Теория относительности эйнштейна оказалась ошибочной.

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга - как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно - или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит - то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Классическая физика считала тяготение рядовой силой среди множества природных сил (электрических, магнитных и т.д.). Тяготению было предписано "дальнодействие" (проникновение "сквозь пустоту") и удивительная способность придавать равное ускорение телам разных масс.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения.

Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация - это следствие деформации ("искривления") упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время "прогибается" под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате "продавливания" пространства-времени тяжелым шаром - Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Вначале обсуждается равенство ускорений свободного падения для тел разных масс (то, что массивный ключ и легонькая спичка одинаково быстро падают со стола на пол). Как подметил Эйнштейн, это уникальное свойство делает тяжесть очень похожей на инерцию.

В самом деле, ключ и спичка ведут себя так, как если бы они двигались в невесомости по инерции, а пол, комнаты с ускорением придвигался к ним. Достигнув ключа и спички, пол испытал бы их удар, а затем давление, т.к. инерция ключа и спички сказалась бы при дальнейшем ускорении пола.

Это давление (космонавты говорят - "перегрузка") называется силой инерции. Подобная сила всегда приложена к телам в ускоренных системах отсчета.

Если ракета летит с ускорением, равным ускорению свободного падения на земной поверхности (9,81 м/сек), то сила инерции будет играть роль веса ключа и спички. Их "искусственная" тяжесть будет точно такой же, как естественная на поверхности Земли. Значит, ускорение системы отсчета - это явление, вполне подобное гравитации.

Наоборот, в свободно падающем лифте естественная тяжесть устраняется ускоренным движением системы отсчета кабины "вдогонку" за ключом и спичкой. Разумеется, классическая физика не видит в этих примерах истинного возникновения и исчезновения тяжести. Тяготение лишь имитируется или компенсируется ускорением. Но в ОТО сходство инерции и тяжести признается гораздо более глубоким.

Эйнштейн выдвинул локальный принцип эквивалентности инерции и тяготения, заявив, что в достаточно малых масштабах расстояний и длительностей одно явление невозможно отличить от другого никаким экспериментом. Таким образом, ОТО еще глубже изменила научные представления о мире. Потерял универсальность первый закон ньютоновской динамики - оказалось, что движение по инерции может быть криволинейным и ускоренным. Отпала надобность в понятии тяжелой массы. Изменилась геометрия Вселенной: вместо прямого евклидовского пространства и равномерного времени появилось искривленное пространство-время, искривленный мир. Столь резкой перестройки воззрений на физические первоосновы мироздания не знала история науки.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, один из примеров - луч света, проходящий около Солнца. И ньютоновская механика, и ОТО признают, что он должен отклониться к Солнцу (падать). Однако ОТО предсказывает вдвое большее смещение луча. Наблюдения во время солнечных затмений доказали правоту предсказания Эйнштейна. Другой пример. У ближайшей к Солнцу планеты Меркурий незначительные отклонения от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона. Но именно такую орбиту дает вычисление по формулам ОТО. Замедлением времени в сильном гравитационном поле объясняют уменьшение частоты световых колебаний в излучении белых карликов - звезд очень большой плотности. А в последние годы этот эффект удалось зарегистрировать и в лабораторных условиях. Наконец, очень велика роль ОТО в современной космологии - науке о строении и истории всей Вселенной. В этой области знания также найдено много доказательств эйнштейновской теории тяготения. На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

На выступлении 27 апреля 1900 года в королевском институте Великобритании лорд Кельвин сказал: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка – это постоянство скорости света и кривая интенсивности излучения в зависимости от длины волны. Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать.» Лорд Кельвин оказался абсолютно прав с указанием ключевых направлений исследований в физике, но не верно оценил их важность: родившиеся из них теория относительности и квантовая теория оказались бескрайними просторами для исследований, занимающих учёные умы вот уже на протяжении более сотни лет.

