Ecuația unei drepte în patru forme. Ecuația generală a unei drepte

Ecuațiile canonice ale unei linii în spațiu sunt ecuații care definesc o dreaptă care trece printr-un punct dat, coliniar cu vectorul de direcție.

Fie dat un punct și un vector direcție. Un punct arbitrar se află pe o dreaptă l numai dacă vectorii și sunt coliniari, adică condiția este îndeplinită pentru ei:

.

Ecuațiile de mai sus sunt ecuațiile canonice ale dreptei.

Numerele m , nȘi p sunt proiecții ale vectorului direcție pe axele de coordonate. Deoarece vectorul este diferit de zero, atunci toate numerele m , nȘi p nu poate fi simultan egal cu zero. Dar unul sau două dintre ele se pot dovedi a fi zero. În geometria analitică, de exemplu, este permisă următoarea intrare:

,

ceea ce înseamnă că proiecţiile vectorului pe axă OiȘi Oz sunt egale cu zero. Prin urmare, atât vectorul cât și linia dreaptă definite de ecuațiile canonice sunt perpendiculare pe axele OiȘi Oz, adică avioane yOz .

Exemplul 1. Scrieți ecuații pentru o dreaptă în spațiu perpendiculară pe un plan şi trecând prin punctul de intersecţie a acestui plan cu axa Oz .

Soluţie. Să găsim punctul de intersecție al acestui plan cu axa Oz. Din moment ce orice punct situat pe axă Oz, are coordonatele , atunci, presupunând în ecuația dată a planului x = y = 0, obținem 4 z- 8 = 0 sau z= 2 . Prin urmare, punctul de intersecție al acestui plan cu axa Oz are coordonatele (0; 0; 2) . Deoarece linia dorită este perpendiculară pe plan, este paralelă cu vectorul său normal. Prin urmare, vectorul de direcție al dreptei poate fi vectorul normal avion dat.

Acum să scriem ecuațiile necesare ale unei drepte care trece printr-un punct A= (0; 0; 2) în direcția vectorului:

Ecuațiile unei drepte care trece prin două puncte date

O linie dreaptă poate fi definită prin două puncte aflate pe ea Și În acest caz, vectorul de direcție al dreptei poate fi vectorul . Atunci ecuațiile canonice ale dreptei iau forma

.

Ecuațiile de mai sus determină o dreaptă care trece prin două puncte date.

Exemplul 2. Scrieți o ecuație pentru o dreaptă din spațiu care trece prin punctele și .

Soluţie. Să notăm ecuațiile necesare ale dreptei în forma dată mai sus în referința teoretică:

.

Deoarece , atunci linia dreaptă dorită este perpendiculară pe axă Oi .

Drept ca linia de intersecție a planelor

O linie dreaptă în spațiu poate fi definită ca linia de intersecție a două plane neparalele și, adică, ca o mulțime de puncte care satisfac un sistem de două ecuații liniare

Ecuațiile sistemului sunt numite și ecuații generale ale unei linii drepte în spațiu.

Exemplul 3. Alcătuiți ecuații canonice ale unei drepte în spațiu date de ecuații generale

Soluţie. Pentru a scrie ecuațiile canonice ale unei linii sau, ceea ce este același lucru, ecuațiile unei linii care trece prin două puncte date, trebuie să găsiți coordonatele oricăror două puncte de pe linie. Ele pot fi punctele de intersecție ale unei linii drepte cu oricare două plane de coordonate, de exemplu yOzȘi xOz .

Punct de intersecție a unei drepte și a unui plan yOz are o abscisă X= 0 . Prin urmare, presupunând în acest sistem de ecuații X= 0, obținem un sistem cu două variabile:

Decizia ei y = 2 , z= 6 împreună cu X= 0 definește un punct A(0; 2; 6) linia dorită. Apoi presupunând în sistemul dat de ecuații y= 0, obținem sistemul

Decizia ei X = -2 , z= 0 împreună cu y= 0 definește un punct B(-2; 0; 0) intersecția unei drepte cu un plan xOz .

