – число рівнів часового ряду; р - Число параметрів, що визначаються у формулах, що описують тренд (тенденцію розвитку).

    Недоліки методу найменших квадратів :

    • при спробі описати економічне явище, що вивчається, за допомогою математичного рівняння, прогноз буде точний для невеликого періоду часу і рівняння регресії слід перераховувати в міру надходження нової інформації;
    • складність підбору рівняння регресії, яка можна розв'язати при використанні типових комп'ютерних програм.

    Приклад застосування методу найменших квадратів для розробки прогнозу

    Завдання . Є дані, що характеризують рівень безробіття у регіоні, %

    • Побудуйте прогноз рівня безробіття в регіоні на листопад, грудень, січень місяці, використовуючи методи: ковзного середнього, експоненційного згладжування, найменших квадратів.
    • Розрахуйте помилки отриманих прогнозів під час використання кожного методу.
    • Порівняйте отримані результати, зробіть висновки.

    Рішення методом найменших квадратів

    Для вирішення складемо таблицю, в якій будемо проводити необхідні розрахунки:

    ε = 28,63/10 = 2,86% точність прогнозувисока.

    Висновок : Порівнюючи результати, отримані при розрахунках методом ковзної середньої , методом експоненційного згладжування і методом найменших квадратів, можна сказати, що відносна середня помилка при розрахунках методом експоненційного згладжування потрапляє в межі 20-50%. Це означає, що точність прогнозу у разі є лише задовільною.

    У першому та третьому випадку точність прогнозу є високою, оскільки середня відносна помилка менша за 10%. Але метод ковзних середніх дозволив отримати більш достовірні результати (прогноз на листопад – 1,52%, прогноз на грудень – 1,53%, прогноз на січень – 1,49%), оскільки середня відносна помилка під час використання цього найменша – 1 13%.

    Метод найменших квадратів

    Інші статті на цю тему:

    Список використаних джерел

    1. Науково-методичні рекомендації з питань діагностики соціальних ризиків та прогнозування викликів, загроз та соціальних наслідків. Російський національний соціальний університет. Москва. 2010;
    2. Володимирова Л.П. Прогнозування та планування в умовах ринку: Навч. допомога. М: Видавничий Дім «Дашков і Ко», 2001;
    3. Новікова Н.В., Поздєєва О.Г. Прогнозування національної економіки: Навчально-методичний посібник. Єкатеринбург: Вид-во Урал. держ. екон. ун-ту, 2007;
    4. Слуцкін Л.М. Курс МБА з прогнозування у бізнесі. М: Альпіна Бізнес Букс, 2006.

    Програма МНК

    Введіть дані

    Дані та апроксимація y = a + b x

    i- Номер експериментальної точки;
    x i- значення фіксованого параметра у точці i;
    y i- значення параметра, що вимірюється в точці i;
    ω i- вага виміру в точці i;
    y i, розрах.- різниця між виміряним та обчисленим за регресією значенням yу точці i;
    S x i (x i)- Оцінка похибки x iпри вимірі yу точці i.

    Дані та апроксимація y = k x

    i x i y i ω i y i, розрах. Δy i S x i (x i)

    Клацніть за графіком,

    Інструкція користувача онлайн-програми МНК.

    У полі даних введіть на кожному окремому рядку значення `x` та `y` в одній експериментальній точці. Значення повинні відокремлюватися символом пробілу (пробілом або знаком табуляції).

    Третім значенням може бути вага точки `w`. Якщо вага точки не вказана, то вона дорівнює одиниці. У переважній більшості випадків ваги експериментальних точок невідомі чи обчислюються, тобто. всі експериментальні дані вважаються рівнозначними. Іноді ваги в досліджуваному інтервалі значень точно не рівнозначні і навіть можуть бути обчислені теоретично. Наприклад, в спектрофотометрії ваги можна обчислити за простими формулами, щоправда, в основному, цим все нехтують для зменшення трудовитрат.

    Дані можна вставити через буфер обміну з електронної таблиці офісних пакетів, наприклад Excel з Microsoft Офісу або Calc з Оупен Офісу. Для цього в електронній таблиці виділіть діапазон даних, що копіюються, скопіюйте в буфер обміну і вставте дані в поле даних на цій сторінці.

    Для розрахунку за методом найменших квадратів необхідно не менше двох точок для визначення двох коефіцієнтів `b` - тангенса кута нахилу прямої та `a` - значення, що відсікається прямою на осі `y`.

