Simple experiments in chemistry. The most spectacular experiments with household chemicals

Useful tips

Children are always trying to find out something new every day, and they always have a lot of questions.

They can explain some phenomena, or they can show clearly how this or that thing, this or that phenomenon works.

In these experiments, children will not only learn something new, but also learn create differentcrafts, with which they can then play.


1. Experiments for children: lemon volcano


You will need:

2 lemons (for 1 volcano)

Baking soda

Food coloring or watercolor paints

Dishwashing liquid

Wooden stick or spoon (if desired)


1. Cut off the bottom of the lemon so it can be placed on a flat surface.

2. On the back side, cut out a piece of lemon as shown in the image.

* You can cut off half a lemon and make an open volcano.


3. Take the second lemon, cut it in half and squeeze the juice into a cup. This will be the reserved lemon juice.

4. Place the first lemon (with the cut out part) on the tray and use a spoon to “squeeze” the lemon inside to squeeze out some of the juice. It is important that the juice is inside the lemon.

5. Add food coloring or watercolor inside the lemon, but do not stir.


6. Pour dish soap inside the lemon.

7. Add a full spoon of baking soda to the lemon. The reaction will begin. You can use a stick or spoon to stir everything inside the lemon - the volcano will begin to foam.


8. To make the reaction last longer, you can gradually add more soda, dyes, soap and reserve lemon juice.

2. Home experiments for children: electric eels made from chewing worms


You will need:

2 glasses

Small capacity

4-6 gummy worms

3 tablespoons baking soda

1/2 spoon of vinegar

1 cup water

Scissors, kitchen or stationery knife.

1. Using scissors or a knife, cut lengthwise (precisely lengthwise - it won't be easy, but be patient) each worm into 4 (or more) pieces.

* The smaller the piece, the better.

*If the scissors do not cut properly, try washing them with soap and water.


2. Mix water and baking soda in a glass.

3. Add pieces of worms to the solution of water and soda and stir.

4. Leave the worms in the solution for 10-15 minutes.

5. Using a fork, transfer the worm pieces to a small plate.

6. Pour half a spoonful of vinegar into an empty glass and start putting worms into it one by one.


* The experiment can be repeated if you wash the worms with plain water. After a few attempts, your worms will begin to dissolve, and then you will have to cut a new batch.

3. Experiments and experiments: a rainbow on paper or how light is reflected on a flat surface


You will need:

Bowl of water

Clear nail polish

Small pieces of black paper.

1. Add 1-2 drops of clear nail polish to a bowl of water. Watch how the varnish spreads through the water.

2. Quickly (after 10 seconds) dip a piece of black paper into the bowl. Take it out and let it dry on a paper towel.

3. Once the paper has dried (this happens quickly) start turning the paper and look at the rainbow that appears on it.

* To better see a rainbow on paper, look at it under the sun's rays.



4. Experiments at home: rain cloud in a jar


As small drops of water accumulate in a cloud, they become heavier and heavier. Eventually they will reach such a weight that they can no longer remain in the air and will begin to fall to the ground - this is how rain appears.

This phenomenon can be shown to children using simple materials.

You will need:

Shaving foam

Food coloring.

1. Fill the jar with water.

2. Apply shaving foam on top - it will be a cloud.

3. Have your child start dripping food coloring onto the “cloud” until it starts to “rain” - drops of coloring begin to fall to the bottom of the jar.

During the experiment, explain this phenomenon to your child.

You will need:

Warm water

Sunflower oil

4 food colors

1. Fill the jar 3/4 full with warm water.

2. Take a bowl and stir 3-4 tablespoons of oil and a few drops of food coloring in it. In this example, 1 drop of each of the 4 dyes was used - red, yellow, blue and green.


3. Using a fork, stir the colors and oil.


4. Carefully pour the mixture into a jar of warm water.


5. Watch what happens - the food coloring will begin to slowly fall through the oil into the water, after which each drop will begin to disperse and mix with the other drops.

* Food coloring dissolves in water, but not in oil, because... The density of oil is less than water (that’s why it “floats” on water). The dye droplet is heavier than the oil, so it will begin to sink until it reaches the water, where it will begin to dissipate and look like a small fireworks display.

6. Interesting experiments: ina circle in which the colors merge

You will need:

- printout of the wheel (or you can cut out your own wheel and draw all the colors of the rainbow on it)

Elastic band or thick thread

Glue stick

Scissors

Skewer or screwdriver (to make holes in the paper wheel).