Acum să scriem ecuațiile dreptei care trece prin puncte A(0; 2; 6) și B (-2; 0; 0) :

,

sau după împărțirea numitorilor la -2:

,

Linia care trece prin punctul K(x 0 ; y 0) și paralelă cu dreapta y = kx + a se găsește prin formula:

y - y 0 = k(x - x 0) (1)

Unde k este panta dreptei.

Formula alternativa:
O dreaptă care trece prin punctul M 1 (x 1 ; y 1) și paralelă cu dreapta Ax+By+C=0 este reprezentată prin ecuație

A(x-x1)+B(y-y1)=0. (2)

Scrieți o ecuație pentru o dreaptă care trece prin punctul K( ;) paralelă cu dreapta y = x+ .
Exemplul nr. 1. Scrieți o ecuație pentru o dreaptă care trece prin punctul M 0 (-2,1) și în același timp:
a) paralel cu dreapta 2x+3y -7 = 0;
b) perpendicular pe dreapta 2x+3y -7 = 0.
Soluţie . Să ne imaginăm ecuația cu panta sub forma y = kx + a. Pentru a face acest lucru, mutați toate valorile cu excepția y în partea dreaptă: 3y = -2x + 7 . Apoi împărțiți partea dreaptă cu un factor de 3. Se obține: y = -2/3x + 7/3
Să găsim ecuația NK care trece prin punctul K(-2;1), paralelă cu dreapta y = -2 / 3 x + 7 / 3
Înlocuind x 0 = -2, k = -2 / 3, y 0 = 1 obținem:
y-1 = -2 / 3 (x-(-2))
sau
y = -2 / 3 x - 1 / 3 sau 3y + 2x +1 = 0

Exemplul nr. 2. Scrieți ecuația unei drepte paralele cu dreapta 2x + 5y = 0 și formând împreună cu axele de coordonate un triunghi a cărui aria este 5.
Soluţie . Deoarece liniile sunt paralele, ecuația dreptei dorite este 2x + 5y + C = 0. Aria unui triunghi dreptunghic, unde a și b sunt catetele sale. Să găsim punctele de intersecție ale liniei dorite cu axele de coordonate:
;
.
Deci, A(-C/2,0), B(0,-C/5). Să o înlocuim în formula pentru zonă: . Obținem două soluții: 2x + 5y + 10 = 0 și 2x + 5y – 10 = 0.

Exemplul nr. 3. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2; 5) și paralelă cu dreapta 5x-7y-4=0.
Soluţie. Această linie dreaptă poate fi reprezentată prin ecuația y = 5 / 7 x – 4 / 7 (aici a = 5 / 7). Ecuația dreptei dorite este y – 5 = 5 / 7 (x – (-2)), adică. 7(y-5)=5(x+2) sau 5x-7y+45=0.

Exemplul nr. 4. După ce am rezolvat exemplul 3 (A=5, B=-7) folosind formula (2), găsim 5(x+2)-7(y-5)=0.

Exemplul nr. 5. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2;5) și paralelă cu dreapta 7x+10=0.
Soluţie. Aici A=7, B=0. Formula (2) dă 7(x+2)=0, adică. x+2=0. Formula (1) nu este aplicabilă, deoarece această ecuație nu poate fi rezolvată în raport cu y (această linie dreaptă este paralelă cu axa ordonatelor).

Lăsați dreapta să treacă prin punctele M 1 (x 1; y 1) și M 2 (x 2; y 2). Ecuația unei drepte care trece prin punctul M 1 are forma y-y 1 = k (x - x 1), (10,6)

Unde k - coeficient încă necunoscut.

Deoarece linia dreaptă trece prin punctul M 2 (x 2 y 2), coordonatele acestui punct trebuie să îndeplinească ecuația (10.6): y 2 -y 1 = k (x 2 - x 1).