Так как не описывала гравитационное взаимодействие, Эйнштейн вскоре после её завершения приступил к разработке общей версии этой теории, за созданием которой он провёл 1907-1915 годы. Теория была прекрасной в своей простоте и согласованности с природными явлениями за исключением единственного момента: во времена составления теории Эйнштейном ещё не было известно об расширении Вселенной и даже о существовании других галактик, поэтому учёными того времени считалось что Вселенная существовала бесконечно долго и была стационарна. При этом из закона всемирного тяготения Ньютона следовало, что неподвижные звёзды должны были в какой-то момент просто быть стянуты в одну точку.

Не найдя для этого явления лучшего объяснения, Эйнштейн ввёл в свои уравнения , которая численно компенсировала и позволяла таким образом стационарной Вселенной существовать без нарушения законов физики. В последствии Эйнштейн стал считать введение космологической постоянной в свои уравнения своей самой большой ошибкой, так как она не была необходима для теории и ничем кроме выглядящей на тот момент стационарной Вселенной не подтверждалось. А в 1965 году было обнаружено реликтовое излучение, что означало что Вселенная имела начало и постоянная в уравнениях Эйнштейна оказалось и вовсе не нужна. Тем не менее космологическая постоянная всё-таки была найдена в 1998 году: по полученным телескопом «Хаббл» данным, далёкие галактики не тормозили свой разлёт в следствии притяжения гравитацией, а даже ускоряли свой разлёт.

Основы теории

Кроме основных постулатов специальной теории относительности, здесь добавилось и новое: механика Ньютона давала численную оценку гравитационного взаимодействия материальных тел, но не объясняла физику этого процесса. Эйнштейну же удалось описать это посредством искривления массивным телом 4-мерного пространства-времени: тело создаёт вокруг себя возмущение, в результате которого окружающие тела начинают двигаться по геодезическим линиям (примерами таких линий являются линии земной широты и долготы, которые для внутреннего наблюдателя кажутся прямыми линиями, но в реальности немного искривлены). Таким же образом откланяются и лучи света, что искажает видимую картину за массивным объектом. При удачном совпадении положений и масс объектов это приводит к (когда искривление пространства-времени выступает в роли огромной линзы, делающей источник далёкого света намного ярче). Если же параметры совпадают не идеально – это может приводить к образованию «креста Эйнштейна» или «круга Эйнштейна» на астрономических снимках далёких объектов.

Среди предсказаний теории также было гравитационное замедление времени, (которое при приближении к массивному объекту действовало на тело точно также, как и замедление времени в следствии ускорения), гравитационное (когда луч света, испущенный массивным телом, уходит в красную часть спектра в следствии потери им энергии на работу выхода из «гравитационного колодца»), а также гравитационные волны (возмущение пространства-времени, которое производит любое тело имеющее массу в процессе своего движения).

Статус теории

Первое подтверждение общей теории относительности было получено самим Эйнштейном в том же 1915 году, когда она и была опубликована: теория с абсолютной точностью описывала смещение перигелия Меркурия, которое до этого никак не могли объяснить при помощи ньютоновской механики. С того момента было открыто множество других явлений, которые предсказывались теорией, но на момент её публикации были слишком слабы чтобы их можно было засечь. Последним таким открытием на данный момент стало открытие гравитационных волн 14 сентября 2015 года.

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

(1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца. Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час - скорость человека плюс скорость поезда. Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна , независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет. Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов ». Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc 2 , в которой E - энергия, m - масса, а c - скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба .


Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности . Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.


Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой. В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры ». «Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии - науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Общая теория относительности (ОТО) — геометрическая теория тяготения, опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время — самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что подтвердило предсказания общей теории относительности.

С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий. Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Основные принципы общей теории относительности

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временную компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу. Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10?3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10?9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10?12—10?13 (Брагинский, Дикке и т. д.). Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Кривизна пространства-времени

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны. Аналогично, в пространстве-времени девиация геодезических (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно в способе связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

Пространство-время ОТО и сильный принцип эквивалентности

Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так:
Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности.

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в самой окончательной форме теории он, на самом деле, не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривленным — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел.

Важно отметить, что основным отличием пространства-времени общей теории относительности от пространства-времени специальной теории относительности является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени специальной теории относительности этот тензор тождественно равен нулю и пространство-время является плоским.

По этой причине не совсем корректным является название «общая теория относительности». Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом.

