Все о радиации: что такое радиация, влияние радиации на здоровье человека, защита от радиации. Опасность радиации для человеческого организма

Радиоактивностью называют неустойчивость ядер некоторых атомов, которая проявляется в их способности к самопроизвольному превращению (по научному — распаду), что сопровождается выходом ионизирующего излучения (радиации). Энергия такого излучения достаточно велика, поэтому она способна воздействовать на вещество, создавая новые ионы разных знаков. Вызывать радиацию с помощью химических реакций нельзя, это полностью физический процесс.

Различают несколько видов радиации:

  • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.
  • Бета-частицы — обычные электроны.
  • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.
  • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.
  • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти. Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Таким образом, последствия радиации, которые могут привести к фатальным случаям, бывают как при однократном пребывании у сильнейшего источника излучения (естественного или искусственного), так и при хранении слаборадиоактивных предметов у себя дома (антиквариата, обработанных радиацией драгоценных камней, изделий из радиоактивного пластика). Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Впрочем, по этой же причине достаточным средством защиты от радиации данного типа является любой слой твердого или жидкого вещества, например, обычная одежда.

По мнению специалистов www.сайт, ультрафиолетовое излучение или излучение лазеров нельзя считать радиоактивным. Чем же отличается радиация и радиоактивность?

Источники радиации — ядерно-технические установки (ускорители частиц, реакторы, рентгеновское оборудование) и радиоактивные вещества. Они могут существовать значительное время, никак не проявляя себя, и Вы можете даже не подозревать, что находитесь рядом с предметом сильнейшей радиоактивности.

Единицы измерения радиоактивности

Радиоактивность измеряется в Беккерелях (БК), что соответствует одному распаду в секунду. Содержание радиоактивности в веществе также часто оценивают на единицу веса — Бк/кг, или объема — Бк/куб.м. Иногда встречается такая единица как Кюри (Ки). Это огромная величина, равная 37 миллиардам Бк. При распаде вещества источник испускает ионизирующее излучение, мерой которого является экспозиционная доза. Её измеряют в Рентгенах (Р). 1 Рентген величина достаточно большая, поэтому на практике используют миллионную (мкР) или тысячную (мР) долю Рентгена.

Бытовые дозиметры измеряют ионизацию за определенное время, то есть не саму экспозиционную дозу, а её мощность. Единица измерения — микроРентген в час. Именно этот показатель наиболее важен для человека, так как позволяет оценить опасность того или иного источника радиации.


Радиация и здоровье человека

Воздействие радиации на организм человека называют облучением. Во время этого процесса энергия радиация передается клеткам, разрушая их. Облучение может вызывать всевозможные заболевания: инфекционные осложнения, нарушения обмена веществ, злокачественные опухоли и лейкоз, бесплодие, катаракту и многое другое. Особенно остро радиация воздействует на делящиеся клетки, поэтому она особенно опасна для детей.

Организм реагирует на саму радиацию, а не на её источник. Радиоактивные вещества могут проникать в организм через кишечник (с пищей и водой), через лёгкие (при дыхании) и даже через кожу при медицинской диагностике радиоизотопами. В этом случае имеет место внутреннее облучение. Кроме того, значительное влияние радиации на организм человека оказывает внешнее облучение, т.е. источник радиации находится вне тела. Наиболее опасно, безусловно, внутреннее облучение.

Как вывести радиацию из организма? Этот вопрос, безусловно, волнует многих. К сожалению, особо эффективных и быстрых способов вывода радионуклидов из организма человека не существет. Некоторые продукты питания и витамины помогают очистить организм от небольших доз радиации. Но если облучение серьезное, то остается только надеяться на чудо. Поэтому лучше не рисковать. И если существует даже малейшая опасность подвергнуться радиации, необходимо со всей быстротой уносить ноги из опасного места и вызывать специалистов.

Является ли компьютер источником радиации?

Этот вопрос, в век распространения компьютерной техники, волнует многих. Единственной частью компьютера, которая теоретически может быть радиоактивной является монитор, да и то, только электролучевой. Современные дисплеи, жидкокристаллические и плазменные, радиоактивными свойствами не обладают.

ЭЛТ мониторы, как и телевизоры, являются слабым источником излучения рентгеновского типа. Оно возникает на внутренней поверхности стекла экрана, однако благодаря значительной толщине этого же стекла, оно и поглощает большую часть излучения. До настоящего времени не обнаружено никакого влияния ЭЛТ мониторов на здоровье. Впрочем, при повсеместном применении жидкокристаллических дисплеев этот вопрос теряет былую актуальность.

Может ли человек стать источником радиации?

Радиация, воздействуя на организм, не образует в нем радиоактивных веществ, т.е. человек не превращается сам в источник радиации. Кстати, рентгеновские снимки, вопреки распространенному мнению, также безопасны для здоровья. Таким образом, в отличие от болезни, лучевое поражение от человека к человеку передаваться не может, зато радиоактивные предметы, несущие в себя заряд, могут быть опасны.

Измерение уровня радиации

Измерить уровень радиации можно с помощью дозиметра. Бытовые приборы просто не заменимы для тех, кто хочет максимально обезопасить себя от смертельно опасного влияния радиации. Основное предназначение бытового дозиметра — измерение мощности дозы радиации в том месте, где находится человек, обследование определенных предметов (грузов, стройматериалов, денег, продуктов питания, детских игрушек и т.п.) , просто необходимо тем, кто часто бывает в районах радиационного загрязнения, вызванных аварией на Чернобыльской АЭС (а такие очаги присутствуют практически во всех областях европейской территории России). Поможет дозиметр и тем, кто бывает в незнакомой местности, удаленной от цивилизации: в походе, собирая грибы и ягоды, на охоте. Обязательно необходимо обследовать на радиационную безопасность место предполагаемого строительства (или покупки) дома, дачи, огорода или земельного участка, иначе вместо пользы подобная покупка принесет только смертельно опасные заболевания.

Очистить продукты, землю или предметы от радиации практически невозможно, поэтому единственный способ обезопасить себя и свою семью — держаться от них подальше. А именно бытовой дозиметр поможет выявить потенциально опасные источники.

Нормы радиоактивности

В отношении радиоактивность существует большое число норм, т.е. стараются нормировать практически все. Другое дело, что нечистые на руку продавцы, в погоне за большой прибылью, не соблюдают, а иногда и откровенно нарушают нормы, установленные законодательством. Основные нормы, установленные в России, прописаны в Федеральном законе №3-ФЗ от 05.12.1996 г «О радиационной безопасности населения» и в Санитарных правилах 2.6.1.1292-03 «Нормы радиационной безопасности».

Для вдыхаемого воздуха , воды и продуктов питание регламентировано содержание как техногенных (полученных в результате деятельности человека), так и естественных радиоактивных веществ, которые не должны превышать нормы, установленные СанПиН 2.3.2.560-96.

В строительных материалах нормируется содержания радиоактивных веществ семейства тория и урана, а также калия-40, удельная эффективная активность их рассчитывается по специальным формулам. Требования к строительным материалам также указаны в ГОСТ.

В помещениях регламентируется суммарное содержание торона и радона в воздухе: для новых зданий оно должно быть не больше 100 Бк (100 Бк/м 3), а для уже эксплуатируемых — менее 200 Бк/м 3 . В Москве применяются также дополнительные нормы МГСН2.02-97, где регламентируются максимально допустимые уровни ионизирующего излучения и содержание радона на участках застройки.