De aici găsim Înlocuirea valorii găsite k în ecuația (10.6), obținem ecuația unei drepte care trece prin punctele M 1 și M 2:

Se presupune că în această ecuație x 1 ≠ x 2, y 1 ≠ y 2

Dacă x 1 = x 2, atunci linia dreaptă care trece prin punctele M 1 (x 1,y I) și M 2 (x 2,y 2) este paralelă cu axa ordonatelor. Ecuația sa este x = x 1 .

Dacă y 2 = y I, atunci ecuația dreptei poate fi scrisă ca y = y 1, dreapta M 1 M 2 este paralelă cu axa absciselor.

Ecuația unei drepte în segmente

Fie ca linia dreaptă să intersecteze axa Ox în punctul M 1 (a;0) și axa Oy în punctul M 2 (0;b). Ecuația va lua forma:
acestea.
. Această ecuație se numește ecuația unei drepte în segmente, deoarece numerele a și b indică segmentele pe care linia le decupează pe axele de coordonate.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe un vector dat

Să găsim ecuația unei drepte care trece printr-un punct dat Mo (x O; y o) perpendicular pe un vector dat diferit de zero n = (A; B).

Să luăm un punct arbitrar M(x; y) pe linie și să considerăm vectorul M 0 M (x - x 0; y - y o) (vezi Fig. 1). Deoarece vectorii n și M o M sunt perpendiculari, produsul lor scalar este egal cu zero: adică

A(x - xo) + B(y - yo) = 0. (10.8)

Ecuația (10.8) se numește ecuația unei drepte care trece printr-un punct dat perpendicular pe un vector dat .

Vectorul n= (A; B), perpendicular pe dreapta, se numește normal vector normal al acestei linii .

Ecuația (10.8) poate fi rescrisă ca Ah + Wu + C = 0 , (10.9)

unde A și B sunt coordonatele vectorului normal, C = -Ax o - Vu o este termenul liber. Ecuația (10.9) este ecuația generală a dreptei(vezi fig. 2).

Fig.1 Fig.2

Ecuații canonice ale dreptei

,

Unde
- coordonatele punctului prin care trece linia, și
- vector de direcție.

Curbe de ordinul doi Cerc

Un cerc este mulțimea tuturor punctelor planului echidistante de un punct dat, care se numește centru.

Ecuația canonică a unui cerc de rază R centrat într-un punct
:

În special, dacă centrul mizei coincide cu originea coordonatelor, atunci ecuația va arăta astfel:

Elipsă

O elipsă este un set de puncte dintr-un plan, suma distanțelor de la fiecare dintre acestea la două puncte date. Și , care se numesc focare, este o mărime constantă
, mai mare decât distanța dintre focare
.

Ecuația canonică a unei elipse ale cărei focare se află pe axa Ox, iar originea coordonatelor în mijlocul dintre focare are forma
G de
A lungimea semi-axei ​​majore; b – lungimea semiaxei minore (Fig. 2).

Ecuația unei drepte pe un plan.

După cum se știe, orice punct din plan este determinat de două coordonate într-un sistem de coordonate. Sistemele de coordonate pot fi diferite în funcție de alegerea bazei și a originii.

Definiție. Ecuația liniilor se numeşte relaţia y = f(x) între coordonatele punctelor care alcătuiesc această dreaptă.

Rețineți că ecuația unei linii poate fi exprimată parametric, adică fiecare coordonată a fiecărui punct este exprimată printr-un parametru independent t.

Un exemplu tipic este traiectoria unui punct în mișcare. În acest caz, rolul parametrului este jucat de timp.

Ecuația unei drepte pe un plan.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp, adică. A 2 + B 2  0. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte.

În funcție de valorile constantelor A, B și C, sunt posibile următoarele cazuri speciale:

    C = 0, A  0, B  0 – dreapta trece prin origine

    A = 0, B  0, C  0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

    B = 0, A  0, C  0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

    B = C = 0, A  0 – linia dreaptă coincide cu axa Oy

    A = C = 0, B  0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe vector (3, -1).

Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată.

Se obține: 3 – 2 + C = 0, deci C = -1.

Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero.

Pe plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1  x 2 și x = x 1, dacă x 1 = x 2.

Fracțiune
=k se numește pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și panta.

Dacă ecuația generală a dreptei Ax + By + C = 0 se reduce la forma:

și desemnează
, atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția dreptei printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero ( 1,  2), ale cărei componente îndeplinesc condiția A 1 + B 2 = 0 se numește vectorul de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și trecând prin punctul A(1, 2).

Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1A + (-1)B = 0, adică. A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C/A = 0.

la x = 1, y = 2 obținem C/A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С 0, atunci, împărțind la –С, obținem:
sau

, Unde

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1,
, a = -1,b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt împărțite la număr
Care e numit factor de normalizare, apoi primim

xcos + ysin - p = 0 –

ecuația normală a unei linii.

Semnul  al factorului de normalizare trebuie ales astfel încât С< 0.

p este lungimea perpendicularei coborâte de la origine la dreapta, iar  este unghiul format de această perpendiculară cu direcția pozitivă a axei Ox.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

ecuația normală a unei linii:

; cos = 12/13; sin = -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Linia dreaptă taie segmente pozitive egale pe axele de coordonate. Scrieți o ecuație pentru o dreaptă dacă aria triunghiului format din aceste segmente este de 8 cm2.

Ecuația dreptei este:
, a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 nu este potrivit în funcție de condițiile problemei.

Total:
sau x + y – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Ecuația dreptei este:
, unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2.

Două drepte sunt perpendiculare dacă k 1 = -1/k 2 .

Teorema. Linii directe Ax + Wu + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A sunt proporționali 1 = A, B 1 = B. Dacă și C 1 = C, atunci liniile coincid.

Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat

perpendicular pe această dreaptă.

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă este dat punctul M(x). 0 , y 0 ), atunci distanța până la linia dreaptă Ах + Ву + С =0 este definită ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată.

Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

.

Teorema a fost demonstrată.

Exemplu. Determinați unghiul dintre drepte: y = -3x + 7; y = 2x + 1.

k1 = -3; k 2 = 2 tg =
;  = /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Găsim: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B(6; 5), C(12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Găsim ecuația laturii AB:
; 4x = 6y – 6;

2x – 3y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b.

k = . Atunci y =
. Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație:
de unde b = 17. Total:
.

Răspuns: 3x + 2y – 34 = 0.

Geometrie analitică în spațiu.

Ecuația unei drepte în spațiu.

Ecuația unei drepte în spațiu dat un punct și

vector de direcție.

Să luăm o linie arbitrară și un vector (m, n, p), paralel cu dreapta dată. Vector numit vector ghid Drept.

Pe linie dreaptă luăm două puncte arbitrare M 0 (x 0 , y 0 , z 0) și M (x, y, z).

z

M 1

Să notăm vectorii de rază ai acestor puncte ca Și , este evident că - =
.

Deoarece vectori
Și sunt coliniare, atunci relația este adevărată
= t, unde t este un parametru.

În total, putem scrie: = + t.

Deoarece această ecuație este satisfăcută de coordonatele oricărui punct de pe linie, atunci ecuația rezultată este ecuația parametrică a unei linii.

Această ecuație vectorială poate fi reprezentată sub formă de coordonate:

Transformând acest sistem și echivalând valorile parametrului t, obținem ecuațiile canonice ale unei linii drepte în spațiu:

.

Definiție. Cosinusuri de direcție directe sunt cosinusurile de direcție ale vectorului , care poate fi calculat folosind formulele:

;

.

De aici obținem: m: n: p = cos : cos : cos.

Se numesc numerele m, n, p coeficienții de unghi Drept. Deoarece este un vector diferit de zero, atunci m, n și p nu pot fi egali cu zero în același timp, dar unul sau două dintre aceste numere pot fi egale cu zero. În acest caz, în ecuația dreptei, numărătorii corespunzători ar trebui setați egali cu zero.

Ecuația unei drepte în spațiul care trece

prin două puncte.

Dacă pe o dreaptă în spațiu notăm două puncte arbitrare M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2), atunci coordonatele acestor puncte trebuie să satisfacă ecuația dreptei. obtinut mai sus:

.

În plus, pentru punctul M 1 putem scrie:

.

Rezolvând împreună aceste ecuații, obținem:

.

Aceasta este ecuația unei drepte care trece prin două puncte din spațiu.

Ecuații generale ale unei drepte în spațiu.

Ecuația unei drepte poate fi considerată drept ecuația dreptei de intersecție a două plane.

După cum sa discutat mai sus, un plan în formă vectorială poate fi specificat prin ecuația:

+ D = 0, unde

- plan normal; - raza este vectorul unui punct arbitrar din plan.

Acest articol dezvăluie derivarea ecuației unei drepte care trece prin două puncte date într-un sistem de coordonate dreptunghiular situat pe un plan. Să derivăm ecuația unei drepte care trece prin două puncte date într-un sistem de coordonate dreptunghiular. Vom arăta și rezolva clar câteva exemple legate de materialul acoperit.

Yandex.RTB R-A-339285-1

Înainte de a obține ecuația unei drepte care trece prin două puncte date, este necesar să se acorde atenție unor fapte. Există o axiomă care spune că prin două puncte divergente dintr-un plan se poate trasa o dreaptă și numai una. Cu alte cuvinte, două puncte date dintr-un plan sunt definite de o dreaptă care trece prin aceste puncte.

Dacă planul este definit de sistemul de coordonate dreptunghiular Oxy, atunci orice linie dreaptă descrisă în el va corespunde ecuației unei linii drepte pe plan. Există și o legătură cu vectorul de direcție al dreptei.Aceste date sunt suficiente pentru a compila ecuația unei drepte care trece prin două puncte date.

Să ne uităm la un exemplu de rezolvare a unei probleme similare. Este necesar să se creeze o ecuație pentru o dreaptă a care trece prin două puncte divergente M 1 (x 1, y 1) și M 2 (x 2, y 2), situate în sistemul de coordonate carteziene.

În ecuația canonică a unei drepte pe un plan, având forma x - x 1 a x = y - y 1 a y, se specifică un sistem de coordonate dreptunghiular O x y cu o dreaptă care se intersectează cu ea într-un punct cu coordonatele M 1 (x 1, y 1) cu un vector de ghidare a → = (a x , a y) .

Este necesar să se creeze o ecuație canonică a unei drepte a, care va trece prin două puncte cu coordonatele M 1 (x 1, y 1) și M 2 (x 2, y 2).

Dreapta a are un vector de direcție M 1 M 2 → cu coordonate (x 2 - x 1, y 2 - y 1), deoarece intersectează punctele M 1 și M 2. Am obținut datele necesare pentru a transforma ecuația canonică cu coordonatele vectorului de direcție M 1 M 2 → = (x 2 - x 1, y 2 - y 1) și coordonatele punctelor M 1 aflate pe acestea. (x1, y1) şi M2 (x2, y2). Obținem o ecuație de forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 sau x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1.

Luați în considerare figura de mai jos.

În urma calculelor, notăm ecuațiile parametrice ale unei drepte pe un plan care trece prin două puncte cu coordonatele M 1 (x 1, y 1) și M 2 (x 2, y 2). Obținem o ecuație de forma x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ sau x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ .

Să aruncăm o privire mai atentă la rezolvarea mai multor exemple.

Exemplul 1

Scrieți ecuația unei drepte care trece prin 2 puncte date cu coordonatele M 1 - 5, 2 3, M 2 1, - 1 6.

Soluţie

Ecuația canonică pentru o dreaptă care se intersectează în două puncte cu coordonatele x 1, y 1 și x 2, y 2 ia forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1. Conform condițiilor problemei, avem că x 1 = - 5, y 1 = 2 3, x 2 = 1, y 2 = - 1 6. Este necesar să înlocuiți valorile numerice în ecuația x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1. De aici rezultă că ecuația canonică ia forma x - (- 5) 1 - (- 5) = y - 2 3 - 1 6 - 2 3 ⇔ x + 5 6 = y - 2 3 - 5 6.

Răspuns: x + 5 6 = y - 2 3 - 5 6.

Dacă trebuie să rezolvați o problemă cu un alt tip de ecuație, atunci mai întâi puteți merge la cea canonică, deoarece este mai ușor să veniți de la ea la oricare alta.

Exemplul 2

Compuneți ecuația generală a unei drepte care trece prin puncte cu coordonatele M 1 (1, 1) și M 2 (4, 2) în sistemul de coordonate O x y.

Soluţie

În primul rând, trebuie să scrieți ecuația canonică a unei linii date care trece prin două puncte date. Obținem o ecuație de forma x - 1 4 - 1 = y - 1 2 - 1 ⇔ x - 1 3 = y - 1 1 .

Să aducem ecuația canonică la forma dorită, apoi obținem:

x - 1 3 = y - 1 1 ⇔ 1 x - 1 = 3 y - 1 ⇔ x - 3 y + 2 = 0

Răspuns: x - 3 y + 2 = 0 .

Exemple de astfel de sarcini au fost discutate în manualele școlare în timpul lecțiilor de algebră. Problemele școlare diferă prin aceea că era cunoscută ecuația unei drepte cu coeficient de unghi, având forma y = k x + b. Dacă trebuie să găsiți valoarea pantei k și numărul b pentru care ecuația y = k x + b definește o dreaptă în sistemul O x y care trece prin punctele M 1 (x 1, y 1) și M 2 ( x 2, y 2) , unde x 1 ≠ x 2. Când x 1 = x 2 , atunci coeficientul unghiular capătă valoarea infinitului, iar dreapta M 1 M 2 este definită printr-o ecuație generală incompletă de forma x - x 1 = 0 .

Pentru că punctele M 1Și M 2 sunt pe o linie dreaptă, atunci coordonatele lor satisfac ecuația y 1 = k x 1 + b și y 2 = k x 2 + b. Este necesar să se rezolve sistemul de ecuații y 1 = k x 1 + b y 2 = k x 2 + b pentru k și b.

Pentru a face acest lucru, găsim k = y 2 - y 1 x 2 - x 1 b = y 1 - y 2 - y 1 x 2 - x 1 x 1 sau k = y 2 - y 1 x 2 - x 1 b = y 2 - y 2 - y 1 x 2 - x 1 x 2 .

Cu aceste valori ale lui k și b, ecuația unei drepte care trece prin cele două puncte date devine y = y 2 - y 1 x 2 - x 1 x + y 2 - y 2 - y 1 x 2 - x 1 x 1 sau y = y 2 - y 1 x 2 - x 1 x + y 2 - y 2 - y 1 x 2 - x 1 x 2.

Este imposibil să ne amintim un număr atât de mare de formule simultan. Pentru a face acest lucru, este necesar să creșteți numărul de repetări în rezolvarea problemelor.

Exemplul 3

Scrieți ecuația unei drepte cu un coeficient unghiular care trece prin puncte cu coordonatele M 2 (2, 1) și y = k x + b.

Soluţie

Pentru a rezolva problema, folosim o formulă cu un coeficient unghiular de forma y = k x + b. Coeficienții k și b trebuie să ia o astfel de valoare încât această ecuație să corespundă unei drepte care trece prin două puncte cu coordonatele M 1 (- 7, - 5) și M 2 (2, 1).

Puncte M 1Și M 2 sunt situate pe o linie dreaptă, atunci coordonatele lor trebuie să facă din ecuația y = k x + b o egalitate adevărată. De aici rezultă că - 5 = k · (- 7) + b și 1 = k · 2 + b. Să combinăm ecuația în sistem - 5 = k · - 7 + b 1 = k · 2 + b și să rezolvăm.

La înlocuire obținem asta

5 = k · - 7 + b 1 = k · 2 + b ⇔ b = - 5 + 7 k 2 k + b = 1 ⇔ b = - 5 + 7 k 2 k - 5 + 7 k = 1 ⇔ ⇔ b = - 5 + 7 k k = 2 3 ⇔ b = - 5 + 7 2 3 k = 2 3 ⇔ b = - 1 3 k = 2 3

Acum, valorile k = 2 3 și b = - 1 3 sunt înlocuite în ecuația y = k x + b. Constatăm că ecuația necesară care trece prin punctele date va fi o ecuație de forma y = 2 3 x - 1 3 .

Această metodă de soluție predetermină pierderea multor timp. Există o modalitate prin care sarcina este rezolvată în literalmente doi pași.

Să scriem ecuația canonică a dreptei care trece prin M 2 (2, 1) și M 1 (- 7, - 5), având forma x - (- 7) 2 - (- 7) = y - (- 5). ) 1 - (- 5) ⇔ x + 7 9 = y + 5 6 .

Acum să trecem la ecuația pantei. Obținem că: x + 7 9 = y + 5 6 ⇔ 6 · (x + 7) = 9 · (y + 5) ⇔ y = 2 3 x - 1 3.

Răspuns: y = 2 3 x - 1 3 .

Dacă în spațiul tridimensional există un sistem de coordonate dreptunghiular O x y z cu două puncte date necoincidente cu coordonatele M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2), dreapta M trecând prin ele 1 M 2 , este necesar să se obţină ecuaţia acestei drepte.

Avem că ecuațiile canonice de forma x - x 1 a x = y - y 1 a y = z - z 1 a z și ecuații parametrice de forma x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ sunt capabili să definească o dreaptă în sistemul de coordonate O x y z, trecând prin puncte având coordonate (x 1, y 1, z 1) cu un vector de direcție a → = (a x, a y, a z).

Drept M 1 M 2 are un vector de direcție de forma M 1 M 2 → = (x 2 - x 1, y 2 - y 1, z 2 - z 1), unde dreapta trece prin punctul M 1 (x 1, y 1, z 1) și M 2 (x 2 , y 2 , z 2), deci ecuația canonică poate fi de forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 sau x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1, la rândul său parametric x = x 1 + (x 2 - x 1 ) λ y = y 1 + (y 2 - y 1) λ z = z 1 + (z 2 - z 1) λ sau x = x 2 + (x 2 - x 1) λ y = y 2 + (y 2 - y 1) · λ z = z 2 + (z 2 - z 1) · λ .

Luați în considerare un desen care arată 2 puncte date în spațiu și ecuația unei drepte.

Exemplul 4

Scrieți ecuația unei drepte definite într-un sistem de coordonate dreptunghiular O x y z al spațiului tridimensional, care trece prin două puncte date cu coordonatele M 1 (2, - 3, 0) și M 2 (1, - 3, - 5).

Soluţie

Este necesar să găsim ecuația canonică. Întrucât vorbim de spațiu tridimensional, înseamnă că atunci când o dreaptă trece prin puncte date, ecuația canonică dorită va lua forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 .

Prin condiție avem că x 1 = 2, y 1 = - 3, z 1 = 0, x 2 = 1, y 2 = - 3, z 2 = - 5. Rezultă că ecuațiile necesare se vor scrie după cum urmează:

x - 2 1 - 2 = y - (- 3) - 3 - (- 3) = z - 0 - 5 - 0 ⇔ x - 2 - 1 = y + 3 0 = z - 5

Răspuns: x - 2 - 1 = y + 3 0 = z - 5.

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

CATEGORII

ARTICOLE POPULARE

2023 „kingad.ru” - examinarea cu ultrasunete a organelor umane