Основные следствия ОТО

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:
1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.
2. Отклонение светового луча в гравитационном поле Солнца.
3. Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1 % (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Большой секрет полишинеля

Александр Гришаев, фрагмент из статьи «Бирюльки и фитюльки всемирного тяготения »

«У англичан ружья кирпичом не чистят: пусть чтобы и у нас не чистили, а то, храни бог войны, они стрелять не годятся…» – Н. Лесков.

8 параболических зеркал комплекса приёмных и передающих антенн АДУ-1000 – часть приёмного комплекса «Плутон» Центра дальней космической связи…

В первые годы становления исследований дальнего космоса был обидно потерян целый ряд советских и американских межпланетных станций. Даже если пуск проходил без сбоев, как говорят специалисты, «в штатном режиме», все системы работали нормально, нормально проходили все заранее предусмотренные корректировки орбиты, связь с аппаратами неожиданно прерывалась.

Доходило до того, что, в очередное благоприятное для запуска «окно», одинаковые аппараты с одинаковой программой запускали пачками, один за другим вдогонку – в надежде на то, что хотя бы один удастся довести до победного конца. Но – куда там! Существовала некая Причина, обрывавшая связь на подлёте к планетам, которая поблажек не давала.

Конечно, об этом помалкивали. Публике-дуре сообщалось, что станция прошла на расстоянии, скажем, 120 тысяч километров от планеты. Тон этих сообщений был таким бодрым, что невольно думалось: «Пристреливаются ребята! Сто двадцать тысяч – это неплохо. Могла бы ведь и на трёхстах тысячах пройти! Даёшь новые, более точные запуски!» Никто и не догадывался о накале драматизма – о том, что учёные мужи чего-то там в упор не понимали .

В конце концов, решили испробовать вот что. Сигнал, которым ведётся связь, да будет вам известно, издавна представляют в виде волн – радиоволн. Проще всего представить, что собой представляют эти волны можно на «эффекте домино». Сигнал связи распространяется в пространстве, подобно волне падающих доминошных костяшек.

Скорость распространения волны зависит от скорости падения каждой отдельной из костяшек, а так как все костяшки одинаковые и падают за равное время, то скорость волны есть величина постоянная. Расстояние между костяшками физики называют «длина волны» .

Пример волны – «эффект домино»

Теперь положим, что у нас есть небесное тело (назовём его Венера), помеченная на этом рисунке красным каракулем. Допустим, что, если мы толкаем начальную костяшку, то каждая последующая костяшка падёт на следующую за одну секунду. Если от нас до Венеры помещается ровно 100 костяшек, волна достигнет её после того, как последовательно упадут все 100 костяшек, затратив по одной секунде. Итого, волна от нас дойдёт до Венеры за 100 секунд.

Это в том случае, если Венера стоит на месте. А если Венера не стоит на месте? Скажем, покуда падают 100 костяшек, наша Венера успевает «отползти» на расстояние, равное расстоянию между несколькими костяшками (нескольким длинам волн) что будет тогда?

Академики решили, а что если волна догонит Венеру по тому самому закону, которым пользуются школьники младших классов в задачках типа: «Из пункта А выходит поезд со скоростью а км/час, а из пункта B одновременно с ним выходит пешеход со скоростью b в том же направлении, через какое время поезд догонит пешехода?».

Вот когда академики сообразили, что нужно решать вот такую нехитрую для младших школьников задачку, то дело пошло на лад. Если бы не эта сообразительность – не видать бы нам выдающихся достижений межпланетной космонавтики.

И что ж здесь такого хитрого, всплеснёт руками неискушённый в науках Незнайка?! И напротив, искушенный в науках Знайка возопит: караул, держи проходимца, это лженаука! По настоящей, правильной науке, правильно, эта задача должна решаться совершенно иначе! Ведь мы имеем дело не с какими-то там тихоходными параходами-лисопедистами, а с сигналом, мчащимся вдогонку за Венерой со скоростью света , который, как бы вы, или Венера, быстро ни бежали, всё равно догоняет вас со скоростью света! Более того, если вы броситесь ему навстречу, быстрей вы с ним не встретитесь!

Принципы относительности

– Это как же, – воскликнет Незнайка, – выходит, что, если из пункта B мне, находящемуся в звездолёте в пункте A дадут знать, что у них на борту началась опасная эпидемия, от которой у меня есть средство, мне бесполезно разворачиваться им навстречу, т.к. раньше мы всё равно не встретимся, если высланный ко мне звездолёт движется со световой скоростью? И это что значит, – я могу с чистой совестью продолжать свой путь в пункт C с целью доставить груз подгузников для мартышек, которые должны родиться аккурат в следующем месяце?

– Именно так, – ответит вам Знайка, – если бы вы были на велосипеде, то вам нужно было бы ехать так, как показывает стрелка пунктиром – навстречу выехавшему вам автомобилю. Но, если на встречу с вами движется светоскоростное транспортные средство, то будете ли вы двигаться ему навстречу или уходить от него, или останетесь на месте, не имеет никакого значения – время встречи изменить нельзя .

– Это как же так, – вернётся к нашим доминошкам Незнайка, – костяшки что ли быстрей начнут падать? Не поможет – это будет просто задачка про Ахилла, догоняющего черепаху, как бы ни бежал быстро Ахилл, всё равно ему потребуется какое-то время, чтобы пройти дополнительное расстояние, пройденное черепахой.

Нет, здесь всё круче – если вас догоняет луч света, то вы, двигаясь, растягиваете пространство. Поставьте те же самые доминошки на резиновый бинт и тяните его – красный крестик на нем будет перемещаться, но переместятся и костяшки, расстояние между костяшками увеличивается, т.е. увеличивается длина волны, и, таким образом между вами и точкой старта волны, будет всё время одинаковое количество костяшек. Во как!

Это я популярно изложил основы эйнштейновской Теории Относительности , единственно правильной, научной теории, по которой и следовало считать прохождение субсветового сигнала, в том числе, при расчётах режимов связи с межпланетными зондами.

Заострим один момент: в релятивистских теориях (а их две: СТО – специальная теория относительности и ОТО – общая теория относительности) скорость света абсолютна и не может быть превышена никаким образом. И один полезный термин, которым обозначается эффект увеличения расстояния между костяшками, это называется «Эффект Доплера » – эффект увеличения длины волны, если волна идёт вдогонку движущемуся объекту, и эффект сокращения длины волны, если объект движется навстречу волне.

Вот и считали академики по единственно правильной теории, только зонды «за молоком» уходили. А между тем, в 60-х годах 20 столетия в ряде стран производилась радиолокация Венеры . При радиолокации Венеры этот постулат релятивистского сложения скоростей можно проверить.

Американец Б. Дж. Уоллес в 1969 году в статье «Радарная проверка относительной скорости света в пространстве» провёл анализ восьми радарных наблюдений Венеры, опубликованных в 1961 г. Анализ убедил его в том, что скорость радиолуча (вопреки теории относительности ) алгебраически складывается со скоростью вращения Земли. В последующем у него возникли проблемы с публикацией материалов по этой теме.

Перечислим статьи, посвящённые упомянутым опытам:

1. В.А. Котельников и др. «Радиолокационная установка, использовавшаяся при радиолокации Венеры в 1961 г.» Радиотехника и электроника, 7, 11 (1962) 1851.

2. В.А. Котельников и др. «Результаты радиолокации Венеры в 1961 г.» Там же, стр.1860.

3. В.А. Морозов, З.Г. Трунова «Анализатор слабых сигналов, использовавшийся при радиолокации Венеры в 1961 г.» Там же, стр.1880.

Выводы , которые были сформулированы в третьей статье, доступны для понимания даже Незнайке, разобравшемуся в теории падения доминошек, которая изложена здесь в начале.

В последней статье в той части, где они описали условия обнаружения отражённого от Венеры сигнала, была следующая фраза: «Под узкополосной составляющей понимается составляющая эхо-сигнала, соответствующая отражению от неподвижного точечного отражателя… »

Здесь «узкополосная составляющая» – это обнаруженная составляющая вернувшегося от Венеры сигнала, и обнаруживается она в том случае, если Венеру считать… неподвижной ! Т.е. ребята не написали прямо, что эффект Доплера не обнаруживается , они вместо этого написали, что сигнал распознаётся приёмником только в том случае, если не принимать во внимание движение Венеры в попутном с сигналом направлении, т.е. когда эффект Доплера равен нулю по любой теории, но, раз Венера двигалась, то, стало быть эффект удлинения волн не имел места, что предписывалось теорией относительности .

К великой печали теории относительности, Венера не растягивала пространство, и «костяшек домино» укладывалось значительно больше к моменту прихода сигнала к Венере, чем во время его старта с Земли. Венера, подобно Ахилловой черепахе, успевала отползти от шагов догоняющих её со скоростью света волн.

Очевидно, и американские исследователи поступали аналогично, о чём говорит упомянутый выше случай с Уоллесом , которому не позволили опубликовать статью по интерпретации полученных в ходе сканирования Венеры результатов. Так что комиссии по борьбе с лженаукой исправно действовали не только в тоталитарном Советском Союзе .

Между прочим, удлинение волн, как мы выяснили, по теории должно свидетельствовать об удалении космического объекта от наблюдателя, и его называют красным смещением , и это самое красное смещение, обнаруженное Хабблом в 1929 году, лежит в основе космогонической теории Большого Взрыва.

Локация Венеры показала отсутствие этого самого смещения , и с этих пор, с момента успешных результатов локации Венеры, эта теория – теория Большого Взрыва – как и гипотезы «чёрных дыр » и прочей релятивистской чепухи, переходят в разряд научной фантастики. Фантастики, за которую дают Нобелевские премии не по литературе, а по физике!!! ЧуднЫ дела твои, Господи!

P.S. К 100-летию СТО и совпавшему с ним 90-летию ОТО обнаружилось, что ни та, ни другая теория экспериментально не подтверждены! По случаю юбилея, был запущен проект « Gravity Probe B (GP-B) » стоимостью в 760 миллионов долларов, который должен был дать хотя бы одно подтверждение этих нелепых теорий, однако всё закончилось большим конфузом. Следующая статья как раз об этом…

ОТО Эйнштейна: «а король-то – голый!»

«В июне 2004 года Генеральная Ассамблея ООН постановила провозгласить 2005 год Международным годом физики. Ассамблея предложила ЮНЕСКО (Организации Объединенных Наций по вопросам образования, науки и культуры) организовать мероприятия по проведению Года в сотрудничестве с физическими обществами и другими заинтересованными группами во всём мире...» – Сообщение из «Бюллетеня ООН »

Ещё бы! – В следующем году исполнялось 100 лет Специальной Теории Относительности (СТО ), 90 лет – Общей Теории Относительности (ОТО ) – сто лет беспрерывного триумфа новой физики, низвергнувшей с пьедестала архаичную ньютоновскую физику, так полагали чиновники из ООН, предвкушая в следующем году празднества и чествования величайшего гения всех времён и народов а также его последователей.

Вот только последователи лучше других знали, что «гениальные» теории почти за сто лет себя никак не проявили: не было сделано на их основе предсказаний новых явлений и не сделано объяснений уже открытых, но не объяснённых классической ньютоновской физикой. Вообще ничего, НИ-ЧЕ-ГО-ШЕ-НЬКИ!

У ОТО не было ни единого экспериментального подтверждения!

Известно было только, что теория – гениальная, вот только, что с неё толку – никто не знал. Ну да, она исправно кормила обещаниями и завтраками, под которые отпускалось немеряно бабла, а на выходе – фантастические романы о чёрных дырах , за которые давали Нобелевские премии не по литературе, а по физике, строились коллайдеры , один за другим, один больше другого, по всему миру плодились гравитационные интерферометры, в которых, перефразируя Конфуция, в «тёмной материи», искали чёрную кошку, которой там к тому же не было, да и самой «чёрной материи» тоже никто в глаза не видывал.

Поэтому в апреле 2004 года стартовал амбициознейший проект, который тщательнейшим образом готовился в течение примерно сорока лет и на заключительный этап которого отпускалось 760 миллионов долларов – «Gravity Probe B (GP-B)» . Гравитационная проба Б должна была на прецизионные гироскопы (сиречь – волчки) намотать, ни больше ни меньше, эйнштейновское пространство-время, в количестве 6,6 угловых секунд, примерно, за год полёта – аккурат к великому юбилею.

Сразу после запуска, ждали победных реляций, в духе «Адъютанта его Превосходительства» – «литерный» проследовал N-й километр: «Первая угловая секунда пространства-времени успешно намотана». Но победных реляций, по которым так истосковались верующие в самый грандиозный лохотрон 20 века , как-то всё не следовало.

А без победных реляций какой нахрен юбилей – толпы врагов самого прогрессивного учения с перьями и калькуляторами наперевес так и ждут, как бы оплевать великое учение Эйнштейна. Так и спустили «международный год физики» на тормозах – прошёл он тихо и незаметно.

Победных реляций не последовало и сразу после завершения миссии, в августе юбилейного года: последовало только сообщение, что всё путём, гениальная теория подтвердилась, токо мы вот результаты немножко обработаем, аккурат через годик будет точный ответ. Ответа не последовало и через год, и через два. В конце концов, обещали окончательно обработать результаты к марту 2010 года.

И где ж тот результат?! Прогуглив Интернет, нашёл вот эту любопытную заметку, в ЖЖ одного блогера :

Gravity Probe B (GP-B) – по следам $760 млн . $

Итак – современная физика не сомневается в ОТО, казалось бы, зачем тогда нужен эксперимент стоимостью в 760 млн. долларов, направленный на подтверждение эффектов ОТО?

Ведь это нонсенс – это то же самое, что потратить практически миллиард к примеру на подтверждение закона Архимеда. Тем не менее, судя по результатам эксперимента, эти деньги были направлены отнюдь не на эксперимент, деньги были направлены на пиар .

Эксперимент проводился с помощью запущенного 20 апреля 2004 года спутника, оснащённого аппаратурой для измерения эффекта Лензе-Тирринга (как прямое следствие ОТО). Спутник Gravity Probe B нёс на борту самые точные на тот день гироскопы в мире. Схема эксперимента достаточно хорошо описана в Викпедии .

Уже в период сбора данных начали возникать вопросы по схеме эксперимента и точности аппаратуры. Ведь, несмотря на громадный бюджет, аппаратура, предназначенная для измерений сверхтонких эффектов, никогда не тестировалась в космосе. В ходе сбора данных выявились вибрации из-за кипения гелия в дьюаре, были непредвиденные остановки гиросов с последующим раскручиванием из-за сбоев в электронике под воздействием энергетичных космических частиц; были отказы компьютера и потери массивов «данных науки », а самой существенной проблемой оказался «polhode»-эффект.

Концепция «polhode» корнями уходит в 18 столетие, когда выдающийся математик и астроном Леонард Эйлер получил систему уравнений свободного движения твёрдых тел. В частности, Эйлер и его современники (Даламбер, Лагранж) исследовали колебания (весьма небольшие) в замерах широты Земли, которые имели место, видимо, из-за колебаний Земли относительно оси вращения (полярной оси)…

GP-B-гироскопы, попавшие в книгу Гиннеса как наиболее сферические объекты, когда-либо сделанные руками человека. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Следуя за обсуждением осевой прецессии, вы вправе задавать прямой вопрос: почему GP-B-гироскопы, попавшие в книгу Гиннеса как наиболее сферические объекты, тоже демонстрируют осевую прецессию? Действительно, в совершенно сферичном и однородном теле, в котором все три основных оси инерции являются идентичными, polhode-период вокруг любой из этих осей был бы бесконечно большим и для всех практических целей его как бы не будет.

Однако всё же GP-B роторы – не «совершенные» сферы. Шарообразность и однородность сплавленного кварцевого субстрата позволяют сбалансировать моменты инерции относительно осей до одной миллионной части – этого уже хватит, чтобы пришлось принимать во внимание polholde-период ротора и фиксировать трек, по которому будет двигаться конец оси ротора.

Всё это ожидалось . До запуска спутника поведение GP-B-роторов моделировалось. Но всё же преобладало согласие, что, поскольку роторы почти идеальны и почти однородны, они дадут очень малую амплитуду polhode-дорожки и настолько большой период, что polhode-поворот оси существенно не изменялся бы на протяжении всего эксперимента.

Однако, вопреки благостным прогнозам, GP-B-роторы в реале дали возможность увидеть существенную осевую прецессию. Учитывая почти совершенно сферическую геометрию и однородный состав роторов, имеются две возможности:

– внутреннее разложение энергии;

– внешнее воздействие с постоянной частотой.

Оказалось, что работает их комбинация. Хотя ротор и симметричен, но, подобно вышеописанной Земле, гироскоп всё же упруг и выпирает на экваторе примерно на 10 нм. Так как ось вращения дрейфует, дрейфует и выпуклость поверхности тела. Из-за маленьких дефектов структуры ротора и локальных пограничных дефектов между основным веществом ротора и его ниобиевым покрытием, вращательная энергия может рассеиваться внутри. Это заставляет дорожку дрейфа изменяться без изменения полного углового импульса (вроде того, как это происходит при раскручивании сырого яйца).

Если эффекты, предсказанные ОТО, действительно проявляются, то за каждый год нахождения Gravity Probe B на орбите, оси вращения его гироскопов должны отклониться на 6,6 угловых секунд и 42 угловые миллисекунды, соответственно

Два из гироскопов за 11 месяцев по причине этого эффекта повернулись на несколько десятков градусов , т.к. были раскручены вдоль оси минимальной инерции.

В итоге, гироскопы, рассчитанные измерять миллисекунды угловой дуги, подвергались воздействию незапланированных эффектов и ошибок до нескольких десятков градусов! Фактически это был провал миссии , тем не менее, результаты просто замяли. Если первоначально окончательные результаты миссии планировалось объявить в конце 2007 года, то затем перенесли на сентябрь 2008-го, а потом и вовсе на март 2010-го.

Как бодро отрапортовал Френсис Эверитт «Из-за взаимодействия электрических зарядов, «вмороженных» в гироскопы и стенки их камер (the patch effect) , и неучтённых ранее эффектов считывания показаний, пока не полностью исключённых из полученных данных, точность измерений на данном этапе ограничена 0,1 угловой секунды, что позволяет подтвердить с точностью лучше 1% эффект геодезической прецессии (6,606 угловой секунды в год), но пока не даёт выделить и проверить явление увлечения инерциальной системы отсчёта (0,039 угловой секунды в год). Ведётся интенсивная работа по расчёту и извлечению помех измерений…»

То бишь, как прокомментировал это заявление ZZCW : «из десятков градусов вычитаются десятки же градусов и остаются угловые миллисекунды, с однопроцентной точностью (а дальше задекларированная точность будет ещё выше, т.к. надо бы для полного коммунизма ещё эффект Лензе-Тирринга подтвердить) соответствующие ключевому эффекту ОТО…»

Неудивительно, что НАСА отказалась выдавать дальнейшие миллионные гранты Стэнфорду на 18-месячную программу «дальнейшего совершенствования анализа данных», которая была запланирована на период октябрь 2008 – март 2010.

Ученые же, желающие получить RAW (необработанные данные) для независимого подтверждения, с удивлением обнаруживали, что вместо RAW и исходников NSSDC им выдают только «данные второго уровня». «Второй уровень» означает, что «данные были слегка обработаны…»

В итоге, лишённые финансирования стэндфордцы 5-го февраля опубликовали-таки финальный отчёт, гласящий:

After subtracting corrections for the solar geodetic effect (+7 marc-s/yr) and the proper motion of the guide star (+28 ± 1 marc-s/yr), the result is −6,673 ± 97 marc-s/yr, to be compared with the predicted −6,606 marc-s/yr of General Relativity

Таково мнение неизвестного мне блоггера, мнение которого будем считать голосом того мальчика, который крикнул: «А король-то, голый! »

А теперь приведем высказывания специалистов весьма компетентных, квалификацию которых оспорить сложно.

Николай Левашов «Теория относительности – ложный фундамент физики»

Николай Левашов «Теория Эйнштейна, астрофизики, замалчиваемые эксперименты»

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях , постоянно проводящихся на сайте «Ключи познания» . Все Конференции – открытые и совершенно безплатные . Приглашаем всех просыпающихся и интересующихся…

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека