• Арифметичним коренем натурального ступеня n>=2 з неотрицательного числа а називається деяке неотрицательное число, під час зведення якого у ступінь n виходить число а.

Можна довести, що з будь-якого неотрицательного а і натурального n рівняння x^n=a матиме єдиний неотрицательный корінь. Саме цей корінь і називають арифметичним коренем n-ого ступеня з числа а.

Арифметичний корінь n-ого ступеня з числа а позначається в такий спосіб n√a. Число а в даному випадку називається підкореним виразом.

Арифметичний корінь другого ступеня називається квадратним коренем, а арифметичний корінь третього ступеня кубічним коренем.

Основні властивості арифметичного кореня n-ого ступеня

  • 1. (n√a)^n = a.

Наприклад, (5√2)^5 = 2.

Ця властивість прямо випливає з визначення арифметичного кореня n-ого ступеня.

Якщо a більше абора дорівнює нулю, b більше за нуль і n, m – деякі натуральні числатакі, що n більше або одно 2 і m більше або дорівнює 2, тоді справедливі такі характеристики:

  • 2. n√(a*b)= n√a*n√b.

Наприклад, 4√27 * 4√3 = 4√(27*3) = 4√81 =4√(3^4) = 3.

  • 3. n√(a/b) = (n√a)/(n√b).

Наприклад, 3√(256/625) :3√(4/5) = 3√((256/625) : (4/5)) = (3√(64))/(3√(125)) = 4/5.

  • 4. (n√a)^m = n√(a^m).

Наприклад,7√(5^21) = 7√((5^7)^3)) = (7√(5^7))^3 = 5^3 = 125.

  • 5. m√(n√a) = (n*m) √a.

Наприклад, 3√(4√4096) = 12√4096 = 12√(2^12) = 2.

Зауважимо, що у властивості 2, число b може дорівнювати нулю, а властивості 4 число m може бути будь-яким цілим, за умови, що a>0.

Доказ другої властивості

Усі останні чотири властивості доводяться аналогічно, тому обмежимося доказом лише другої: n√(a*b)= n√a*n√b.

Використовуючи визначення арифметичного кореня, доведемо, що n√(a*b)= n√a*n√b.

Для цього доведемо два факти, що n√a*n√b. Більше або дорівнює нулю, що (n√a*n√b.)^n = ab.

  • 1. n√a*n√b більше або дорівнює нулю, тому що і а і b більше або дорівнюють нулю.
  • 2. (n√a*n√b)^n = a*b, оскільки (n√a*n√b)^n = (n√a)^n *(n√b)^n = a* b.

Що й потрібно було довести. Значить властивість правильно. Ці властивості дуже часто доведеться використовувати при спрощенні виразів, що містять арифметичні корені.

Дотримання Вашої конфіденційності є важливим для нас. З цієї причини ми розробили Політику конфіденційності, яка описує, як ми використовуємо та зберігаємо Вашу інформацію. Будь ласка, ознайомтеся з нашими правилами дотримання конфіденційності та повідомте нам, якщо у вас виникнуть будь-які питання.

Збір та використання персональної інформації

Під персональною інформацією розуміються дані, які можуть бути використані для ідентифікації певної особичи зв'язку з ним.

Від вас може бути запрошено надання вашої персональної інформаціїу будь-який момент, коли ви зв'язуєтесь з нами.

Нижче наведено приклади типів персональної інформації, яку ми можемо збирати, і як ми можемо використовувати таку інформацію.

Яку персональну інформацію ми збираємо:

  • Коли ви залишаєте заявку на сайті, ми можемо збирати різноманітну інформацію, включаючи ваше ім'я, номер телефону, адресу електронної поштиі т.д.

Як ми використовуємо вашу персональну інформацію:

  • Персональна інформація, що збирається нами, дозволяє нам зв'язуватися з вами і повідомляти про унікальних пропозиціях, акціях та інших заходах та найближчих подіях.
  • Час від часу ми можемо використовувати вашу персональну інформацію для надсилання важливих повідомлень та повідомлень.
  • Ми також можемо використовувати персональну інформацію для внутрішніх цілей, таких як проведення аудиту, аналізу даних та різних дослідженьз метою покращення послуг наданих нами та надання Вам рекомендацій щодо наших послуг.
  • Якщо ви берете участь у розіграші призів, конкурсі або подібному стимулювальному заході, ми можемо використовувати інформацію, що надається, для управління такими програмами.

Розкриття інформації третім особам

Ми не розкриваємо отриману від Вас інформацію третім особам.

Винятки:

  • Якщо необхідно - відповідно до закону, судовим порядком, у судовому розгляді, та/або на підставі публічних запитів або запитів від державних органівна території РФ – розкрити вашу персональну інформацію. Ми також можемо розкривати інформацію про вас, якщо ми визначимо, що таке розкриття необхідно чи доречно з метою безпеки, підтримання правопорядку, чи інших суспільно важливих випадках.
  • У разі реорганізації, злиття або продажу ми можемо передати персональну інформацію, що збирається нами, відповідній третій особі – правонаступнику.

Захист персональної інформації

Ми вживаємо запобіжних заходів - включаючи адміністративні, технічні та фізичні - для захисту вашої персональної інформації від втрати, крадіжки та недобросовісного використання, а також від несанкціонованого доступу, розкриття, зміни та знищення.

Дотримання вашої конфіденційності на рівні компанії

Для того, щоб переконатися, що ваша персональна інформація знаходиться в безпеці, ми доводимо норми дотримання конфіденційності та безпеки до наших співробітників і суворо стежимо за дотриманням заходів дотримання конфіденційності.



Квадратний корінь. Вичерпний гід (2019)

Вітаю: сьогодні ми розбиратимемо коріння — одну з найбільш мозкових тем 8-го класу.:)

Багато хто плутається в корінні не тому, що воно складне (чого там складного — пара визначень і ще пара властивостей), а тому що в більшості шкільних підручників коріння визначається через такі нетрі, що розібратися в цій писанині можуть хіба самі автори підручників. Та й то лише з пляшкою гарного віскі.

Тому зараз я дам найправильніше і найписьменніше визначення кореня - єдине, яке вам справді слід запам'ятати. А вже потім поясню: навіщо все це потрібно і як застосовувати на практиці.

Але спочатку запам'ятайте один важливий момент, про який багато укладачів підручників чомусь «забувають»:

Коріння буває парного ступеня (наш улюблений $\sqrt(a)$, а також всякі $\sqrt(a)$ і навіть $\sqrt(a)$) і непарного ступеня (будь-які $\sqrt(a)$, $\ sqrt(a)$ і т.д.). І визначення кореня непарного ступеня дещо відрізняється від парного.

Ось у цьому гребінці «дещо відрізняється» приховано, напевно, 95% всіх помилок і непорозуміння, пов'язаного з корінням. Тому давайте раз і назавжди розберемося з термінологією:

Визначення. Корінь парного ступеня nз $a$ - це будь-яке невід'ємнечисло $b$ таке, що $((b)^(n))=a$. А корінь непарного ступеня з того ж числа $a$ - це взагалі будь-яке число $b$, для якого виконується та ж рівність: $((b)^(n))=a$.

У будь-якому випадку корінь позначається так:

\(a)\]

Число $n$ у такому записі називається показником кореня, а число $a$ - підкореним виразом. Зокрема, при $n=2$ отримаємо наш «улюблений» квадратний корінь (до речі, це корінь парного ступеня), а за $n=3$ — кубічний (ступінь непарний), який теж часто зустрічається в завданнях та рівняннях.

приклади. Класичні приклади квадратного коріння:

\[\begin(align) & \sqrt(4)=2; \ \ & \ sqrt (81) = 9; \ & \ sqrt (256) = 16. \\ \end(align)\]

До речі, $ sqrt (0) = 0 $, а $ sqrt (1) = 1 $. Це цілком логічно, оскільки $((0)^(2))=0$ і $((1)^(2))=1$.

Кубічні коріння теж часто зустрічаються — не треба їх боятися:

\[\begin(align) & \sqrt(27)=3; \\ \sqrt(-64)=-4; \ & \ sqrt (343) = 7. \\ \end(align)\]

Ну, і парочка «екзотичних прикладів»:

\[\begin(align) & \sqrt(81)=3; \\ \sqrt(-32)=-2. \\ \end(align)\]

Якщо ви не зрозуміли, у чому різниця між парним та непарним ступенем — перечитайте визначення ще раз. Це дуже важливо!

А ми тим часом розглянемо одну неприємну особливість коренів, через яку нам потрібно було вводити роздільне визначення для парних і непарних показників.

Навіщо взагалі потрібне коріння?

Прочитавши визначення, багато учнів запитають: Що курили математики, коли це вигадували? І справді: навіщо взагалі потрібне все це коріння?

Щоб відповісти на це питання, повернемося на хвилинку початкові класи. Згадайте: у ті далекі часи, коли дерева були зеленішими, а пельмені смачнішими, основна наша турбота була в тому, щоб правильно множити числа. Ну, щось у дусі «п'ять на п'ять-двадцять п'ять», ось це все. Але можна множити числа не парами, а трійками, четвірками і взагалі цілими комплектами:

\[\begin(align) & 5\cdot 5=25; \ & 5 \ cdot 5 \ cdot 5 = 125; \ & 5 \ cdot 5 \ cdot 5 \ cdot 5 = 625; \ \ 5 \ cdot 5 \ cdot 5 \ cdot 5 \ cdot 5 = 3125; \\ 5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625. \end(align)\]

Однак суть не в цьому. Фішка в іншому: математики - люди ліниві, тому їм було в лом записувати множення десяти п'ятірок ось так:

Тому вони вигадали ступеня. Чому б замість довгого рядка не записати кількість множників у вигляді верхнього індексу? Типу такого:

Це дуже зручно! Всі обчислення скорочуються в рази, і можна не витрачати купу аркушів пергаменту блокнотиків на запис якогось 5 183 . Такий запис назвали ступенем числа, у нього знайшли купу властивостей, але щастя виявилося недовгим.

Після грандіозної п'янки, яку організували саме з приводу «відкриття» ступенів, якийсь особливо затятий математик раптом запитав: «А що, якщо нам відомий ступінь числа, але невідомо саме число?» Ось, дійсно, якщо нам відомо, що деяке число $b$, припустимо, в 5-му ступені дає 243, то як нам здогадатися, чому одно число $b$?

Проблема ця виявилася набагато глобальнішою, ніж може здатися на перший погляд. Тому що з'ясувалося, що для більшості готових ступенів таких вихідних чисел немає. Судіть самі:

\[\begin(align) & ((b)^(3))=27Rightarrow b=3cdot 3cdot 3Rightarrow b=3; \ & ((b) ^ (3)) = 64 Rightarrow b = 4 cdot 4 cdot 4 Rightarrow b = 4. \\ \end(align)\]

А що якщо $((b)^(3))=50$? Виходить, що потрібно знайти якесь число, яке тричі помножене саме на себе дасть нам 50. Але що це за число? Воно явно більше 3, оскільки 3 3 = 27< 50. С тем же успехом оно меньше 4, поскольку 4 3 = 64 >50. Тобто. це число лежить десь між трійкою і четвіркою, але чому воно одно - фіг зрозумієш.

Саме для цього математики і придумали коріння $n$-го ступеня. Саме для цього ввели піктограму радикала $\sqrt(*)$. Щоб позначити те саме число $b$, яке в даній мірі дасть нам заздалегідь відому величину

\[\sqrt[n](a)=b\Rightarrow ((b)^(n))=a\]

Не сперечаюся: найчастіше це коріння легко вважається — ми бачили кілька таких прикладів вище. Але все-таки в більшості випадків, якщо ви загадаєте довільне число, а потім спробуєте витягти з нього корінь довільного ступеня, на вас чекає жорстокий облом.

Та що там! Навіть найпростіший і всім знайомий $\sqrt(2)$ не можна уявити у звичному нам вигляді - як ціле число або дрібничка. А якщо ви вб'єте це число в калькулятор, то побачите це:

\[\sqrt(2)=1,414213562...\]

Як бачите, після коми йде нескінченна послідовність цифр, які не підкоряються жодній логіці. Можна, звичайно, округлити це число, щоб швидко порівняти з іншими числами. Наприклад:

\[\sqrt(2)=1,4142...\approx 1,4 \lt 1,5\]

Або ще приклад:

\[\sqrt(3)=1,73205...\approx 1,7 \gt 1,5\]

Але ці округлення, по-перше, досить грубі; а по-друге, працювати з приблизними значеннями теж треба вміти, інакше можна впіймати купу неочевидних помилок (до речі, навик порівняння і округлення в обов'язковому порядкуперевіряють на профільному ЄДІ).

Тому в серйозній математиці без коріння не обійтися - вони є такими ж рівноправними представниками багатьох дійсних чисел $\mathbb(R)$, як і давно знайомі нам дроби і цілі числа.

Неможливість уявити корінь як дробу виду $\frac(p)(q)$ означає, що даний коріньне є раціональним числом. Такі числа називаються ірраціональними, і їх не можна точно уявити інакше як за допомогою радикала або інших спеціально призначених для цього конструкцій (логарифмів, ступенів, меж тощо). Але про це — іншого разу.

Розглянемо кілька прикладів, де після всіх обчислень ірраціональні числа все ж таки залишаться у відповіді.

\[\begin(align) & \sqrt(2+\sqrt(27))=\sqrt(2+3)=\sqrt(5)\approx 2,236... \\ & \sqrt(\sqrt(-32) ))=\sqrt(-2)\approx -1,2599... \\ \end(align)\]

Звичайно, за зовнішньому виглядукореня практично неможливо здогадатися, які числа будуть йти після коми. Втім, можна порахувати на калькуляторі, але навіть найдосконаліший калькулятор дат нам лише кілька перших цифр ірраціонального числа. Тому набагато правильніше записати відповіді у вигляді $sqrt(5)$ і $sqrt(-2)$.

Саме для цього їх і вигадали. Щоб зручно записувати відповіді.

Чому потрібні два визначення?

Уважний читач уже напевно помітив, що всі квадратні корені, наведені в прикладах, витягуються з позитивних чисел. Ну, в крайньому випадкуіз нуля. А ось кубічні корені незворушно витягуються абсолютно з будь-якого числа — хоч позитивного, хоч негативного.

Чому так відбувається? Подивіться графік функції $y=((x)^(2))$:

Графік квадратичні функціїдає два корені: позитивний та негативний

Спробуємо за допомогою цього графіка порахувати $sqrt (4) $. Для цього на графіку проведено горизонтальну лінію $y=4$ (позначено червоним кольором), яка перетинається з параболою у двох точках:$((x)_(1))=2$ і $((x)_(2)) =-2 $. Це цілком логічно, оскільки

З першим числом все зрозуміло — воно позитивне, тому воно є корінь:

Але що робити тоді з другою точкою? Типу у четвірки відразу два корені? Адже якщо звести до квадрата число −2, ми теж отримаємо 4. Чому б тоді не записати $\sqrt(4)=-2$? І чому вчителі дивляться на такі записи так, ніби хочуть вас зжерти?:)

У тому й біда, що якщо не накладати ніяких додаткових умов, то квадратного коріння у четвірки буде два — позитивний і негативний. І в будь-якого позитивного числа їх також буде два. А ось у негативних чисел коріння взагалі не буде — це видно все за тим же графіком, оскільки парабола ніде не опускається нижче за осю y, тобто. не набуває негативних значень.

Подібна проблема виникає у всіх коренів з парним показником:

  1. Строго кажучи, коріння з парним показником $n$ у кожного позитивного числа буде відразу дві штуки;
  2. З негативних чисел корінь із парним $n$ взагалі не витягується.

Саме тому у визначенні кореня парного ступеня $n$ спеціально обговорюється, що відповідь має бути невід'ємною кількістю. Так ми позбавляємося неоднозначності.

Зате для непарних $n$ такої проблеми немає. Щоб переконатися в цьому, погляньмо на графік функції $y=((x)^(3))$:

Кубічна парабола набуває будь-яких значень, тому кубічний корінь витягується з будь-якого числа.

З цього графіка можна зробити два висновки:

  1. Гілки кубічної параболи, на відміну від звичайної, йдуть на нескінченність в обидві сторони - і вгору, і вниз. Тому на якій би висоті ми не проводили горизонтальну пряму, ця пряма обов'язково перетнеться з нашим графіком. Отже, кубічний корінь можна отримати завжди, абсолютно з будь-якого числа;
  2. Крім того, таке перетин завжди буде єдиним, тому не потрібно думати, яке число вважати «правильним» коренем, а на яке забити. Саме тому визначення коренів для непарного ступеня простіше, ніж для парної (відсутня вимога невід'ємності).

Шкода, що ці прості речіне пояснюють у більшості підручників. Натомість нам починають ширяти мозок усілякими арифметичними корінням та їх властивостями.

Так, я не сперечаюся: що таке арифметичний корінь теж треба знати. І я докладно розповім про це в окремому уроці. Сьогодні ми теж поговоримо про нього, оскільки без нього всі роздуми про коріння $n$-ї кратності були б неповними.

Але спочатку треба чітко засвоїти те визначення, яке я дав вище. Інакше через велику кількість термінів у голові почнеться така каша, що в результаті взагалі нічого не зрозумієте.

А всього й потрібно зрозуміти різницю між парними та непарними показниками. Тому ще раз зберемо все, що дійсно потрібно знати про коріння:

  1. Корінь парного ступеня існує лише з невід'ємного числа і сам є невід'ємним числом. Для негативних чисел такий корінь невизначений.
  2. А ось корінь непарного ступеня існує з будь-якого числа і може бути будь-яким числом: для позитивних чисел він позитивний, а для негативних — як натякає кеп, негативний.

Хіба це складно? Ні, не складно. Зрозуміло? Та взагалі очевидно! Тому зараз ми трохи потренуємось із обчисленнями.

Основні властивості та обмеження

У коріння багато дивних властивостейта обмежень – про це буде окремий урок. Тому зараз ми розглянемо лише найважливішу «фішку», яка стосується лише коріння з парним показником. Запишемо цю властивість у вигляді формули:

\[\sqrt(((x)^(2n)))=\left| x \right|\]

Іншими словами, якщо звести число в парний ступінь, а потім з цього витягти корінь того ж ступеня, ми отримаємо не вихідне число, яке модуль . Це проста теорема, яка легко доводиться (достатньо окремо розглянути невід'ємні $x$, а потім окремо негативні). Про неї постійно товкмачать вчителі, її дають у кожному шкільному підручнику. Але щойно справа доходить до рішення ірраціональних рівнянь(Тобто рівнянь, що містять знак радикала), учні дружно забувають цю формулу.

Щоб детально розібратися в питанні, давайте на хвилину забудемо всі формули і спробуємо порахувати два числа напролом:

\[\sqrt(((3)^(4)))=?\quad \sqrt(((\left(-3 \right))^(4)))=?\]

Це дуже прості приклади. Перший приклад вирішить більшість людей, а ось на другому багато хто залипає. Щоб без проблем вирішити будь-яку подібну хрень, завжди враховуйте порядок дій:

  1. Спочатку число зводиться у четвертий ступінь. Ну, це нескладно. Вийде нове число, яке навіть у таблиці множення можна знайти;
  2. І ось уже з цього нового числа необхідно витягти корінь четвертого ступеня. Тобто. ніякого «скорочення» коріння та ступенів не відбувається — це послідовні дії.

Розберемося з першим виразом: $ \ sqrt (((3) ^ (4))) $. Очевидно, що спочатку треба порахувати вираз, що стоїть під коренем:

\[((3)^(4))=3\cdot 3\cdot 3\cdot 3=81\]

Потім витягаємо корінь четвертого ступеня з числа 81:

Тепер зробимо те саме з другим виразом. Спочатку зводимо число −3 у четверту міру, навіщо потрібно помножити його саме він 4 разу:

\[((\left(-3 \right))^(4))=\left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)\cdot \ left(-3 \right)=81\]

Отримали позитивне число, оскільки загальна кількість мінусів у творі — 4 штуки, і всі вони взаємно знищиться (адже мінус на мінус дає плюс). Далі знову витягаємо корінь:

У принципі, цей рядок можна було не писати, оскільки і їжу зрозуміло, що відповідь вийде одна й та сама. Тобто. парний корінь з тієї ж парної міри «спалює» мінуси, і в цьому сенсі результат не відрізняється від звичайного модуля:

\[\begin(align) & \sqrt(((3)^(4)))=\left| 3 \right|=3; \\ & \sqrt(((\left(-3 \right))^(4)))=\left| -3 \right|=3. \\ \end(align)\]

Ці обчислення добре узгоджуються з визначенням кореня парного ступеня: результат завжди невід'ємний, та й під знаком радикала теж завжди стоїть не негативне число. В іншому випадку корінь не визначений.

Зауваження щодо порядку дій

  1. Запис $\sqrt(((a)^(2)))$ означає, що ми спочатку зводимо число $a$ у квадрат, а потім витягуємо з отриманого значення квадратний корінь. Отже, ми можемо бути впевнені, що під знаком кореня завжди сидить невід'ємне число, оскільки $((a)^(2))\ge 0$ у будь-якому випадку;
  2. А ось запис $((\left(\sqrt(a) \right))^(2))$, навпаки, означає, що ми спочатку витягаємо корінь з деякого числа $a$ і лише потім зводимо результат у квадрат. Тому число $a$ в жодному разі не може бути негативним - це обов'язкова вимога, Закладене у визначення.

Таким чином, у жодному разі не можна бездумно скорочувати коріння та ступеня, тим самим нібито «спрощуючи» вихідний вираз. Тому що якщо під коренем стоїть негативне число, а його показник є парним, ми отримаємо купу проблем.

Втім, всі ці проблеми є актуальними лише для парних показників.

Винесення мінуса з-під знака кореня

Природно, коріння з непарними показниками теж має свою фішку, якої в принципі не буває у парних. А саме:

\[\sqrt(-a)=-\sqrt(a)\]

Коротше кажучи, можна виносити мінус з-під знаку коріння непарного ступеня. Це дуже корисна властивість, що дозволяє «викинути» всі мінуси назовні:

\[\begin(align) & \sqrt(-8)=-\sqrt(8)=-2; \\ & \sqrt(-27)\cdot \sqrt(-32)=-\sqrt(27)\cdot \left(-\sqrt(32) \right)= \\ & =\sqrt(27)\cdot \ sqrt (32) = \ \ & = 3 \ cdot 2 = 6. \end(align)\]

Ця проста властивість значно спрощує багато обчислень. Тепер не треба переживати: раптом під коренем затесався негативний вираз, а ступінь у кореня виявився парним? Достатньо лише «викинути» всі мінуси за межі коріння, після чого їх можна буде множити один на одного, ділити і взагалі робити багато підозрілих речей, які у випадку з «класичним» корінням гарантовано приведуть нас до помилки.

І ось тут на сцену виходить ще одне визначення — те саме, з якого в більшості шкіл починають вивчення ірраціональних виразів. І без якого наші міркування були б неповними. Зустрічайте!

Арифметичний корінь

Давайте припустимо на хвилинку, що під знаком кореня можуть бути лише позитивні числа або в крайньому випадку нуль. Заб'ємо на парні/непарні показники, заб'ємо на всі визначення, наведені вище - працюватимемо тільки з невід'ємними числами. Що ж тоді?

А тоді ми отримаємо арифметичний корінь — він частково перетинається з нашими «стандартними» визначеннями, але все ж таки відрізняється від них.

Визначення. Арифметичним коренем $n$-го ступеня з невід'ємного числа $a$ називається таке невід'ємне число $b$, що $((b)^(n))=a$.

Як бачимо, нас більше не цікавить парність. Натомість її з'явилося нове обмеження: підкорене вираз тепер завжди невід'ємно, та й сам корінь теж негативний.

Щоб краще зрозуміти, чим арифметичний корінь відрізняється від звичайного, погляньте на вже знайомі нам графіки квадратної та кубічної параболи:

Область пошуку арифметичного кореня – невід'ємні числа

Як бачите, відтепер нас цікавлять ті шматки графіків, які розташовані в першій координатній чверті — там, де координати $x$ і $y$ позитивні (або хоча б нуль). Більше не потрібно дивитися на показник, щоб зрозуміти: чи маємо ми право ставити під корінь негативне число чи ні. Тому що негативні числа більше, у принципі, не розглядаються.

Можливо, ви запитаєте: "Ну і навіщо нам таке кастроване визначення?" Або: «Чому не можна обійтися стандартним визначенням, даним вище?»

Що ж, наведу лише одну властивість, через яку нове визначення стає доцільним. Наприклад, правило зведення в ступінь:

\[\sqrt[n](a)=\sqrt(((a)^(k)))\]

Зверніть увагу: ми можемо звести підкорене вираз у будь-який ступінь і одночасно помножити на цей самий ступінь показник кореня — і в результаті вийде те саме число! Ось приклади:

\[\begin(align) & \sqrt(5)=\sqrt(((5)^(2)))=\sqrt(25) \\ & \sqrt(2)=\sqrt(((2)^ (4)))=\sqrt(16) \\ \end(align)\]

Ну, і що в цьому такого? Чому ми не могли це зробити раніше? А ось чому. Розглянемо простий вираз: $\sqrt(-2)$ — це цілком нормальне у нашому класичному розумінні, але абсолютно неприпустимо з погляду арифметичного кореня. Спробуємо перетворити його:

$\begin(align) & \sqrt(-2)=-\sqrt(2)=-\sqrt(((2)^(2)))=-\sqrt(4) \lt 0; \\ & \sqrt(-2)=\sqrt(((\left(-2 \right))^(2)))=\sqrt(4) \gt 0. \\ \end(align)$

Як бачите, у першому випадку ми винесли мінус з-під радикала (маємо повне право, т.к. показник непарний), а в другому - скористалися зазначеною вище формулою. Тобто. з погляду математики все зроблено за правилами.

WTF?! Як одне й те число може бути і позитивним, і негативним? Ніяк. Просто формула зведення в ступінь, який чудово працює для позитивних чисел і нуля, починає видавати повну брехню у випадку з негативними числами.

Ось для того, щоб позбутися подібної неоднозначності, і вигадали арифметичні коріння. Їм присвячений окремий великий урокде ми докладно розглядаємо всі їхні властивості. Отже зараз не будемо на них зупинятися — урок і так вийшов занадто затягнутим.

Алгебраїчне коріння: для тих, хто хоче знати більше

Довго думав: виносити цю тему до окремого параграфу чи ні. Зрештою вирішив залишити тут. Цей матеріал призначений для тих, хто хоче зрозуміти коріння ще краще – вже не на середньому «шкільному» рівні, а на наближеному до олімпіадного.

Так ось: крім «класичного» визначення кореня $n$-го ступеня з числа та пов'язаного з ним поділу на парні та непарні показники є більш «доросле» визначення, яке взагалі не залежить від парності та інших тонкощів. Це називається алгебраїчним коренем.

Визначення. Алгебраїчний корінь $n$-го ступеня з-поміж будь-якого $a$ — це безліч всіх чисел $b$ таких, що $((b)^(n))=a$. Для такого коріння немає усталеного позначення, тому просто поставимо рису зверху:

\[\overline(\sqrt[n](a))=\left\( b\left| b\in \mathbb(R);((b)^(n))=a \right. \right\) \]

Принципова відмінність від стандартного визначення, наведеного на початку уроку, полягає в тому, що корінь алгебри - це не конкретне число, а безліч. Оскільки ми працюємо з дійсними числами, це безліч буває лише трьох типів:

  1. Порожня безліч. Виникає у разі, коли потрібно знайти алгебраїчний корінь парного ступеня негативного числа;
  2. Безліч, що складається з одного-єдиного елемента. Усі коріння непарних ступенів, а також корені парних ступенів з нуля потрапляють до цієї категорії;
  3. Нарешті, безліч може включати два числа - ті самі $((x)_(1))$ і $((x)_(2))=-((x)_(1))$, яке ми бачили на графіку квадратичні функції. Відповідно, такий розклад можливий лише за вилучення кореня парного ступеня з позитивного числа.

Останній випадок заслуговує на докладніший розгляд. Порахуємо кілька прикладів, щоб зрозуміти різницю.

приклад. Обчисліть вирази:

\[\overline(\sqrt(4));\quad \overline(\sqrt(-27));\quad \overline(\sqrt(-16)).\]

Рішення. З першим виразом все просто:

\[\overline(\sqrt(4))=\left\( 2;-2 \right\)\]

Саме два числа входять до складу множини. Тому що кожен із них у квадраті дає четвірку.

\[\overline(\sqrt(-27))=\left\( -3 \right\)\]

Тут бачимо безліч, що складається лише з одного числа. Це цілком логічно, оскільки показник кореня непарний.

Нарешті, останній вираз:

\[\overline(\sqrt(-16))=\varnothing \]

Отримали порожню множину. Тому що немає жодного дійсного числа, яке при зведенні в четвертий (тобто парний!) ступінь дасть нам негативне число −16.

Фінальна зауваження. Зверніть увагу: я не випадково скрізь зазначав, що ми працюємо з дійсними числами. Тому що є ще комплексні числа— там цілком можна порахувати і $sqrt(-16)$, і багато інших дивних речей.

Однак у сучасному шкільному курсіматематики комплексні числа майже зустрічаються. Їх викреслили з більшості підручників, оскільки наші чиновники вважають цю тему «надто складною для розуміння».

Організація класу працювати.

Здрастуйте хлопці. Сідайте.

Кузбас,

Ти маленьке серце

На карті Батьківщини великої,

Ти край здобувачів, умільців

З сибірською щедрою душею.

Цей чудовий короткий вірш Олександр Сорокін присвятив нашому рідному краю, Кузбасу. А яке місто є столицею нашої області? Місту Кемерово виповнилося 2008 року 90 років від дня його створення, саме як міста.

Повідомлення теми та постановка цілей.

Форма нашого уроку буде незвичною. Сьогодні ми з вами вирушимо у віртуальну екскурсію м. Кемерово, закріпимо всі знання, отримані на тему «Властивості арифметичного квадратного кореня. Квадратний коріньз твору та дробу», а також відпрацюємо вміння застосовувати властивості арифметичного квадратного кореня при знаходженні значення виразів.

Актуалізація наявних знань.

1. Встановлення істинності чи хибності.

Перш ніж почати давайте встановимо істинність чи хибність висловлювань. У вас на столах лежать картки. Я зараз прочитаю висловлювання, і якщо воно хибно піднімає червону картку, а якщо істинно, то білу картку.

Цілі та дробові числастановлять безліч раціональних чисел (так)

Число 5 раціональне (так)

Безліч дійсних чисел складається з раціональних та ірраціональних чисел (так)

Квадратним коренем із числа а називають число, квадрат якого дорівнює а (так)

При а > 0 вираз квадратний корінь а не має сенсу (ні)

Якщо а > 0, то рівняння х 2 =а має один корінь (ні)

Якщо а< 0, то уравнение х 2 =а коріння немає (так)

Корінь із твору невід'ємних множників дорівнює твору цих множників (ні)

Які знання ми застосували під час виконання цього завдання?

Ми використовували властивості арифметичного квадратного кореня, закріпили поняття дробових, цілих, раціональних чисел та випадки розв'язання квадратного рівняння.

2. ланцюжок.

А зараз подивіться на слайд і знайдіть значення останньої ланки ланцюжка. Для цього почніть виконувати дії з першої ланки.

Яке число отримали в останній ланці?

Що то за дата?

Саме 1918 року 9 травня село Щеглове перетворили на місто Щегловськ. А коли його перейменували на місто Кемерово?

1932 року 27 березня Щегловськ було перейменовано на місто Кемерово. Якими властивостями квадратного коріння ми скористалися?

Ми використовували властивості квадратного кореня з твору, зі ступеня.

Систематизація знань.

1.Номер із підручника

Відкрийте підручник на сторінці 83, номер 377.

Виконуємо біля дошки 2 рядок.

Згадаймо і спробуємо витягти квадратний корінь з різниці квадратів.

Чому дорівнює різниця квадратів? (Виробництва їх суми на різницю).

А які формули нам знадобилися?

2. робота у парах.





Візьміть таблички

з виразами. Підпишіть їх на звороті.

Поміняйтеся із сусідом по парті.

У порожніх клітинах розставте крапки таким чином, щоб у кожному рядку і в кожному стовпці була лише одна точка.

Поміняйтесь назад із сусідом. Тепер, де з'явилася точка, там має з'явитись відповідь при виконанні дій над виразами. Крапка є перетином певного стовпця та рядка, дивіться який вираз у даному стовпці, потім яку дію потрібно виконати, і потім який вираз у рядку. І знаходьте значення виразу.Наприклад…

Тепер поміняйтеся табличками і перевірте по слайду, чи правильно зробив ваш сусід.

Якщо жодної помилки, то поставте 5 якщо одна помилка 4.

Сьогодні за урок ви отримаєте дві позначки: за цю роботу та за тест. Загалом за урок ви отримаєте загальну позначку з усіх видів робіт.

Якими властивостями квадратного кореня ми користувалися?

Зображення якої споруди ми отримали? (Міст).

Старий комунальний міст через річку Том був побудований ще на початку 1950-х років і знаходився в аварійному стані. Тому в листопаді 2005 року, коли було ухвалено рішення про добудову нового мосту, старий був закритий та частково розібраний.

"родзинка" мосту – унікальне освітлення. Правобережна розв'язка нового мосту освітлена, як Садове кільце у Москві. Підсвічування керується автоматично за допомогою комп'ютерної програми. Такого освітлення немає ніде за Уралом.

2. Робота в МР. Естафета.

Зараз ми побачимо, як ви працюєте в команді.

У нас вийде 6 команд, по рядах. Я даю картку з прикладами першої людини. Він записує своє прізвище, вирішує перший приклад, записує відповідь у геометричну фігуру, яка стоїть після знака і на початку наступної рівності, і віддає наступному.

Наступний записує своє прізвище, вирішує набутий вислів і так все по порядку. Команда, яка першою дізнається кінцевий результатотримує бонус, а який, ви дізнаєтеся, після того як вирішите.

Який результат вийшов?

Якими властивостями квадратного кореня ми користувалися?

Д Будьте перевіримо. Яке зображення ми отримали?

5 вересня 2003 року в районі історичного центру Кемерово, на Червоній Гірці, було відкрито скульптурну композицію «Пам'ять шахтарів Кузбасу» роботи Ернста Невідомого.Це бронзова скульптурна композиція висотою 7,5 метра та вагою п'ять тонн. За словамиБідина Володимира Івановича- проректора з маркетингу та розвитку освітнього комплексу (на цій посаді працює з 20.12.2004 р.), професора, заслуженого працівника культури Російської Федерації, дійсний член Російської академіїменеджменту в освіті та культурі,«Ця велика композиція дуже точно передає дух шахтарської професії та регіону. У ній відображені і данина пам'яті гірникам, і їхня сила і міць, і ті умови, в яких вони працюють».

Команда, що перемогла, отримує оцінку 5, команда яка вирішила другий - 4.

4. номер із підручника.

Номер 384.

Давайте потренуємося витягувати квадратний корінь із числа.

Що потрібно зробити, щоб витягти корінь?

Які множники зручно розкласти?

Яку таблицю можна скористатися при знаходженні квадратного кореня з числа 441?

Якими властивостями квадратного кореня ми користувалися?

За допомогою якої таблиці ми знаходили значення квадратного кореня?

Фізхвилинка для очей.

Замружте очі. Відкрийте очі (5 разів). Кругові рухи очима. Головою не крутити (10 разів). Не повертаючи голови, відведіть очі якнайдалі вліво, вправо. Подивіться прямо. Кілька разів моргніть. Закрийте очі та відпочиньте. Подивіться на дошку та повертайте голову вправо та вліво, не відриваючи погляду від дошки. Подивіться у вікно.

5. Шифрування.

Наступне завдання вам доведеться розшифрувати.

Результат першого прикладу дає початок слова, потім потрібно вирішити завдання, яке починається числом, результатом попереднього завдання і т.д. коли ви збудуєте всі приклади послідовно у вас вийде слово, яке нам потрібно дізнатися.


КАТЕГОРІЇ

ПОПУЛЯРНІ СТАТТІ

2024 «kingad.ru» - УЗД дослідження органів людини