Для медицинской диагностике предельные дозовые значения не обозначены, однако выдвигаются требований минимально достаточных уровней облучения, чтобы получить качественную диагностическую информацию.

В компьютерной технике регламентируется предельный уровень излучения для электро-лучевых (ЭЛТ) мониторов. Мощность дозы рентгеновского изучения на любой точке на расстоянии 5 см от видеомонитора или персонального компьютера не должна превышать 100 мкР в час.


Проверить же соблюдаются ли производителями установленные законодательно нормы можно только самостоятельно, используя миниатюрный бытовой дозиметр. Пользоваться им очень просто, достаточно нажать одну кнопку и сверить показания на жидкокристаллическом дисплее прибора с рекомендованными. Если норма значительно превышена, значит данный предмет представляет собой угрозу жизни и здоровья, и о нём следует сообщить в МЧС, чтобы он был уничтожен. Защитите себя и свою семью от радиации!

Радиация представляет собой ионизирующее излучение, наносящее непоправимый вред всему окружающему. Страдают люди, животные, растения. Самая большая опасность заключается в том, что она не видима человеческим глазом, поэтому важно знать об ее главных свойствах и воздействии, чтобы защититься.

Радиация сопровождает людей всю жизнь. Она встречается в окружающей среде, а также внутри каждого из нас. Огромнейшее воздействие несут внешние источники. Многие наслышаны об аварии на Чернобыльской АЭС, последствия которой до сих пор встречаются в нашей жизни. Люди оказались не готовы к такой встрече. Это лишний раз подтверждает, что в мире есть события неподвластные человечеству.


Виды радиации

Не все химические вещества устойчивы. В природе существуют определенные элементы, ядра которых трансформируются, распадаясь на отдельные частички с выделением огромного количества энергии. Это свойство называется радиоактивностью. Ученые в результате исследований обнаружили несколько разновидностей излучения:

  1. Альфа излучение — это поток тяжелых радиоактивных частиц в виде ядер гелия, способных нанести наибольший вред окружающим. К счастью, им свойственна низкая проникающая способность. В воздушном пространстве они распространяются всего на пару сантиметров. В ткани их пробег составляет доли миллиметра. Таким образом, внешнее излучение не несет опасности. Можно защититься, используя плотную одежду или лист бумаги. А вот внутреннее облучение – внушительная угроза.
  2. Бета излучение – поток легких частичек, перемещающихся в воздухе на пару метров. Это электроны и позитроны, проникающие в ткань на два сантиметра. Оно несет вред при соприкосновении с кожей человека. Однако большую опасность дает при воздействии изнутри, но меньшую, чем альфа. Для предохранения от влияния этих частиц, используются специальные контейнеры, защитные экраны, определенное расстояние.
  3. Гамма и рентгеновское излучение – это электромагнитные излучения, пронизывающие тело насквозь. Защитные средства от такого воздействия включает создание экранов из свинца, возведение бетонных конструкций. Наиболее опасное из облучений при внешнем поражении, так как оказывает влияние весь на организм.
  4. Нейтронное излучение состоит из потока нейтронов, обладающих более высоким показателем проникающей способности, чем гамма. Образуется в результате ядерных реакций, протекающих в реакторах и специальных исследовательских установках. Появляется во время ядерных взрывов и находится в отходах утилизированного топлива от ядерных реакторов. Броня от такого воздействия создается из свинца, железа, бетона.

Всю радиоактивность на Земле можно поделить на два основных вида: естественную и искусственную. К первой относятся излучения из космоса, почвы, газов. Искусственная же появилась благодаря человеку при использовании атомных электростанций, различного оборудования в медицине, ядерных предприятий.


Естественные источники

Радиоактивность естественного происхождения всегда находилась на планете. Излучение присутствует во всем, что окружает человечество: животные, растения, почва, воздух, вода. Считается, что этот небольшой уровень радиации, не оказывает вредного воздействия. Хотя, некоторые ученые придерживаются иного мнения. Так как люди не имеют возможности повлиять на эту опасность, следует избегать обстоятельств, увеличивающих допустимые значения.

Разновидности источников естественного происхождения

  1. Космическое излучение и солнечная радиация — мощнейшие источники, способными ликвидировать все живое на Земле. К счастью, планета защищена от этого воздействия атмосферой. Однако люди постарались исправить это положение, развивая деятельность, приводящую к образованию озоновых дыр. Не стоит надолго попадать под прямые солнечные лучи.
  2. Излучение земной коры опасно вблизи месторождений различных минералов. Сжигая уголь или используя фосфорные удобрения, радионуклиды активно просачиваются внутрь человека с вдыхаемым воздухом и употребляемой им едой.
  3. Радон – это радиоактивный химический элемент, присутствующий в строительных материалах. Представляет собой бесцветный газ без запаха и вкуса. Этот элемент активно накапливается в почвах и выходит наружу вместе с добычей полезных ископаемых. В квартиры он попадает вместе с бытовым газом, а также с водопроводной водой. К счастью, его концентрацию легко уменьшить, постоянно проветривая помещения.

Искусственные источники

Данный вид появился благодаря людям. Его действие увеличивается и распространяется с их помощью. Во время начала ядерной войны не так страшна сила и мощность оружия, как последствия радиоактивного излучения после взрывов. Даже если вас не зацепит взрывная волна или физические факторы — вас добьет радиация.


К искусственным источникам относятся:

  • Ядерное оружие;
  • Медицинское оборудование;
  • Отходы с предприятий;
  • Определенные драгоценные камни;
  • Некоторые старинные предметы, вывезенные из опасных зон. В том числе из Чернобыля.

Норма радиоактивного излучения

Ученым удалось установить, что радиация по-разному оказывает влияние на отдельные органы и весь организм в целом. Для того чтобы оценить ущерб, возникающий при хроническом облучении ввели понятие эквивалентной дозы. Она рассчитывается по формуле и равна произведению полученной дозы, поглощенной организмом и усредненной по конкретному органу или всему организму человека, на весовой множитель.

Единицей измерения эквивалентной дозы есть соотношение Джоуля к килограммам, которое получило название – зиверт (Зв). С её использованием была создана шкала, позволяющая понять о конкретной опасности излучения для человечества:

  • 100 Зв. Моментальная смерть. У пострадавшего есть несколько часов, максимум пару дней.
  • От 10 до 50 Зв. Получивший повреждения такого характера погибнет через несколько недель от сильного внутреннего кровотечения.
  • 4-5 Зв. При попадании данного количества, организм справляется в 50% случаев. В остальном печальные последствия приводят к смерти спустя пару месяцев из-за повреждений костного мозга и нарушения кровообращения.
  • 1 Зв. При поглощении такой дозы лучевая болезнь неизбежна.
  • 0,75 Зв. Изменения в системе кровообращения на небольшой промежуток времени.
  • 0,5 Зв. Данного количества достаточно, чтобы у больного развились онкологические заболевания. Остальные симптомы отсутствуют.
  • 0,3 Зв. Такое значение присуще аппарату для проведения рентгена желудка.
  • 0,2 Зв. Допустимый уровень для работы с радиоактивными материалами.
  • 0,1 Зв. При таком количестве происходит добыча урана.
  • 0,05 Зв. Данное значение – норма облучения медицинских аппаратов.
  • 0,0005 Зв. Допустимое количество уровня радиации около АЭС. Также это значение годового облучения населения, которое приравнивается к норме.

К безопасной дозе радиации для человека относится значения до 0,0003-0,0005 Зв в час. Предельно допустимым считается облучение в 0,01 Зв в час, если такое воздействие непродолжительно.

Влияние радиации на человека

Радиоактивность оказывает огромное влияние на население. Вредному воздействию подвергаются не только люди, столкнувшиеся лицом к лицу с опасностью, но и последующее поколение. Такие обстоятельства вызваны действием радиации на генетическом уровне. Различают два вида влияния:

  • Соматический. Заболевания возникают у пострадавшего, получившего дозу радиации. Приводит к появлению лучевой болезни, лейкозу, опухоли разнообразных органов, локальные лучевые поражения.
  • Генетический. Связан с дефектом генетического аппарата. Проявляется в последующих поколениях. Страдают дети, внуки и более далекие потомки. Возникают генные мутации и хромосомные изменения

Помимо отрицательного воздействия, есть и благоприятный момент. Благодаря изучению радиации, ученым удалось создать на ее основе медицинское обследование, позволяющее спасать жизни.


Мутация после радиации

Последствия облучения

При получении хронического облучения в организме происходят восстановительные мероприятия. Это приводит к тому, что пострадавший приобретает меньшую нагрузку, чем получил бы при разовом проникновении одинакового количества радиации. Радионуклиды размещаются внутри человека неравномерно. Чаще всего страдают: дыхательная система, пищеварительные органы, печень, щитовидка.

Враг не дремлет даже спустя 4-10 лет после облучения. Внутри человека может развиться рак крови. Особую опасность он представляет у подростков, не достигших 15 лет. Замечено, что смертность людей, работающих с оборудованием для проведения рентгена, увеличена из-за лейкоза.

Самым частым результатом облучения проявляется лучевая болезнь, возникающая как при однократном получении дозы, так и при длительном. При большом количестве радионуклидов приводит к смерти. Распространен рак молочной и щитовидной желез.

Страдает огромное количество органов. Нарушается зрение и психическое состояние потерпевшего. У шахтеров, участвующих в добыче урана, часто встречается рак легких. Внешние облучения вызывают страшные ожоги кожных и слизистых покровов.

Мутации

После воздействия радионуклидов возможно проявление двух типов мутаций: доминантной и рецессивной. Первая возникает сразу же после облучения. Второй тип обнаруживается спустя большой промежуток времени не у пострадавшего, а у его последующего поколения. Нарушения, вызванные мутацией, приводят к отклонениям в развитии внутренних органов у плода, внешним уродствам и изменением психики.

К сожалению, мутации достаточно плохо изучены, так как обычно проявляются не сразу. Спустя время сложно понять, что именно оказало главенствующее влияние на её возникновение.

Задача (для разогрева):

Расскажу я вам, дружочки,
Как выращивать грибочки:
Нужно в поле утром рано
Сдвинуть два куска урана...

Вопрос: Какова должна быть общая масса кусков урана, чтобы произошел ядерный взрыв?

Ответ (для того, чтобы увидеть ответ - нужно выделить текст) : Для урана-235 критическая масса составляет примерно 500 кг., если взять шарик такой массы, то диаметр такого шара будет равен 17 см.

Радиация, что это?

Радиация (в переводе с английского "radiation") - это излучение, которое применяется не только в отношении радиоактивности, но и для ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Таким образом, в отношении радиоактивности необходимо использовать принятое МКРЗ (Международной комиссией по радиационной защите) и правилами радиационной безопасности словосочетание "ионизирующее излучение".

Ионизирующее излучение, что это?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое вызывает ионизацию (образование ионов обоих знаков) вещества (среды). Вероятность и количество образованных пар ионов зависит от энергии ионизирующего излучения.

Радиоактивность, что это?

Радиоактивность – излучение возбужденных ядер или самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц или γ -кванта (ов). Трансформация обычных нейтральных атомов в возбужденное состояние происходит под воздействием внешней энергии различного рода. Далее возбужденное ядро стремится снять избыточную энергию путем излучения (вылет альфа-частицы, электронов, протонов, гамма-квантов (фотонов), нейтронов), до достижения стабильного состояния. Многие тяжелые ядра (трансурановый ряд в таблице Менделеева - торий, уран, нептуний, плутоний и др.) изначально находятся в нестабильном состоянии. Они способны спонтанно распадаться. Этот процесс также сопровождается излучением. Такие ядра называются естественными радионуклидами.

На этой анимации наглядно показано явление радиоактивности.

Камера Вильсона (пластиковый бокс охлажденный до -30 °C) наполнена паром изопропилового спирта. Жюльен Саймонпоместил в нее 0,3-cm³ кусок радиоактивного урана (минерала уранинит). Минерал излучает α-частицы и бета-частицы, так как он содержит U-235 и U-238. На пути движения α и бета частиц находятся молекулы изопропилового спирта.

Поскольку частицы заряжены (альфа – положительно, бета – отрицательно), то они могут отрывать электрон от молекулы спирта (альфа частица) или добавить электроны молекулам спирта бета частицы). Это, в свою очередь, дает молекулам заряд, который затем привлекает незаряженные молекулы вокруг них. Когда молекулы собираются в кучу, то получаются заметные белые облака, что прекрасно видно на анимации. Так мы легко можем проследить пути выбрасываемых частиц.

α-частицы создают прямые, густые облака, в то время как бета-частицы создают длинные.

Изотопы, что это?

Изотопы – это разнообразие атомов одного и того же химического элемента, располагающие разными массовыми числами, но включающие одинаковый электрический заряд атомных ядер и, следовательно, занимающие в периодической системе элементов Д.И. Менделеева единое место. Например: 131 55 Cs, 134 m 55 Cs, 134 55 Cs, 135 55 Cs, 136 55 Cs, 137 55 Cs. Т.е. заряд в большей степени определяет химические свойства элемента.

Существуют изотопы устойчивые (стабильные) и неустойчивые (радиоактивные изотопы) – спонтанно распадающиеся. Известно около 250 стабильных и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить 206 Pb, являющийся конечным продуктом распада естественного радионуклида 238 U, который в свою очередь появился на нашей Земле в начале образования мантии и не связан с техногенным загрязнением.

Какие виды ионизирующего излучения существуют?

Основными видами ионизирующего излучения, с которыми чаще всего приходится сталкиваться, являются:

  • альфа-излучение;
  • бета-излучение;
  • гамма-излучение;
  • рентгеновское излучение.

Конечно, имеются и другие виды излучения (нейтронное, позитронное и др.), но с ними мы встречаемся в повседневной жизни заметно реже. Каждый вид излучения обладает своими ядерно-физическими характеристиками и как следствие – различным биологическим воздействии на организм человека. Радиоактивный распад может сопровождаться одним из видов излучения или сразу несколькими.

Источники радиоактивности бывают природными или искусственными. Природные источники ионизирующего излучения - это радиоактивные элементы, находящиеся в земной коре и образующие природный радиационный фон вместе с космическим излучением.