1. Select and print the two templates you want to use.


2. Take a piece of cardboard and use a glue stick to glue one template to the cardboard.

3. Cut out the glued circle from cardboard.

4. Glue the second template to the back of the cardboard circle.

5. Use a skewer or screwdriver to make two holes in the circle.


6. Thread the thread through the holes and tie the ends into a knot.

Now you can spin your top and watch how the colors merge on the circles.



7. Experiments for children at home: jellyfish in a jar


You will need:

Small transparent plastic bag

Transparent plastic bottle

Food coloring

Scissors.


1. Place the plastic bag on a flat surface and smooth it out.

2. Cut off the bottom and handles of the bag.

3. Cut the bag lengthwise on the right and left so that you have two sheets of polyethylene. You will need one sheet.

4. Find the center of the plastic sheet and fold it like a ball to make a jellyfish head. Tie a thread in the area of ​​the jellyfish's "neck", but not too tightly - you need to leave a small hole through which to pour water into the jellyfish's head.

5. There is a head, now let's move on to the tentacles. Make cuts in the sheet - from the bottom to the head. You need approximately 8-10 tentacles.

6. Cut each tentacle into 3-4 smaller pieces.


7. Pour some water into the jellyfish's head, leaving room for air so the jellyfish can "float" in the bottle.

8. Fill a bottle with water and put your jellyfish in it.


9. Add a couple drops of blue or green food coloring.

* Close the lid tightly to prevent water from spilling out.

* Let the children turn the bottle over and watch the jellyfish swim in it.

8. Chemical experiments: magic crystals in a glass


You will need:

Glass glass or bowl

Plastic bowl

1 cup Epsom salts (magnesium sulfate) - used in bath salts

1 cup hot water

Food coloring.

1. Place Epsom salts in a bowl and add hot water. You can add a couple of drops of food coloring to the bowl.

2. Stir the contents of the bowl for 1-2 minutes. Most of the salt granules should dissolve.


3. Pour the solution into a glass or glass and place it in the freezer for 10-15 minutes. Don't worry, the solution is not so hot that the glass will crack.

4. After freezing, transfer the solution to the main compartment of the refrigerator, preferably on the top shelf, and leave overnight.


The growth of crystals will be noticeable only after a few hours, but it is better to wait overnight.

This is what the crystals look like the next day. Remember that crystals are very fragile. If you touch them, they will most likely immediately break or crumble.


9. Experiments for children (video): soap cube

10. Chemical experiments for children (video): how to make a lava lamp with your own hands

Guys, we put our soul into the site. Thank you for that
that you are discovering this beauty. Thanks for the inspiration and goosebumps.
Join us on Facebook And VKontakte

We have a lot of things in our kitchen that can be used for interesting experiments for children. Well, for myself, to be honest, make a couple of discoveries from the “how did I not notice this before” category.

website I chose 9 experiments that will delight children and raise many new questions in them.

1. Lava lamp

Needed: Salt, water, a glass of vegetable oil, some food coloring, a large transparent glass or glass jar.

Experience: Fill the glass 2/3 with water, pour vegetable oil into the water. Oil will float on the surface. Add food coloring to water and oil. Then slowly add 1 teaspoon of salt.

Explanation: Oil is lighter than water, so it floats on the surface, but salt is heavier than oil, so when you add salt to a glass, the oil and salt begin to sink to the bottom. As the salt breaks down, it releases oil particles and they rise to the surface. Food coloring will help make the experience more visual and spectacular.

2. Personal rainbow

Needed: A container filled with water (bathtub, basin), a flashlight, a mirror, a sheet of white paper.

Experience: Pour water into a container and place a mirror on the bottom. We direct the light of the flashlight onto the mirror. The reflected light must be caught on the paper on which a rainbow should appear.

Explanation: A ray of light consists of several colors; when it passes through the water, it breaks down into its component parts - in the form of a rainbow.

3. Vulcan

Needed: Tray, sand, plastic bottle, food coloring, soda, vinegar.

Experience: A small volcano should be molded around a small plastic bottle from clay or sand - for the surroundings. To cause an eruption, you should pour two tablespoons of soda into the bottle, pour in a quarter cup of warm water, add a little food coloring, and finally pour in a quarter cup of vinegar.

Explanation: When baking soda and vinegar come into contact, a violent reaction begins, releasing water, salt and carbon dioxide. Gas bubbles push the contents out.

4. Growing crystals

Needed: Salt, water, wire.

Experience: To obtain crystals, you need to prepare a supersaturated salt solution - one in which the salt does not dissolve when adding a new portion. In this case, you need to keep the solution warm. To make the process go better, it is desirable that the water be distilled. When the solution is ready, it must be poured into a new container to get rid of the debris that is always in the salt. Next, you can lower a wire with a small loop at the end into the solution. Place the jar in a warm place so that the liquid cools more slowly. In a few days, beautiful salt crystals will grow on the wire. If you get the hang of it, you can grow fairly large crystals or patterned crafts on twisted wire.

Explanation: As the water cools, the solubility of the salt decreases, and it begins to precipitate and settle on the walls of the vessel and on your wire.

5. Dancing coin

Needed: Bottle, coin to cover the neck of the bottle, water.

Experience: An empty, unclosed bottle should be placed in the freezer for a few minutes. Moisten a coin with water and cover the bottle removed from the freezer with it. After a few seconds, the coin will begin to jump and, hitting the neck of the bottle, make sounds similar to clicks.

Explanation: The coin is lifted by air, which compressed in the freezer and occupied a smaller volume, but has now heated up and begun to expand.

6. Colored milk

Needed: Whole milk, food coloring, liquid detergent, cotton swabs, plate.

Experience: Pour milk into a plate, add a few drops of coloring. Then you need to take a cotton swab, dip it in the detergent and touch the swab to the very center of the plate with milk. The milk will begin to move and the colors will begin to mix.

Explanation: The detergent reacts with the fat molecules in the milk and causes them to move. This is why skim milk is not suitable for the experiment.

7. Fireproof bill

Needed: Ten-ruble bill, tongs, matches or lighter, salt, 50% alcohol solution (1/2 part alcohol to 1/2 part water).

Experience: Add a pinch of salt to the alcohol solution, immerse the bill in the solution until it is completely saturated. Use tongs to remove the bill from the solution and allow the excess liquid to drain. Set the bill on fire and watch it burn without getting burned.

Explanation: The combustion of ethyl alcohol produces water, carbon dioxide and heat (energy). When you set fire to a bill, the alcohol burns. The temperature at which it burns is not sufficient to evaporate the water with which the paper bill is soaked. As a result, all the alcohol burns out, the flame goes out, and the slightly damp ten remains intact.

9. Camera obscura

You will need:

A camera that supports long shutter speeds (up to 30 s);

Large sheet of thick cardboard;

Masking tape (for gluing cardboard);

A room with a view of anything;

Sunny day.

1. Cover the window with cardboard so that light does not come from the street.

2. We make a smooth hole in the center (for a room 3 meters deep, the hole should be about 7-8 mm).

3. When your eyes get used to the darkness, you will see an inverted street on the walls of the room! The most visible effect will be achieved on a bright sunny day.

4. Now the result can be shot with a camera at a long shutter speed. A shutter speed of 10-30 seconds is fine.

Did you know that May 29 is Chemist's Day? Who among us in childhood did not dream of creating unique magic, amazing chemical experiments? It's time to make your dreams come true! Read on quickly and we will tell you how to have fun on Chemist Day 2017, as well as what chemical experiments for children can be easily done at home.


Home volcano

If you are not already attracted, then... Do you want to see a volcanic eruption? Try it at home! To set up a chemical experiment “volcano” you will need soda, vinegar, food coloring, a plastic glass, a glass of warm water.

Pour 2-3 tablespoons of baking soda into a plastic cup, add ¼ cup of warm water and a little food coloring, preferably red. Then add ¼ vinegar and watch the volcano “erupt”.

Rose and ammonia

A very interesting and original chemical experiment with plants can be seen in the video from YouTube:

Self-inflating balloon

Do you want to conduct safe chemical experiments for children? Then you will definitely like the balloon experiment. Prepare in advance: a plastic bottle, baking soda, a balloon and vinegar.

Pour 1 teaspoon of baking soda inside the ball. Pour ½ cup of vinegar into the bottle, then put a ball on the neck of the bottle and make sure that the soda gets into the vinegar. As a result of a violent chemical reaction, which is accompanied by the active release of carbon dioxide, the balloon will begin to inflate.

Pharaoh snake

For the experiment you will need: calcium gluconate tablets, dry fuel, matches or a gas burner. Watch the algorithm of actions on YouTube video:

Colorful magic

Do you want to surprise your child? Hurry up and conduct chemical experiments with color! You will need the following available ingredients: starch, iodine, transparent container.

Mix snow-white starch and brown iodine in a container. The result is an amazing mixture of blue.

Raising a snake

The most interesting home chemical experiments can be carried out using available ingredients. To create a snake you will need: a plate, river sand, powdered sugar, ethyl alcohol, a lighter or burner, baking soda.

Place a pile of sand on a plate and soak it in alcohol. Make a depression in the top of the slide, where you carefully add powdered sugar and soda. Now we set fire to the sand slide and watch. After a couple of minutes, a dark wriggling ribbon that resembles a snake will begin to grow from the top of the slide.

How to conduct chemical experiments with an explosion, see the following video from Youtube:

Guys, we put our soul into the site. Thank you for that
that you are discovering this beauty. Thanks for the inspiration and goosebumps.
Join us on Facebook And VKontakte

There are very simple experiments that children remember for the rest of their lives. The children may not fully understand why this is all happening, but when time passes and they find themselves in a physics or chemistry lesson, a very clear example will certainly emerge in their memory.

website I collected 7 interesting experiments that children will remember. Everything you need for these experiments is at your fingertips.

Fireproof ball

Will need: 2 balls, candle, matches, water.

Experience: Inflate a balloon and hold it over a lit candle to demonstrate to children that the fire will make the balloon burst. Then pour plain tap water into the second ball, tie it and bring it to the candle again. It turns out that with water the ball can easily withstand the flame of a candle.

Explanation: The water in the ball absorbs the heat generated by the candle. Therefore, the ball itself will not burn and, therefore, will not burst.

Pencils

You will need: plastic bag, pencils, water.

Experience: Fill the plastic bag halfway with water. Use a pencil to pierce the bag through the place where it is filled with water.

Explanation: If you pierce a plastic bag and then pour water into it, it will pour out through the holes. But if you first fill the bag halfway with water and then pierce it with a sharp object so that the object remains stuck into the bag, then almost no water will flow out through these holes. This is due to the fact that when polyethylene breaks, its molecules are attracted closer to each other. In our case, the polyethylene is tightened around the pencils.

Unbreakable balloon

You will need: a balloon, a wooden skewer and some dishwashing liquid.

Experience: Coat the top and bottom with the product and pierce the ball, starting from the bottom.

Explanation: The secret of this trick is simple. In order to preserve the ball, you need to pierce it at the points of least tension, and they are located at the bottom and at the top of the ball.

Cauliflower

Will need: 4 cups of water, food coloring, cabbage leaves or white flowers.

Experience: Add any color of food coloring to each glass and place one leaf or flower in the water. Leave them overnight. In the morning you will see that they have turned different colors.

Explanation: Plants absorb water and thereby nourish their flowers and leaves. This happens due to the capillary effect, in which water itself tends to fill the thin tubes inside the plants. This is how flowers, grass, and large trees feed. By sucking in tinted water, they change color.

floating egg

Will need: 2 eggs, 2 glasses of water, salt.

Experience: Carefully place the egg in a glass of plain, clean water. As expected, it will sink to the bottom (if not, the egg may be rotten and should not be returned to the refrigerator). Pour warm water into the second glass and stir 4-5 tablespoons of salt in it. For the purity of the experiment, you can wait until the water cools down. Then place the second egg in the water. It will float near the surface.

Explanation: It's all about density. The average density of an egg is much greater than that of plain water, so the egg sinks down. And the density of the salt solution is higher, and therefore the egg rises up.

Crystal lollipops

Will need: 2 cups of water, 5 cups of sugar, wooden sticks for mini kebabs, thick paper, transparent glasses, saucepan, food coloring.

Experience: In a quarter glass of water, boil sugar syrup with a couple of tablespoons of sugar. Sprinkle some sugar onto the paper. Then you need to dip the stick in the syrup and collect the sugar with it. Next, distribute them evenly on the stick.

Leave the sticks to dry overnight. In the morning, dissolve 5 cups of sugar in 2 glasses of water over heat. You can leave the syrup to cool for 15 minutes, but it should not cool too much, otherwise the crystals will not grow. Then pour it into jars and add different food colorings. Place the prepared sticks in a jar of syrup so that they do not touch the walls and bottom of the jar; a clothespin will help with this.

Explanation: As the water cools, the solubility of sugar decreases, and it begins to precipitate and settle on the walls of the vessel and on your stick seeded with sugar grains.

Lighted match

Will be needed: Matches, flashlight.

Experience: Light a match and hold it at a distance of 10-15 centimeters from the wall. Shine a flashlight on the match and you will see that only your hand and the match itself are reflected on the wall. It would seem obvious, but I never thought about it.

Explanation: Fire does not cast shadows because it does not prevent light from passing through it.

Municipal budgetary educational institution

“Secondary school No. 35”, Bryansk

Entertaining experiments in chemistry

Developed

chemistry teacher of the highest category

Velicheva Tamara Alexandrovna

When conducting experiments, it is necessary to observe safety precautions and skillfully handle substances, utensils and instruments. These experiments do not require complex equipment or expensive reagents, and their effect on the audience is enormous.

"Golden" nail.

10-15 ml of copper sulfate solution is poured into a test tube and a few drops of sulfuric acid are added. An iron nail is immersed in the solution for 5-10 seconds. A red coating of copper metal appears on the surface of the nail. To add shine, wipe the nail with filter paper.

Pharaoh's snakes.

Crushed dry fuel is placed in a heap on the asbestos mesh. Norsulfazole tablets are placed around the top of the slide at equal distances from each other. During the demonstration of the experiment, the top of the slide is set on fire with a match. During the experiment, make sure that three independent “snakes” are formed from three norsulfazole tablets. To prevent the reaction products from sticking together into one “snake”, it is necessary to correct the resulting “snakes” with a splinter.

Explosion in a bank.

For the experiment, take a tin of coffee (without a lid) with a capacity of 600-800 ml and punch a small hole in the bottom. The jar is placed on the table upside down and, having covered the hole with damp paper, a gas outlet tube from Kiryushkin’s device is brought from below for filling with hydrogen ( the jar is filled with hydrogen for 30 seconds). Then the tube is removed and the gas is ignited with a long splinter through the hole in the bottom of the jar. At first the gas burns calmly, and then a hum begins and an explosion occurs. The can jumps high into the air and flames burst out. The explosion occurs because an explosive mixture has formed in the can.

"Butterfly Dance"

For the experiment, “butterflies” are made in advance. The wings are cut out of tissue paper and glued to the body (pieces of a match or toothpick) for greater stability in flight.

Prepare a wide-mouth jar, hermetically sealed with a stopper into which a funnel is inserted. The diameter of the funnel at the top should be no more than 10cm. Acetic acid CH 3 COOH is poured into the jar so much that the lower end of the funnel does not reach the surface of the acid by about 1 cm. Then several tablets of sodium bicarbonate (NaHCO 3) are thrown through a funnel into a jar of acid, and the “butterflies” are placed in the funnel. They begin to “dance” in the air.

The “butterflies” are held in the air by a stream of carbon dioxide formed as a result of a chemical reaction between sodium bicarbonate and acetic acid:

NaHCO 3 + CH 3 COOH = CH 3 COONa + CO 2 + H 2 O

Lead coat.

A human figure is cut out of a thin zinc plate, cleaned well and placed in a glass with a solution of tin chloride SnCl 2. A reaction begins, as a result of which the more active zinc displaces the less active tin from the solution:

Zn + SnCl 2 = ZnCl 2 + Sn

The zinc figurine begins to become covered with shiny needles.

"Fire" cloud.

Flour is sifted through a fine sieve and flour dust is collected, which settles far along the sides of the sieve. It is dried well. Then two full teaspoons of flour dust are introduced into the glass tube, closer to the middle, and slightly shaken along the length of the tube by 20 - 25 cm.

Then the dust is strongly blown out over the flame of an alcohol lamp placed on a demonstration table (the distance between the end of the tube and the alcohol lamp should be about one meter).

A “fire” cloud is formed.

"Star" rain.

Take three teaspoons of iron powder and the same amount of ground charcoal. All this is mixed and poured into a crucible. It is fixed in a tripod and heated on an alcohol lamp. Soon the starry rain begins.

These hot particles are ejected from the crucible by carbon dioxide produced when coal burns.

Change in color of flowers.

In a large battery glass, prepare a mixture of three parts of diethyl ether C 2 H 5 ─ O ─ C 2 H 5 and one part (by volume) of a strong ammonia solution NH 3 ( there should be no fire nearby). Ether is added to facilitate the penetration of ammonia into the cells of the flower petal.

Individual flowers or a bouquet of flowers are dipped into an ether-ammonia solution. At the same time, their color will change. Red, blue and purple flowers will turn green, white (white rose, chamomile) will turn dark, yellow will retain their natural color. The changed color is retained by the flowers for several hours, after which it becomes natural.

This is explained by the fact that the color of the petals of fresh flowers is caused by natural organic dyes, which have indicator properties and change their color in an alkaline (ammonia) environment.

List of used literature:

    Shulgin G.B. This is fascinating chemistry. M. Chemistry, 1984.

    Shkurko M.I. Entertaining experiments in chemistry. Minsk. People's Asveta, 1968.

    Aleksinsky V.N. Entertaining experiments in chemistry. Teacher's manual. M. Education, 1980.



CATEGORIES

POPULAR ARTICLES

2024 “kingad.ru” - ultrasound examination of human organs