    Для оцінки похибки коефіцієнтів регресії, що розраховуються, потрібно задати кількість експериментальних точок більше двох.

    Метод найменших квадратів (МНК).

    Чим більша кількість експериментальних точок, тим точніша статистична оцінка коефіцінетів (за рахунок зниження коефіцінету Стьюдента) і тим ближча оцінка до оцінки генеральної вибірки.

    Отримання значень у кожній експериментальній точці часто пов'язане зі значними трудовитратами, тому часто проводять компромісне число експериментів, які дає зручну оцінку і не призведе до надмірних витрат праці. Як правило, кількість експериментів точок для лінійної МНК залежності з двома коефіцієнтами вибирає в районі 5-7 точок.

    Коротка теорія методу найменших квадратів для лінійної залежності

    Допустимо у нас є набір експериментальних даних у вигляді пар значень [`y_i`, `x_i`], де `i` - номер одного експериментального виміру від 1 до `n`; `y_i` - значення виміряної величини в точці `i`; `x_i` - значення параметра, що задається в точці `i`.

    Як приклад можна розглянути дію закону Ома. Змінюючи напругу (різницю потенціалів) між ділянками електричного ланцюга, ми заміряємо величину струму, що проходить цією ділянкою. Фізика нам дає залежність, знайдену експериментально:

    `I = U/R`,
    де `I` - сила струму; `R` - опір; `U` - напруга.

    У цьому випадку `y_i` у нас вимірювана величина струму, а `x_i` - значення напруги.

    Як інший приклад розглянемо поглинання світла розчином речовини у розчині. Хімія дає нам формулу:

    `A = ε l C`,
    де `A` - оптична щільність розчину; `ε` - коефіцієнт пропускання розчиненої речовини; `l` – довжина шляху при проходженні світла через кювету з розчином; `C` - концентрація розчиненої речовини.

    У цьому випадку `y_i` у нас вимірювана величина відптичної щільності `A`, а `x_i` - значення концентрації речовини, яку ми задаємо.

    Ми розглядатимемо випадок, коли відносна похибка в завданні `x_i` значно менша, відносної похибки вимірювання `y_i`. Також ми будемо припускати, що це виміряні величини `y_i` випадкові і нормально розподілені, тобто. підкоряються нормальному закону розподілу.

    У разі лінійної залежності `y` від `x`, ми можемо написати теоретичну залежність:
    `y = a + b x`.

    З геометричної точки зору, коефіцієнт `b` позначає тангенс кута нахилу лінії до осі `x`, а коефіцієнт `a` - значення `y` у точці перетину лінії з віссю `y` (при `x = 0`).

    Знаходження параметрів лінії регресії.

    В експерименті виміряні значення `y_i` не можуть точно лягти на теоретичну пряму через помилки виміру, що завжди притаманні реальному життю. Тому лінійне рівняння потрібно представити системою рівнянь:
    `y_i = a + b x_i + ε_i` (1),
    де `ε_i` - невідома помилка вимірювання `y` в `i`-ому експерименті.

    Залежність (1) також називають регресією, тобто. залежністю двох величин одна від одної зі статистичною значимістю.

    Завданням відновлення залежності є знаходження коефіцієнтів `a` та `b` по експериментальних точках [`y_i`, `x_i`].

    Для знаходження коефіцієнтів `a` та `b` зазвичай використовується метод найменших квадратів(МНК). Він є окремим випадком принципу максимальної правдоподібності.

    Перепишемо (1) у вигляді `ε_i = y_i - a - b x_i`.

    Тоді сума квадратів помилок буде
    `Φ = sum_(i=1)^(n) ε_i^2 = sum_(i=1)^(n) (y_i - a - b x_i)^2`. (2)

    Принципом МНК (методу найменших квадратів) є мінімізація суми (2) щодо параметрів `a` та `b`.

    Мінімум досягається, коли приватні похідні від суми (2) за коефіцієнтами `a` та `b` дорівнюють нулю:
    `frac(partial Φ)(partial a) = frac(partial sum_(i=1)^(n) (y_i - a - b x_i)^2)(partial a) = 0`
    `frac(partial Φ)(partial b) = frac(partial sum_(i=1)^(n) (y_i - a - b x_i)^2)(partial b) = 0`

    Розкриваючи похідні, отримуємо систему із двох рівнянь із двома невідомими:
    `sum_(i=1)^(n) (2a + 2bx_i - 2y_i) = sum_(i=1)^(n) (a + bx_i - y_i) = 0`
    `sum_(i=1)^(n) (2bx_i^2 + 2ax_i - 2x_iy_i) = sum_(i=1)^(n) (bx_i^2 + ax_i - x_iy_i) = 0`

    Розкриваємо дужки та переносимо незалежні від шуканих коефіцієнтів суми в іншу половину, отримаємо систему лінійних рівнянь:
    `sum_(i=1)^(n) y_i = a n + b sum_(i=1)^(n) bx_i`
    `sum_(i=1)^(n) x_iy_i = a sum_(i=1)^(n) x_i + b sum_(i=1)^(n) x_i^2`

    Вирішуючи, отриману систему, знаходимо формули для коефіцієнтів `a` та `b`:

    a = frac(sum_(i=1)^(n) y_i sum_(i=1)^(n) x_i^2 — sum_(i=1)^(n) x_i sum_(i=1)^(n ) x_iy_i) (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2)` (3.1)

    b = frac(n sum_(i=1)^(n) x_iy_i — sum_(i=1)^(n) x_i sum_(i=1)^(n) y_i) (n sum_(i=1)^ (n) x_i^2 - (sum_(i=1)^(n) x_i)^2)` (3.2)

    Ці формули мають рішення, коли `n > 1` (лінію можна побудувати не менш ніж за 2-ма точками) і коли детермінант `D = n sum_(i=1)^(n) x_i^2 - (sum_(i= 1) ^ (n) x_i) ^ 2! = 0 `, тобто. коли точки `x_i` в експерименті розрізняються (тобто коли лінія не вертикальна).

    Оцінка похибок коефіцієнтів лінії регресії

    Для більш точної оцінки похибки обчислення коефіцієнтів `a` та `b` бажано велика кількість експериментальних точок. При `n = 2` оцінити похибку коефіцієнтів неможливо, т.к. апроксимуюча лінія однозначно проходитиме через дві точки.

    Похибка випадкової величини `V` визначається законом накопичення помилок
    `S_V^2 = sum_(i=1)^p (frac(partial f)(partial z_i))^2 S_(z_i)^2`,
    де `p` - число параметрів `z_i` з похибкою `S_(z_i)`, які впливають на похибку `S_V`;
    `f` - функція залежності `V` від `z_i`.

    Розпишемо закон накопичення помилок для похибки коефіцієнтів `a` та `b`
    `S_a^2 = sum_(i=1)^(n)(frac(partial a)(partial y_i))^2 S_(y_i)^2 + sum_(i=1)^(n)(frac(partial a )(partial x_i))^2 S_(x_i)^2 = S_y^2 sum_(i=1)^(n)(frac(partial a)(partial y_i))^2`,
    `S_b^2 = sum_(i=1)^(n)(frac(partial b)(partial y_i))^2 S_(y_i)^2 + sum_(i=1)^(n)(frac(partial b) )(partial x_i))^2 S_(x_i)^2 = S_y^2 sum_(i=1)^(n)(frac(partial b)(partial y_i))^2 `,
    т.к. `S_(x_i)^2 = 0` (ми раніше зробили застереження, що похибка `x` зневажливо мала).

    `S_y^2 = S_(y_i)^2` - похибка (дисперсія, квадрат стандартного відхилення) у вимірі `y` у припущенні, що похибка однорідна для всіх значень `y`.

    Підставляючи в отримані вирази формули для розрахунку `a` та `b` отримаємо

    `S_a^2 = S_y^2 frac(sum_(i=1)^(n) (sum_(i=1)^(n) x_i^2 — x_i sum_(i=1)^(n) x_i)^2 ) (D^2) = S_y^2 frac((n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2) sum_(i=1) ^(n) x_i^2) (D^2) = S_y^2 frac(sum_(i=1)^(n) x_i^2) (D)` (4.1)

    `S_b^2 = S_y^2 frac(sum_(i=1)^(n) (n x_i - sum_(i=1)^(n) x_i)^2) (D^2) = S_y^2 frac( n (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2)) (D^2) = S_y^2 frac(n) (D) `(4.2)

    У більшості реальних експериментів значення Sy не вимірюється. Для цього потрібно проводити кілька паралельних вимірів (дослідів) в одній або кількох точках плану, що збільшує час (і, можливо, вартість) експерименту. Тому зазвичай вважають, що відхилення 'y' від лінії регресії вважатимуться випадковим. Оцінку дисперсії `y` у цьому випадку вважають за формулою.

    `S_y^2 = S_(y, ост)^2 = frac(sum_(i=1)^n (y_i - a - b x_i)^2) (n-2)`.

    Дільник `n-2` з'являється тому, що у нас знизилося число ступенів свободи через розрахунок двох коефіцієнтів з цієї ж вибірки експериментальних даних.

    Таку оцінку ще називають залишковою дисперсією щодо лінії регресії `S_(y, ост)^2`.

    Оцінка значущості коефіцієнтів проводиться за критерієм Стьюдента

    `t_a = frac(|a|) (S_a)`, `t_b = frac(|b|) (S_b)`

    Якщо розраховані критерії `t_a`, `t_b` менше табличних критеріїв `t(P, n-2)`, то вважається, що відповідний коефіцієнт незначно відрізняється від нуля із заданою ймовірністю `P`.

    Для оцінки якості опису лінійної залежності, можна порівняти `S_(y, ост)^2` та `S_(bar y)` щодо середнього з використанням критерію Фішера.

    `S_(bar y) = frac(sum_(i=1)^n (y_i - bar y)^2) (n-1) = frac(sum_(i=1)^n (y_i - (sum_(i=) 1)^n y_i) /n)^2) (n-1)` - вибіркова оцінка дисперсії `y` щодо середнього.

    Для оцінки ефективності рівняння регресії для опису залежності розраховують коефіцієнт Фішера
    `F = S_(bar y) / S_(y, ост)^2`,
    який порівнюють з табличним коефіцієнтом Фішера `F(p, n-1, n-2)`.

    Якщо `F > F(P, n-1, n-2)`, вважається статистично значущим з ймовірністю `P` різницю між описом залежності `y = f(x)` за допомогою урівняння регресії та описом за допомогою середнього. Тобто. регресія краще описує залежність, ніж розкид `y` щодо середнього.

    Клацніть за графіком,
    щоб додати значення до таблиці

    Метод найменших квадратів. Під методом найменших квадратів розуміється визначення невідомих параметрів a, b, c, прийнятої функціональної залежності

    Під методом найменших квадратів розуміється визначення невідомих параметрів a, b, c,…прийнятої функціональної залежності

    y = f(x, a, b, c, …),

    які б забезпечували мінімум середнього квадрата (дисперсії) помилки

    , (24)

    де x i, y i - Сукупність пар чисел, отриманих з експерименту.

    Оскільки умовою екстремуму функції кількох змінних є умова рівності нулю її похідних, то параметри a, b, c,…визначаються із системи рівнянь:

    ; ; ; … (25)

    Необхідно пам'ятати, що метод найменших квадратів застосовується для вибору параметрів після того, як вид функції y = f(x)визначено.

    Якщо з теоретичних міркувань не можна зробити жодних висновків про те, якою має бути емпірична формула, то доводиться керуватися наочними уявленнями, насамперед графічним зображенням спостережених даних.

    Насправді найчастіше обмежуються такими видами функций:

    1) лінійна ;

    2) квадратична a.

    Сутність методу найменших квадратів полягає у відшуканні параметрів моделі тренда, яка найкраще описує тенденцію розвитку якогось випадкового явища у часі чи просторі (тренд – це лінія, що й характеризує тенденцію цього розвитку). Завдання методу найменших квадратів (МНК) зводиться до знаходження не просто якоїсь моделі тренду, а до знаходження кращої чи оптимальної моделі. Ця модель буде оптимальною, якщо сума квадратичних відхилень між фактичними величинами, що спостерігаються, і відповідними ним розрахунковими величинами тренда буде мінімальною (найменшою):

    де - квадратичне відхилення між фактичною величиною, що спостерігається.

    та відповідною їй розрахунковою величиною тренду,

    Фактичне (спостерігається) значення досліджуваного явища,

    Розрахункове значення моделі тренду,

    Число спостережень за явищем, що вивчається.

    МНК самостійно застосовується досить рідко. Як правило, найчастіше його використовують лише як необхідний технічний прийом при кореляційних дослідженнях. Слід пам'ятати, що інформаційною основою МНК може бути лише достовірний статистичний ряд, причому число спостережень не повинно бути менше 4-х, інакше процедури, що згладжують МНК, можуть втратити здоровий глузд.

    Інструментарій МНК зводиться до таких процедур:

    Перша процедура. З'ясовується, чи взагалі існує якась тенденція зміни результативної ознаки при зміні обраного фактора-аргументу, або іншими словами, чи є зв'язок між « у » та « х ».

    Друга процедура. Визначається, яка лінія (траєкторія) здатна найкраще описати чи охарактеризувати цю тенденцію.

    Третя процедура.

    приклад. Допустимо, ми маємо інформацію про середню врожайність соняшнику по досліджуваному господарству (табл. 9.1).

    Таблиця 9.1

    Номер спостереження

    Врожайність, ц/га

    Оскільки рівень технології при виробництві соняшнику в нашій країні за останні 10 років практично не змінився, отже, мабуть, коливання врожайності в аналізований період дуже залежали від коливання погодно-кліматичних умов. Чи це так?

    Перша процедура МНК. Перевіряється гіпотеза про існування тенденції зміни врожайності соняшнику залежно від зміни погодно-кліматичних умов за 10 років, що аналізуються.

    У цьому прикладі за « y » Доцільно прийняти врожайність соняшнику, а за « x » - Номер спостережуваного року в аналізованому періоді. Перевірку гіпотези про існування будь-якого взаємозв'язку між « x » та « y » можна виконати двома способами: вручну та за допомогою комп'ютерних програм. Звісно, ​​за наявності комп'ютерної техніки дана проблема вирішується сама собою. Але щоб краще зрозуміти інструментарій МНК доцільно виконати перевірку гіпотези про існування зв'язку між « x » та « y » вручну, коли під рукою знаходяться лише ручка та звичайний калькулятор. У таких випадках гіпотезу про існування тенденції найкраще перевірити візуальним способом щодо розташування графічного зображення аналізованого ряду динаміки - кореляційного поля:

    Кореляційне поле в нашому прикладі розташоване навколо лінії, що повільно зростає. Це вже само собою говорить про існування певної тенденції в зміні врожайності соняшника. Не можна говорити про наявність будь-якої тенденції лише тоді, коли кореляційне поле схоже на коло, коло, строго вертикальну або строго горизонтальну хмару, або ж складається з хаотично розкиданих точок. В інших випадках слід підтвердити гіпотезу про існування взаємозв'язку між « x » та « y », та продовжити дослідження.

    Друга процедура МНК. Визначається, яка лінія (траєкторія) здатна найкраще описати чи охарактеризувати тенденцію зміни врожайності соняшника за аналізований період.

    За наявності комп'ютерної техніки вибір оптимального тренда відбувається автоматично. При «ручній» обробці вибір оптимальної функції здійснюється, як правило, візуальним способом – розташування кореляційного поля. Тобто, на вигляд графіка підбирається рівняння лінії, яка найкраще підходить до емпіричного тренду (до фактичної траєкторії).

    Як відомо, у природі існує величезна різноманітність функціональних залежностей, тому візуальним способом проаналізувати навіть незначну їх частину – вкрай важко. На щастя, в реальній економічній практиці більшість взаємозв'язків досить точно можуть бути описані або параболою, або гіперболою, або прямою лінією. У зв'язку з цим, при «ручному» варіанті вибору кращої функції, можна обмежитися тільки цими трьома моделями.

    Гіперболу:

    Парабола другого порядку: :

    Неважко помітити, що у нашому прикладі найкраще тенденцію зміни врожайності соняшника за аналізовані 10 років характеризує пряма лінія, тому рівнянням регресії буде пряма рівняння.

    Третя процедура. Розраховуються параметри регресійного рівняння, що характеризує цю лінію, або іншими словами визначається аналітична формула, що описує кращу модель тренду.

    Знаходження значень параметрів рівняння регресії, у разі параметрів і , є серцевиною МНК. Цей процес зводиться до вирішення системи нормальних рівнянь.

    (9.2)

    Ця система рівнянь досить легко вирішується методом Гаусса. Нагадаємо, що в результаті рішення в нашому прикладі знаходяться значення параметрів і . Таким чином, знайдене рівняння регресії матиме такий вигляд:

    КАТЕГОРІЇ

    ПОПУЛЯРНІ СТАТТІ

    2023 «kingad.ru» - УЗД дослідження органів людини