Искусственные источники радиоактивности, как правило, образуются в ядерных реакторах или ускорителях на основе ядерных реакций. Источниками искусственных ионизирующих излучений могут быть и разнообразные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Альфа-излучение (α -излучение) - корпускулярное ионизирующее излучение, состоящее из альфа-частиц (ядер гелия). Образуются при радиоактивном распаде и ядерных превращениях. Ядра гелия обладают достаточно большими массой и энергией до 10 МэВ (Мегаэлектрон-Вольт). 1 эВ = 1,6∙10 -19 Дж. Имея несущественный пробег в воздухе (до 50 см) представляют высокую опасность для биологических тканей при попадании на кожу, слизистые оболочки глаз и дыхательных путей, при попадании внутрь организма в виде пыли или газа (радон-220 и 222). Токсичность альфа-излучения, обуславливается колоссально высокой плотностью ионизации из-за высокой энергии и массы.

Бета-излучение (β -излучение) - корпускулярное электронное или позитронное ионизирующее излучение соответствующего знака с непрерывным энергетическим спектром. Характеризуется максимальной энергией спектра Е β max , или средней энергией спектра. Пробег электронов (бета-частиц) в воздухе достигает нескольких метров (в зависимости от энергии), в биологических тканях пробег бета-частицы составляет несколько сантиметров. Бета-излучение, как и альфа-излучение, представляет опасность при контактном облучении (поверхностном загрязнении), например, при попадании внутрь организма, на слизистые оболочки и кожные покровы.

Гамма-излучение (γ –излучение или гамма кванты) – коротковолновое электромагнитное (фотонное) излучение с длиной волны

Рентгеновское излучение - по своим физическим свойствам подобно гамма-излучению, но имеющее ряд особенностей. Оно появляется в рентгеновской трубке вследствие резкой остановки электронов на керамической мишени-аноде (то место, куда ударяются электроны, изготавливают, как правило, из меди или молибдена) после ускорения в трубке (непрерывный спектр - тормозное излучение) и при выбивании электронов из внутренних электронных оболочек атома мишени (линейчатый спектр). Энергия рентгеновского излучения небольшая – от долей единиц эВ до 250 кэВ. Рентгеновское излучение можно получить, используя ускорители заряженных частиц, - синхротронное излучение с непрерывным спектром, имеющим верхнюю границу.

Прохождение радиации и ионизирующих излучений через препятствия:

Чувствительность человеческого организма к воздействию радиации и ионизирующих излучений на него:

Что такое источник излучения?

Источник ионизирующего излучения (ИИИ) - объект, который включает в себя радиоактивное вещество или техническое устройство, которое создает или в определенных случаях способно создавать ионизирующее излучение. Различают закрытые и открытые источники излучения.

Что такое радионуклиды?

Радионуклиды – ядра, подверженные спонтанному радиоактивному распаду.

Что такое период полураспада?

Период полураспада – период времени, в течение которого число ядер данного радионуклида в результате радиоактивного распада снижается в два раза. Эта величина используется в законе радиоактивного распада.

В каких единицах измеряется радиоактивность?

Активность радионуклида в соответствии с системой измерений СИ измеряется в Беккерелях (Бк) – по имени французского физика, открывшего радиоактивность в 1896г.), Анри Беккереля. Один Бк равен 1 ядерному превращению в секунду. Мощность радиоактивного источника измеряется соответственно в Бк/с. Отношение активности радионуклида в образце к массе образца называется удельная активность радионуклида и измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма) ?

Что же мы видим на дисплее современных дозиметров, измеряющих ИИ? МКРЗ предложила для оценки облучения человека измерять дозу на глубине d, равной 10 мм. Измеряемая величина дозы на этой глубине получила название амбиентный эквивалент дозы, измеряемая в зивертах (Зв). Фактически это расчетная величина, где поглощенная доза умножена на взвешивающий коэффициент для данного вида излучения и коэффициент, характеризующий чувствительность различных органов и тканей к конкретному виду излучения.

Эквивалентная доза (или часто употребляемое понятие «доза») – равна произведению поглощенной дозы на коэффициент качества воздействия ионизирующего излучения (например: коэффициент качества воздействия гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр (мкбэр) и т.д., 1 бэр = 0,01 Дж/кг. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1 Зв = 1 Дж/кг = 100 бэр.

1 мбэр = 1*10 -3 бэр; 1 мкбэр = 1*10 -6 бэр;

Поглощенная доза - количество энергии ионизирующего излучения, которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1 Гр=100 рад=1 Дж/кг

Мощность эквивалентной дозы (или мощность дозы) – это отношение эквивалентной дозы на промежуток времени ее измерения (экспозиции), единица измерения бэр/час, Зв/час, мкЗв/с и т.д.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как плотности потока частиц с единицы площади, в единицу времени - a-частиц*мин/см 2 , β-частиц*мин/см 2 .

Что вокруг нас радиоактивно?

Почти все что нас окружает, даже сам человек. Естественная радиоактивность в какой-то мере является натуральной средой обитания человека, если она не превышает естественных уровней. На планете есть участки с повышенным относительно среднего уровня радиационного фона. Однако в большинстве случаев, каких-либо весомых отклонений в состоянии здоровья населения при этом не наблюдается, так как эта территория является их естественной средой обитания. Примером такого участка территории является, например, штат Керала в Индии.

Для истинной оценки, возникающих иногда в печати пугающих цифр, следует отличать:

  • естественную, природную радиоактивность;
  • техногенную, т.е. изменение радиоактивности среды обитания под влиянием человека (добыча ископаемых, выбросы и сбросы промышленных предприятий, аварийные ситуации и много другое).

Как правило, устранить элементы природной радиоактивности почти невозможно. Как можно избавиться от 40 К, 226 Ra, 232 Th, 238 U,которые повсюду распространены в земной коре и находятся практически во всем, что нас окружает, и даже в нас самих?

Из всех природных радионуклидов наибольшую опасность для здоровья человека представляют продукты распада природного урана (U-238) - радий (Ra-226) и радиоактивный газ радон (Ra-222). Главными «поставщиками» радия-226 в окружающую природную среду являются предприятия, занимающиеся добычей и переработкой различных ископаемых материалов: добыча и переработка урановых руд; нефти и газа; угольная промышленность; производство строительных материалов; предприятия энергетической промышленности и др.

Радий-226 хорошо подвержен выщелачиванию из минералов содержащих уран. Этим его свойством объясняется наличие крупных количеств радия в некоторых видах подземных вод (некоторые из них, обогащенные газом радоном применяются в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах варьируется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л.

Значительной составляющей природной радиоактивности является продукт распада радия-226 - радон-222.

Радон – инертный, радиоактивный газ, без цвета и запаха с периодом полураспада 3.82 дня. Альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому большей частью концентрируется в погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д.

Считается, что до 70% действия радиации на население связано с радоном в жилых зданиях.

Главным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, гранит, мрамор, глина, шлаки, и др.);
  • почва под зданиями.

Более подробно о радоне и прибораз для его измерения: РАДИОМЕТРЫ РАДОНА И ТОРОНА .

Профессиональные радиометры радона стоят неподъемные деньги, для бытового использования - рекомендуем Вам обратить внимание на бытовой радиометр радона и торона производства Германия: Radon Scout Home .

Что такое "черные пески" и какую опасность они представляют?


«Черные пески» (цвет варьируется от светло-желтого до красно-бурого, коричневого, встречаются разновидности белого, зеленоватого оттенка и черные) представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO 4 , которые заменяются торием. Монацит насчитывает до 50-60% окисей редкоземельных элементов: окиси иттрия Y 2 O 3 до 5%, окиси тория ThO 2 до 5-10%, иногда до 28%. Попадается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород содержащих монацит, он собирается в россыпях, которые представляют собой крупные месторождения.

Россыпи монацитовых песков существующие на суше, как правило, не вносят особенного изменения в получившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области), на Урале (Красноуфимск) и др. областях создают ряд проблем, связанных с возможностью облучения.

Например, из-за морского прибоя за осенне-весенний период на побережье, в следствии естественной флотации, набирается существенное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк/кг и более), который создает на локальных участках уровни гамма-излучения порядка 3,0 и более мкЗв/час. Естественно, отдыхать на таких участках небезопасно, поэтому ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются некоторые участки побережья.

Средства измерения радиации и радиоактивности.


Для измерения уровней радиации и содержания радионуклидов в разных объектах применяются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, применяются дозиметры и поисковые дозиметры-радиометры разных типов;
  • для определения вида радионуклида и его содержания в объектах окружающей среды применяются спектрометры ИИ, которые состоят из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время присутствует большое количество дозиметров различного типа для решения различных задач радиационного контроля и имеющие широкие возможности.

Вот для примера дозиметры, которые чаще всего используются в профессиональной деятельности:

  1. Дозиметр-радиометр МКС-АТ1117М (поисковый дозиметр-радиометр) – профессиональный радиометр используется для поиска и выявления источников фотонного излучения. Имеет цифровой индикатор, возможность установки порога срабатывания звукового сигнализатора, что очень облегчает работу при обследовании территорий, проверки металлолома и др. Блок детектирования выносной. В качестве детектора применяется сцинтилляционный кристалл NaI. Дозиметр является универсальным решением различных задач, комплектуется десятком различных блоков детектирования с разными техническими характеристиками. Измерительные блоки позволяют измерять альфа, бета, гамма, рентгеновское и нейтронное излучения.

    Информация о блоках детектирования и их применению:

Наименование блока детектирования

Измеряемое излучение

Основная особенность (техническая характеристика)

Область применения

БД для альфа излучения

Диапазон измерения 3,4·10 -3 - 3,4·10 3 Бк·см -2

БД для измерения плотности потока альфа-частиц с поверхности

БД для бета излучения

Диапазон измерения 1 - 5·10 5 част./(мин·см 2)

БД для измерения плотности потока бета-частиц с поверхности

БД для гамма излучения

Чувствительность

350 имп·с -1 /мкЗв·ч -1

Диапазон измерения

0,03 - 300 мкЗв/ч

Оптимальный вариант по цене, качество, технические характеристики. Имеет широкое применение в области измерения гамма-излучения. Хороший поисковый блок детектирования для нахождения источников излучения.

БД для гамма излучения

Диапазон измерения 0,05 мкЗв/ч - 10 Зв/ч

Блок детектирования имеющий очень высокий верхний порог измерения гамма-излучения.

БД для гамма излучения

Диапазо измерения 1 мЗв/ч - 100 Зв/ч Чувствительность

900 имп·с -1 /мкЗв·ч -1

Дорогой блок детектирования, обладающий высоким диапазоном измерения и отличную чувствительность. Используется для нахождения источников излучения с сильным излучением.

БД для рентгеновского излучения

Диапазон энергии

5 - 160 кэВ

Блок детектирования для рентгеновского излучения. Широко применяется в медицине и установках работающих с выделением рентгеновского излучения маленькой энергии.

БД для нейтронного излучения

Диапазон измерения

0,1 - 10 4 нейтр/(с·см 2) Чувствительность 1,5 (имп·с -1)/(нейтрон·с -1 ·см -2)

БД для альфа, бета, гамма и рентгеновского излучения

Чувствительность

6,6 имп·с -1 /мкЗв·ч -1

Универсальный блок детектирования, который позволяет измерять альфа, бета, гамма и рентгеновское излучения. Обладает небольшой стоимостью и плохой чувствительностью. Нашел широкое примирение в области аттестация рабочих мест (АРМ), где в основном требуется проводить измерение локального объекта.

2. Дозиметр-радиометр ДКС-96 – предназначен для измерения гамма и рентгеновского излучения, альфа излучения, бета излучения, нейтронного излучения.

Во многом аналогичен дозиметру-радиометру .

  • измерение дозы и мощности амбиентного эквивалента дозы (далее дозы и мощности дозы) Н*(10) и Н*(10) непрерывного и импульсного рентгеновского и гамма-излучений;
  • измерение плотности потока альфа- и бета-излучений;
  • измерение дозы Н*(10) нейтронного излучения и мощности дозы Н*(10) нейтронного излучения;
  • измерение плотности потока гамма-излучения;
  • поиск, а так же локализация радиоактивных источников и источников загрязнений;
  • измерение плотности потока и мощности экспозиционной дозы гамма-излучения в жидких средах;
  • радиационный анализ местности с учетом географических координат, используя GPS;

Двухканальный сцинтилляционный бета-гамма-спектрометр предназначен для единовременного и раздельного определения:

  • удельной активности 137 Cs, 40 K и 90 Sr в пробах различной окружающей среды;
  • удельной эффективной активности естественных радионуклидов 40 K, 226 Ra, 232 Th в строительных материалах.

Позволяет обеспечивать экспресс-анализ стандартизованных проб плавок металла на наличие радиационного излучения и загрязнения.

9. Гамма-спектрометр на основе ОЧГ детектора Спектрометры на основе коаксиальных детекторов из ОЧГ (особо чистого германия) предназначены для регистрации гамма-излучения в диапазоне энергий от 40 кэВ до З МэВ.

    Спектрометр бета и гамма излучения МКС-АТ1315

    Спектрометр со свинцовой защитой NaI ПАК

    Портативный NaI спектрометр МКС-АТ6101

    Носимый ОЧГ спектрометр Эко ПАК

    Портативный ОЧГ спектрометр Эко ПАК

    Спектрометр NaI ПАК автомобильного исполнения

    Спектрометр MKS-AT6102

    Спектрометр Эко ПАК с электромашинным охлаждением

    Ручной ППД спектрометр Эко ПАК

Ознакомиться с другими средствами измерения для измерения ионизирующего излучения, Вы можете у нас на сайте:

  • при проведении дозиметрических измерений, если подразумевается их частое проведение с целью слежения за радиационной обстановкой, необходимо строго соблюдать геометрию и методику измерения;
  • для увеличения надежности дозиметрического контроля нужно проводить несколько измерений (но не менее 3-х), затем рассчитать среднее арифметическое;
  • при замерах фона дозиметра на местности выбирают участки, удаленные на 40 м от зданий и сооружений;
  • измерения на местности проводят на двух уровнях: на высоте 0.1 (поиск) и 1.0 м (измерение для протокола – при этом следует вращать датчик с целью определения максимального значения на дисплее) от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в на высоте 1.0 м от пола, желательно в пяти точках методом «конверта». На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    Нечто необъяснимо жуткое в этой сцене, и тому есть причина. Вы видите крупнейшее скопление, вероятно, самого токсичного вещества, когда-либо созданного человеком. Это ядерная лава или кориум.

    В течение дней и недель после аварии на Чернобыльской атомной электростанции 26 апреля 1986 года просто зайти в помещение с такой же кучей радиоактивного материала - её мрачно прозвали "слоновья нога" - означало верную смерть через несколько минут. Даже десятилетие спустя, когда была сделана эта фотография, вероятно, из-за радиации фотоплёнка вела себя странно, что проявилось в характерной зернистой структуре. Человек на фотографии, Артур Корнеев, скорее всего, посещал это помещение чаще, чем кто-нибудь другой, так что подвергся, пожалуй, максимальной дозе радиации.

    Удивительно, но, по всей вероятности, он ещё жив. История, как США получили во владение уникальную фотографию человека в присутствии невероятно токсичного материала сама по себе окутана тайной - также как и причины, зачем кому-то понадобилось делать селфи рядом с горбом расплавленной радиоактивной лавы.

    Фотография впервые попала в Америку в конце 90-х, когда новое правительство получившей независимость Украины взяло под контроль ЧАЭС и открыло Чернобыльский центр по проблемам ядерной безопасности, радиоактивных отходов и радиоэкологии. Вскоре Чернобыльский центр пригласил другие страны к сотрудничеству в проектах ядерной безопасности. Министерство энергетики США распорядилось оказать помощь, направив соответствующий приказ в Pacific Northwest National Laboratories (PNNL) - многолюдный научно-исследовательский центр в Ричленде, шт. Вашингтон.

    В то время Тим Ледбеттер (Tim Ledbetter) являлся одним из новичков в ИТ-отделе PNNL, и ему поручили создать библиотеку цифровых фотографий для Проекта по ядерной безопасности Министерства энергетики, то есть для демонстрации фотографий американской публике (точнее, для той крохотной части публики, которая тогда имела доступ в интернет). Он попросил участников проекта сделать фотографии во время поездок в Украину, нанял фотографа-фрилансера, а также попросил материалы у украинских коллег в Чернобыльском центре. Среди сотен фотографий неуклюжих рукопожатий чиновников и людей в лабораторных халатах, однако, есть с десяток снимков с руинами внутри четвёртого энергоблока, где десятилетием раньше, 26 апреля 1986 года, во время испытания турбогенератора произошёл взрыв.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум .

    Кориум формировался за пределами научно-исследовательских лабораторий минимум пять раз, говорит Митчелл Фармер (Mitchell Farmer), ведущий инженер-ядерщик в Аргоннской национальной лаборатории, ещё одном учреждении Министерства энергетики США в окрестностях Чикаго. Однажды кориум сформировался на реакторе Three Mile Island в Пенсильвании в 1979 году, однажды в Чернобыле и три раза при расплавлении реактора в Фукусиме в 2011 году. В своей лаборатории Фармер создал модифицированные версии кориума, чтобы лучше понять, как избежать подобных происшествий в будущем. Исследование субстанции показало, в частности, что полив водой после формирования кориума в реальности препятствует распаду некоторых элементов и образованию более опасных изотопов.

    Из пяти случаев формирования кориума только в Чернобыле ядерная лава смогла вырваться за пределы реактора. Без системы охлаждения радиоактивная масса ползла по энергоблоку в течение недели после аварии, вбирая в себя расплавленный бетон и песок, которые перемешивались с молекулами урана (топливо) и циркония (покрытие). Эта ядовитая лава текла вниз, в итоге расплавив пол здания. Когда инспекторы наконец проникли в энергоблок через несколько месяцев после аварии, они обнаружили 11-тонный трёхметровый оползень в углу коридора парораспределения внизу. Тогда его и назвали "слоновьей ногой". В течение последующих лет "слоновью ногу" охлаждали и дробили. Но даже сегодня её остатки всё ещё теплее окружающей среды на несколько градусов, поскольку распад радиоактивных элементов продолжается.

    Ледбеттер не может вспомнить, где конкретно он добыл эти фотографии. Он составил фотобиблиотеку почти 20 лет назад, и веб-сайт, где они размещаются, до сих пор в хорошей форме; только уменьшенные копии изображений потерялись. (Ледбеттер, всё ещё работающий в PNNL, был удивлён узнать, что фотографии до сих пор доступны в онлайне). Но он точно помнит, что никого не отправлял фотографировать "слоновью ногу", так что её, скорее всего, прислал кто-то из украинских коллег.

    Фотография начала распространяться по другим сайтам, а в 2013 году на неё наткнулся Кайл Хилл (Kyle Hill), когда писал статью о "слоновьей ноге" для журнала Nautilus. Он отследил её происхождение до лаборатории PNNL. На сайте было найдено давно потерянное описание фотографии: "Артур Корнеев, зам. директора объекта Укрытие, изучает ядерную лаву "слоновью ногу", Чернобыль. Фотограф: неизвестен. Осень 1996". Ледбеттер подтвердил, что описание соответствует фотографии.

    Артур Корнеев - инспектор из Казахстана, который занимался образованием сотрудников, рассказывая и защищая их от "слоновьей ноги" с момента её образования после взрыва на ЧАЭС в 1986 году, любитель мрачно пошутить. Скорее всего, последним с ним разговаривал репортёр NY Times в 2014 году в Славутиче - городе, специально построенном для эвакуированного персонала из Припяти (ЧАЭС).

    Вероятно, снимок сделан с более длинной выдержкой, чем другие фотографии, чтобы фотограф успел появиться в кадре, что объясняет эффект движения и то, почему наголовный фонарь выглядит как молния. Зернистость фотографии, вероятно, вызвана радиацией.

    Для Корнеева это конкретное посещение энергоблока было одним из нескольких сотен опасных походов к ядру с момента его первого дня работы в последующие дни после взрыва. Его первым заданием было выявлять топливные отложения и помогать замерять уровни радиации ("слоновья нога" изначально "светилась" более чем на 10 000 рентген в час, что убивает человека на расстоянии метра менее чем за две минуты). Вскоре после этого он возглавил операцию по очистке, когда с пути иногда приходилось убирать цельные куски ядерного топлива. Более 30 человек погибло от острой лучевой болезни во время очистки энергоблока. Несмотря на невероятную дозу полученного облучения, сам Корнеев продолжал возвращаться в спешно построенный бетонный саркофаг снова и снова, часто с журналистами, чтобы оградить их от опасности.

    В 2001 году он привёл репортёра Associated Press к ядру, где уровень радиации был 800 рентген в час. В 2009 году известный беллетрист Марсель Теру написал статью для Travel + Leisure о своём походе в саркофаг и о сумасшедшем провожатом без противогаза, который издевался над страхами Теру и говорил, что это "чистая психология". Хотя Теру именовал его как Виктора Корнеева, по всей вероятности человеком был Артур, поскольку он опускал такие же чёрные шутки через несколько лет с журналистом NY Times.

    Его нынешнее занятие неизвестно. Когда Times нашло Корнеева полтора года назад, он помогал в строительстве свода для саркофага - проекта стоимостью $1,5 млрд, который должен быть закончен в 2017 году. Планируется, что свод полностью закроет Убежище и предотвратит утечку изотопов. В свои 60 с чем-то лет Корнеев выглядел болезненно, страдал от катаракт, и ему запретили посещение саркофага после многократного облучения в предыдущие десятилетия.

    Впрочем, чувство юмора Корнеева осталось неизменным . Похоже, он ничуть не жалеет о работе своей жизни: "Советская радиация, - шутит он, - лучшая радиация в мире" .


Радиация ассоциируется у многих с неизбежными болезнями, которые трудно поддаются лечению. И это отчасти, правда. Самое страшное и смертоносное оружие называется ядерным. Поэтому не без оснований считают радиацию одним из самых больших бедствий на земле. Что такое радиация и каковы ее последствия? Рассмотрим эти вопросы в данной статье.

Радиоактивность - это ядра некоторых атомов, которые отличаются неустойчивостью. В результате этого свойства происходит распад ядра, который обусловлен ионизирующим излучением. Это излучение называют радиацией. Она обладает энергией большой мощности. заключается в изменении состава клеток.

Различают несколько видов радиации в зависимости от уровня ее влияния на

Последние два вида - это нейтроны и С этим видом радиационного излучения мы встречаемся в повседневной жизни. Оно самое безопасное для человеческого организма.

Поэтому говоря о том, что такое радиация, нужно учитывать уровень ее излучения и вред наносимый живым организмам.

Радиоактивные частицы имеют огромную энергетическую мощность. Они проникают в организм и сталкиваются с его молекулами и атомами. В результате этого процесса происходит их разрушение. Особенностью организма человека является то, что он в большинстве своем состоит из воды. Поэтому воздействию радиоактивных частиц подвергаются молекулы именно этого вещества. В итоге, возникают очень вредные для организма человека соединения. Они становятся частью всех химических процессов, происходящих в живом организме. Все это приводит к разрушению и уничтожению клеток.

Зная, что такое радиация, нужно также знать, какой вред она наносит организму.

Воздействие радиации на человека делится на три основных категории.

Основной вред наносится генетическому фону. То есть, в результате заражения происходит изменение и уничтожение половых клеток и их структуры. Это отражается на потомстве. Очень много рождается детей с отклонениями и уродствами. В основном это происходит в тех районах, которые подвержены радиационному заражению, то есть находятся рядом с и другими предприятиями такого уровня.

Второй вид заболеваний, возникающих под воздействием радиации, это наследственные заболевания на генетическом уровне, которые появляются через некоторое время.

Третий вид - это иммунные заболевания. Организм под влиянием радиоактивного излучения становится подвержен вирусам и болезням. То есть снижается иммунитет.

Спасением от радиации является расстояние. Допустимый уровень радиации для человека равен 20 микрорентген. В этом случае она не оказывает влияния на организм человека.

Зная, что такое радиация, можно в определенной мере обезопасить себя от ее воздействия.

Немного теории

Радиоактивностью называют неустойчивость ядер некоторых атомов, которая проявляется в их способности к самопроизвольному превращению (по научному - распаду), что сопровождается выходом ионизирующего излучения (радиации).

Энергия такого излучения достаточно велика, поэтому она способна воздействовать на вещество, создавая новые ионы разных знаков. Вызывать радиацию с помощью химических реакций нельзя, это полностью физический процесс.

Различают несколько видов радиации

  • Альфа-частицы - это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.
  • Бета-частицы - обычные электроны.
  • Гамма-излучение - имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.
  • Нейтроны - это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.
  • Рентгеновские лучи - похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце - один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти.

Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Таким образом, последствия радиации, которые могут привести к фатальным случаям, бывают как при однократном пребывании у сильнейшего источника излучения (естественного или искусственного), так и при хранении слаборадиоактивных предметов у себя дома (антиквариата, обработанных радиацией драгоценных камней, изделий из радиоактивного пластика).

Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Впрочем, по этой же причине достаточным средством защиты от радиации данного типа является любой слой твердого или жидкого вещества, например, обычная одежда.

По мнению специалистов, ультрафиолетовое излучение или излучение лазеров нельзя считать радиоактивным.

Чем же отличается радиация и радиоактивность

Источники радиации - ядерно-технические установки (ускорители частиц, реакторы, рентгеновское оборудование) и радиоактивные вещества. Они могут существовать значительное время, никак не проявляя себя, и вы можете даже не подозревать, что находитесь рядом с предметом сильнейшей радиоактивности.

Единицы измерения радиоактивности

Радиоактивность измеряется в Беккерелях (БК), что соответствует одному распаду в секунду. Содержание радиоактивности в веществе также часто оценивают на единицу веса - Бк/кг, или объема - Бк/куб.м.

Иногда встречается такая единица как Кюри (Ки). Это огромная величина, равная 37 миллиардам Бк. При распаде вещества источник испускает ионизирующее излучение, мерой которого является экспозиционная доза. Ее измеряют в Рентгенах (Р). 1 Рентген величина достаточно большая, поэтому на практике используют миллионную (мкР) или тысячную (мР) долю Рентгена.

Бытовые дозиметры измеряют ионизацию за определенное время, то есть не саму экспозиционную дозу, а ее мощность. Единица измерения - микрорентген в час. Именно этот показатель наиболее важен для человека, так как позволяет оценить опасность того или иного источника радиации.

Радиация и здоровье человека

Воздействие радиации на организм человека называют облучением. Во время этого процесса энергия радиация передается клеткам, разрушая их. Облучение может вызывать всевозможные заболевания - инфекционные осложнения, нарушения обмена веществ, злокачественные опухоли и лейкоз, бесплодие, катаракту и многое другое. Особенно остро радиация воздействует на делящиеся клетки, поэтому она особенно опасна для детей.

Организм реагирует на саму радиацию, а не на ее источник. Радиоактивные вещества могут проникать в организм через кишечник (с пищей и водой), через легкие (при дыхании) и даже через кожу при медицинской диагностике радиоизотопами. В этом случае имеет место внутреннее облучение.

Кроме того, значительное влияние радиации на организм человека оказывает внешнее облучение, т.е. источник радиации находится вне тела. Наиболее опасно, безусловно, внутреннее облучение.

Как вывести радиацию из организма

Этот вопрос, безусловно, волнует многих. К сожалению, особо эффективных и быстрых способов вывода радионуклидов из организма человека не существует. Некоторые продукты питания и витамины помогают очистить организм от небольших доз радиации. Но если облучение серьезное, то остается только надеяться на чудо. Поэтому лучше не рисковать. И если существует даже малейшая опасность подвергнуться радиации, необходимо со всей быстротой уносить ноги из опасного места и вызывать специалистов.

Является ли компьютер источником радиации

Этот вопрос, в век распространения компьютерной техники, волнует многих. Единственной частью компьютера, которая теоретически может быть радиоактивной является монитор, да и то, только электро-лучевой. Современные дисплеи, жидкокристаллические и плазменные, радиоактивными свойствами не обладают.

ЭЛТ мониторы, как и телевизоры, являются слабым источником излучения рентгеновского типа. Оно возникает на внутренней поверхности стекла экрана, однако благодаря значительной толщине этого же стекла, оно и поглощает большую часть излучения. До настоящего времени не обнаружено никакого влияния ЭЛТ мониторов на здоровье. Впрочем, при повсеместном применении жидкокристаллических дисплеев этот вопрос теряет былую актуальность.

Может ли человек стать источником радиации

Радиация, воздействуя на организм, не образует в нем радиоактивных веществ, т.е. человек не превращается сам в источник радиации. Кстати, рентгеновские снимки, вопреки распространенному мнению, также безопасны для здоровья. Таким образом, в отличие от болезни, лучевое поражение от человека к человеку передаваться не может, зато радиоактивные предметы, несущие в себя заряд, могут быть опасны.

Измерение уровня радиации

Измерить уровень радиации можно с помощью дозиметра. Бытовые приборы просто не заменимы для тех, кто хочет максимально обезопасить себя от смертельно опасного влияния радиации.

Основное предназначение бытового дозиметра - измерение мощности дозы радиации в том месте, где находится человек, обследование определенных предметов (грузов, стройматериалов, денег, продуктов питания, детских игрушек). Купить прибор, измеряющий радиацию, просто необходимо тем, кто часто бывает в районах радиационного загрязнения, вызванных аварией на Чернобыльской АЭС (а такие очаги присутствуют практически во всех областях европейской территории России).

Поможет дозиметр и тем, кто бывает в незнакомой местности, удаленной от цивилизации - в походе, собирая грибы и ягоды, на охоте. Обязательно необходимо обследовать на радиационную безопасность место предполагаемого строительства (или покупки) дома, дачи, огорода или земельного участка, иначе вместо пользы подобная покупка принесет только смертельно опасные заболевания.

Очистить продукты, землю или предметы от радиации практически невозможно, поэтому единственный способ обезопасить себя и свою семью - держаться от них подальше. А именно бытовой дозиметр поможет выявить потенциально опасные источники.

Нормы радиоактивности

В отношении радиоактивность существует большое число норм, т.е. стараются нормировать практически все. Другое дело, что нечистые на руку продавцы, в погоне за большой прибылью, не соблюдают, а иногда и откровенно нарушают нормы, установленные законодательством.

Основные нормы, установленные в России, прописаны в Федеральном законе №3-ФЗ от 05.12.1996 г "О радиационной безопасности населения" и в Санитарных правилах 2.6.1.1292-03 "Нормы радиационной безопасности".

Для вдыхаемого воздуха, воды и продуктов питание регламентировано содержание как техногенных (полученных в результате деятельности человека), так и естественных радиоактивных веществ, которые не должны превышать нормы, установленные СанПиН 2.3.2.560-96.

В строительных материалах нормируется содержания радиоактивных веществ семейства тория и урана, а также калия-40, удельная эффективная активность их рассчитывается по специальным формулам. Требования к строительным материалам также указаны в ГОСТ.

В помещениях регламентируется суммарное содержание торона и радона в воздухе - для новых зданий оно должно быть не больше 100 Бк (100 Бк/м3), а для уже эксплуатируемых - менее 200 Бк/м3. В Москве применяются также дополнительные нормы МГСН2.02-97, где регламентируются максимально допустимые уровни ионизирующего излучения и содержание радона на участках застройки.

Для медицинской диагностики предельные дозовые значения не обозначены, однако выдвигаются требований минимально достаточных уровней облучения, чтобы получить качественную диагностическую информацию.

В компьютерной технике регламентируется предельный уровень излучения для электро-лучевых (ЭЛТ) мониторов. Мощность дозы рентгеновского изучения на любой точке на расстоянии 5 см от видеомонитора или персонального компьютера не должна превышать 100 мкР в час.

Достоверно проверить уровень радиационной безопасности можно только с помощью персонального бытового дозиметра.

Проверить же соблюдаются ли производителями установленные законодательно нормы можно только самостоятельно, используя миниатюрный бытовой дозиметр. Пользоваться им очень просто, достаточно нажать одну кнопку и сверить показания на жидкокристаллическом дисплее прибора с рекомендованными. Если норма значительно превышена, значит данный предмет представляет собой угрозу жизни и здоровья, и о нем следует сообщить в МЧС, чтобы он был уничтожен.

Как защититься от радиации

Всем хорошо известно о высоком уровне радиационной опасности, однако вопрос как защититься от радиации становится все более актуальным. Защититься от радиации можно временем, расстоянием и веществом.

Защищаться от радиации целесообразно только тогда, когда ее дозы в десятки, сотни раз превышают природный фон. В любом случае на вашем столе обязательно должны быть свежие овощи, фрукты, зелень. Как считают врачи, даже при сбалансированной диете организм лишь наполовину обеспечивается незаменимыми витаминами и минералами, с чем и связано учащение онкологических заболеваний.

Как показали наши исследования, эффективной защитой против радиации в малых и средних дозах, а также средствами снижения риска развития опухолей является селен. Он содержится в пшенице, белом хлебе, орехах кешью, редиске, но в малых дозах. Гораздо эффективнее принимать назначенные врачом биологически активные добавки с этим элементом.

Защита временем

Чем короче время пребывания рядом с источником радиации, тем меньшую дозу облучения получает человек. Кратковременный контакт даже с мощнейшим рентгеновским излучением во время медицинских процедур не принесет сильного вреда, однако если рентгеновский аппарат оставить на более длительный срок, он просто "сожжет" живые ткани.

Защита от разных типов излучения экранированием

Защита расстоянием заключается в том, что излучение уменьшается при удалении от компактного источника. То есть если на расстоянии 1 метра от источника радиации дозиметр показывает 1000 микрорентген в час, то на расстоянии 5 метров - около 40 мкР/час, вот почему часто источники радиации так сложно обнаружить. На больших расстояниях они "не ловятся", надо четко знать место, где искать.

Защита веществом

Необходимо стремиться к тому, чтобы между вами и источником радиации было как можно больше вещества. Чем оно плотнее и чем его больше, тем значительнее часть радиации, которую оно может поглотить.

Говоря о главном источнике радиации в помещениях - радоне и продуктах его распада, следует отметить, что значительно уменьшить радиацию можно регулярным проветриванием.

От альфа-излучения можно защититься обычным листом бумаги, респиратором и резиновыми перчатками, для бета-излучения уже понадобится тонкий слой алюминия, стекло, противогаз и плексиглас, для борьбы с гамма-излучением эффективны тяжелые металлы типа стали, свинца, вольфрама, чугуна, а от нейтронов могут спасти вода и полимеры типа полиэтилена.

При постройке дома, внутренней отделке, рекомендуется использовать радиационно безопасные материалы. Так, дома из дерева и бруса значительно безопаснее в радиационном отношении, чем кирпичные. Силикатный кирпич "фонит" меньше, чем сделанный из глины. Производители изобрели специальную систему маркировки, которая подчеркивает экологическую безопасность их материалов. Если вы волнуетесь о безопасности будущих поколений, выбирайте именно такие.

Существует мнение, что от радиации может защитить алкоголь. В этом есть доля истины, алкоголь снижает восприимчивость к радиации, однако современные противорадиационные препараты гораздо надежнее.

Чтобы точно знать, когда надо опасаться радиоактивных веществ, рекомендуем купить дозиметр радиации. Этот небольшой прибор всегда предупредит вас, если вы окажетесь рядом с источником излучения, и вы успеете выбрать наиболее подходящий метод защиты.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека