Прохождение звука в ухе. Как мы слышим

Многих из нас иногда интересует простой физиологический вопрос, касающийся того, как мы слышим. Давайте рассмотрим, из чего же состоит наш орган слуха и как происходит его работа.

Прежде всего, отметим, что слуховой анализатор имеет четыре части:

  1. Наружное ухо. К нему относят слуховой привод, ушную раковину, а также барабанную перепонку. Последняя служит для изоляции внутреннего конца слухового провода от окружающей среды. Что касается слухового прохода, то он имеет совершенно изогнутую форму длиной около 2,5 сантиметров. На поверхности слухового прохода имеются железы, а также она покрыта волосками. Именно эти железы и выделяют ушную серу, которую мы вычищаем по утрам. Также слуховой проход необходим для поддержания необходимой влажности и температуры внутри уха.
  2. Среднее ухо. Та составляющая слухового анализатора, которая находится за барабанной перепонкой и заполнена воздухом, называется средним ухом. Оно соединяется при помощи евстахиевой трубы с носоглоткой. Евстахиева труба представляет собой достаточно узкий хрящевой канал, который в обычном состоянии закрыт. Когда мы совершаем глотательные движения, он открывается и через него в полость поступает воздух. Внутри среднего уха расположены три маленькие слуховые косточки: наковальня, молоточек и стремя. Молоточек при помощи одного конца соединяется со стременем, а оно уже с литкой во внутреннем ухе. Под действием звуков барабанная перепонка находится в постоянном движении, а слуховые косточки уже дальше передают её колебания внутрь. Она является одним из важнейших элементов, которое необходимо изучить при рассмотрении того, какое строение уха человека
  3. Внутреннее ухо. В этой части слухового ансамбля имеется сразу несколько структур, однако слух контролирует только одна из них – улитка. Такое название она получила из-за своей спиральной формы. Она имеет три канала, которые заполнены лимфатическими жидкостями. В среднем канале жидкость значительно отличается по составу от остальных. Тот орган, который отвечает за слух, называется Кортиев орган и расположен в среднем канале. Он состоит из несколько тысяч волосков, улавливающих колебания, которые создаёт жидкость, движущаяся по каналу. Здесь же генерируются электрические импульсы, передающиеся затем в кору головного мозга. Определенная волосковая клетка реагирует на особый вид звука. Если же происходит так, что волосковая клетка гибнет, то человек перестаёт воспринимать тот или иной звук. Также для того, чтобы понять, как человек слышит, следует рассмотреть еще и слуховые проводящие пути.

Слуховые пути

Ими являются совокупность волокон, которые проводят нервные импульсы от самой улитки и до слуховых центров вашей головы. Именно благодаря путям наш мозг воспринимает тот или иной звук. Находятся слуховые центры в височных долях мозга. Звук, который проходит через внешнее ухо к головному мозгу продолжается около десяти миллисекунд.

Как мы воспринимаем звук

Человеческое ухо перерабатывает получаемые из окружающей среды звуки в специальные механические колебания, которые потом преобразовывают движения жидкости в улитке в электрические импульсы. Они по путям центральной слуховой системы переходят в височные части мозга, чтобы затем быть распознанными и обработанными. Теперь уже промежуточные узлы и сам головной мозг извлекает некую информацию относительно громкости и высоты звучания, а также друге характеристики, такие как время улавливания звука, направление звука и другие. Таким образом, мозг может воспринимать полученную информацию от каждого уха по очереди или совместно, получая единое ощущение.

Известно, что внутри нашего уха хранятся некие «шаблоны» уже изученных звуков, которые наш мозг распознал. Именно они помогают мозгу правильно сортировать и определять первоисточник информации. Если звук снижается, то мозг соответственно начинает получать неправильную информацию, что может привести к неправильному толкованию звуков. Но не только звуки могут искажаться, со временем головной мозг тоже подвергается неправильной трактовке тех или иных звуков. Результатом может оказаться неправильная реакция человека или неверная трактовка информации. Чтобы правильно слышать и достоверно трактовать услышанное, нам понадобится синхронная работа, как мозга, так и слухового анализатора. Именно поэтому можно отметить, что человек слышит не только ушами, но и головным мозгом.

Таким образом, строение уха человека достаточно сложное. Только согласованная работа всех частей органа слуха и головного мозга позволит нам правильно понимать и трактовать услышанное.

Чувство слуха - одно из главных в жизни человека. Слух и речь вместе составляют важное средство общения между людьми, служат основой взаимоотношений людей в обществе. Потеря слуха может привести к нарушениям в поведении человека. Глухие дети не могут научиться полноценной речи.

С помощью слуха человек улавливает различные звуки, сигнализирующие о том, что происходит во внешнем мире, звуки окружающей нас природы - шорохи леса, пение птиц, звуки моря, а также различные музыкальные произведения. С помощью слуха восприятие мира становится ярче и богаче.

Ухо и его функция. Звук, или звуковая волна, - это чередующее еся разрежение и сгущение воздуха, распространяющееся во все стороны от источника звука. А источником звука может быть любое колеблющееся тело. Звуковые колебания воспринимаются нашим органом слуха.

Орган слуха построен очень сложно и состоит из наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины и слухового прохода. Ушные раковины многих животных могут двигаться. Это помогает животному улавливать, откуда раздается даже самый тихий звук. Ушные раковины человека также служат для определения направления звука, хотя они и лишены подвижности. Слуховой проход соединяет наружное ухо со следующим отделом - средним ухом.

Слуховой проход перегорожен на внутреннем конце туго натянутой барабанной перепонкой. Звуковая волна, ударяя в барабанную перепонку, заставляет ее колебаться, вибрировать. Частота вибрации барабанной перепонки тем больше, чем выше звук. Чем сильнее звук, тем сильнее колеблется перепонка. Но если звук совсем слабый, еле слышимый, то эти колебания очень малы. Минимальная слышимость натренированного уха находится почти на границе тех колебаний, которые создаются беспорядочным движением молекул воздуха. Значит, человеческое ухо - уникальный по чувствительности слуховой прибор.

За барабанной перепонкой лежит заполненная воздухом полость среднего уха. Эта полость соединена с носоглоткой узким проходом - слуховой трубой. При глотании происходит обмен воздухом между глоткой и средним ухом. Изменение давления наружного воздуха, например в самолете, вызывает неприятное ощущение - "закладывает уши". Оно объясняется прогибом барабанной перепонки из-за разницы между атмосферным давлением и давлением в полости среднего уха. При глотании слуховая труба открывается и давление по обе стороны барабанной перепонки выравнивается.

В среднем ухе расположены три маленькие, последовательно связанные между собой косточки: молоточек, наковальня и стремя. Молоточек, соединенный с барабанной перепонкой, передает ее колебания сначала на наковальню, а затем усиленные колебания передаются на стремя. В пластинке, отделяющей полость среднего уха от полости внутреннего уха, два окна, затянутые тонкими перепонками. Одно окно овальное, в него "стучится" стремя, другое - круглое.

За средним ухом начинается внутреннее ухо. Оно расположено в глубине височной кости черепа. Внутреннее ухо представляет собой систему лабиринта и извитых каналов, заполненных жидкостью.

В лабиринте находится сразу два органа: орган слуха - улитка и орган равновесия - вестибулярный аппарат. Улитка - эта спирально закрученный костный канал, имеющий у человека два с половиной оборота. Колебания перепонки овального окна передаются жидкости, заполняющей внутреннее ухо. И она, в свою очередь, начинает колебаться с той же частотой. Вибрируя, жидкость раздражает слуховые рецепторы, расположенные в улитке.

Канал улитки по всей длине разделен пополам перепончатой перегородкой. Часть этой перегородки состоит из тонкой перепонки - мембраны. На мембране находятся воспринимающие клетки - слуховые рецепторы. Колебания жидкости, заполняющей улитку, раздражают отдельные слуховые рецепторы. В них возникают импульсы, которые передаются по слуховому нерву в головной мозг. На схеме показаны все последовательные процессы превращения звуковой волны в нервную сигнализацию.

Слуховое восприятие. В головном мозге происходит различение силы, высоты и характера звука, его местоположения в пространстве.

Мы слышим двумя ушами, и это имеет большое значение для определения направления звука. Если звуковые волны приходят одновременно в оба уха, то мы воспринимаем звук посередине (спереди и сзади). Если звуковые волны чуть раньше придут в одно ухо, чем в другое, то мы воспринимаем звук либо справа, либо слева.



1. Звукопроводящая и звуковоспринимающая части слухового аппарата.

2. Роль наружного уха.

3. Роль среднего уха.

4. Роль внутреннего уха.

5. Определение локализации источника звука в горизонтальной плоскости - бинауральный эффект.

6. Определение локализации источника звука в вертикальной плоскости.

7. Слуховые аппараты и протезы. Тимпанометрия.

8. Задачи.

Слух - восприятие звуковых колебаний, которое осуществляется органами слуха.

4.1. Звукопроводящая и звуковоспринимающая части слухового аппарата

Орган слуха человека представляет собой сложную систему, состоящую из следующих элементов:

1 - ушная раковина; 2 - наружный слуховой проход; 3 - барабанная перепонка; 4 - молоточек; 5 - наковальня; 6 - стремечко; 7 - овальное окно; 8 - вестибулярная лестница; 9 - круглое окно; 10 - барабанная лестница; 11 - улитковый канал; 12 - основная (базилярная) мембрана.

Строение слухового аппарата показано на рис. 4.1.

По анатомическому признаку в слуховом аппарате человека выделяют наружное ухо (1-3), среднее ухо (3-7) и внутреннее ухо (7-13). По выполняемым функциям в слуховом аппарате человека выделяют звукопроводящую и звуковоспринимающую части. Такое деление представлено на рис. 4.2.

Рис. 4.1. Строение слухового аппарата (а) и элементы органа слуха (б)

Рис. 4.2. Схематическое представление основных элементов слухового аппарата человека

4.2. Роль наружного уха

Функционирование наружного уха

Наружное ухо состоит из ушной раковины, слухового прохода (в виде узкой трубки), барабанной перепонки. Ушная раковина играет роль звукоулавливателя, концентрирующего звуковые

волны на слуховом проходе, в результате чего звуковое давление на барабанную перепонку увеличивается по сравнению со звуковым давлением в падающей волне примерно в 3 раза. Наружный слуховой проход вместе с ушной раковиной можно сравнить с резонатором типа трубы. Барабанная перепонка, отделяющая наружное ухо от среднего уха, представляет собой пластинку, состоящую из двух слоев коллагеновых волокон, ориентированных по-разному. Толщина перепонки около 0,1 мм.

Причина наибольшей чувствительности уха в области 3 кГц

Звук поступает в систему через наружный слуховой канал, который является закрытой с одной стороны акустической трубой длиной L = 2,5 см. Звуковая волна проходит через слуховой проход и частично отражается от барабанной перепонки. В результате происходит интерференция падающей и отраженной волн и образуется стоячая волна. Возникает акустический резонанс. Условия его проявления: длина волны в 4 раза больше длины воздушного столба в слуховом проходе. При этом столб воздуха внутри канала будет резонировать на звук с длиной волны, равной четырем его длинам. В слуховом канале, как в трубе, будет резонировать волна длиной λ = 4L = 4x0,025 = 0,1 м. Частота, на которой возникает акустический резонанс, определяется так: ν = v = 340/(4x0,025) = 3,4 кГц. Этот резонансный эффект объясняет тот факт, что человеческое ухо имеет наибольшую чувствительность на частоте около 3 кГц (см. кривые равной громкости в лекции 3).

4.3. Роль среднего уха

Строение среднего уха

Среднее ухо является устройством, предназначенным для передачи звуковых колебаний из воздушной среды наружного уха в жидкую среду внутреннего уха. Среднее ухо (см. рис. 4.1) содержит барабанную перепонку, овальное и круглое окна, а также слуховые косточки (молоточек, наковальню, стремечко). Оно представляет собой своеобразный барабан (объемом 0,8 см 3), который отделяется от наружного уха барабанной перепонкой, а от внутреннего уха - овальным и круглым окнами. Среднее ухо заполнено воздухом. Любая разность

давлений между наружным и средним ухом приводит к деформации барабанной перепонки. Барабанная перепонка - это воронкообразная мембрана, вдавленная внутрь среднего уха. От нее звуковая информация передается косточкам среднего уха (форма барабанной перепонки обеспечивает отсутствие собственных колебаний, что весьма существенно, так как собственные колебания перепонки создавали бы шумовой фон).

Проникновение звуковой волны через границу «воздух-жидкость»

Для того чтобы понять назначение среднего уха, рассмотрим непосредственный переход звука из воздушной среды в жидкую. На границе раздела двух сред одна часть падающей волны отражается, а другая часть переходит во вторую среду. Доля энергии, перешедшей из одной среды в другую, зависит от величины коэффициента пропускания β (см. формулу 3.10).

То есть при переходе из воздуха в воду уровень интенсивности звука уменьшается на 29 дБ. С энергетической точки зрения такой переход абсолютно неэффективен. По этой причине существует специальный передаточный механизм - система слуховых косточек, которые выполняют функцию согласования волновых сопротивлений воздушной и жидкой сред для уменьшения энергетических потерь.

Физические основы функционирования системы слуховых косточек

Система косточек представляет собой последовательное звено, начало которого (молоточек) связано с барабанной перепонкой внешнего уха, а конец (стремечко) - с овальным окном внутреннего уха (рис. 4.3).

Рис. 4.3. Схема распространения звуковой волны от наружного уха через среднее ухо во внутреннее ухо:

1 - барабанная перепонка; 2 - молоточек; 3 - наковальня; 4 - стремечко; 5 - овальное окно; 6 - круглое окно; 7 - барабанный ход; 8 - улиточный ход; 9 - вестибулярный ход

Рис. 4.4. Схематическое представление расположения барабанной перепонки и овального окна: S бп - площадь барабанной перепонки; S оо - площадь овального окна

Площадь барабанной перепонки равна Б бп = 64 мм 2 , а площадь овального окна S оо = 3 мм 2 . Схематически их

взаимное расположение представлено на рис. 4.4.

На барабанную перепонку действует звуковое давление Р 1 , создающее силу

Система косточек работает как рычаг с соотношением плеч

L 1 /L 2 = 1,3, который дает выигрыш в силе со стороны внутреннего уха в 1,3 раза (рис. 4.5).

Рис. 4.5. Схематическое представление работы системы косточек как рычага

Поэтому на овальное окно действует сила F 2 = 1,3F 1 , создающая в жидкой среде внутреннего уха звуковое давление Р 2 , которое равно

Выполненные расчеты показывают, что при прохождении звука через среднее ухо происходит увеличение уровня его интенсивности на 28 дБ. Потери уровня интенсивности звука при переходе из воздушной среды в жидкую составляют 29 дБ. Общая потеря интенсивности составляет лишь 1 дБ вместо 29 дБ, что имело бы место при отсутствии среднего уха.

Еще одна функция среднего уха - ослабление передачи колебаний в случае звука большой интенсивности. С помощью мышц рефлекторно может быть ослаблена связь между косточками при слишком больших интенсивностях звука.

Сильное изменение давления в окружающей среде (например, связанное с изменением высоты) может вызвать растяжение барабанной перепонки, сопровождающееся болевыми ощущениями, или даже ее разрыв. Для защиты от таких перепадов давления служит небольшая евстахиева труба, которая соединяет полость среднего уха с верхней частью глотки (с атмосферой).

4.4. Роль внутреннего уха

Звуковоспринимающей системой слухового аппарата являются внутреннее ухо и входящая в него улитка.

Внутреннее ухо представляет собой замкнутую полость. Эта полость, называемая лабиринтом, имеет сложную форму и заполнена жидкостью - перилимфой. Она состоит из двух основных частей: улитки, преобразующей механические колебания в электрический сигнал, и полукружия вестибулярного аппарата, обеспечивающего равновесие тела в поле силы тяжести.

Строение улитки

Улитка является полым костным образованием длиной 35 мм и имеет форму конусообразной спирали, содержащей 2,5 завитка.

Сечение улитки показано на рис. 4.6.

По всей длине улитки вдоль нее проходят две перепончатые перегородки, одна из которых называется вестибулярной мембраной, а другая - основной мембраной. Пространство между

Рис. 4.6. Схематическое строение улитки, содержащей каналы: В - вестибулярный; Б - барабанный; У - улитковый; РМ - вестибулярная (рейснерова) мембрана; ПМ - покровная пластина; ОМ - основная (базилярная) мембрана; КО - кортиев орган

ними - улитковый ход - заполнено жидкостью, называемой эндолимфой.

Вестибулярный и барабанный каналы заполнены особой жидкостью - перилимфой. В верхней части улитки они соединяются между собой. Колебания стремечка передаются мембране овального окна, от нее перилимфе вестибулярного хода, а затем через тонкую вестибулярную мембрану - эндолимфе улиточного хода. Колебания эндолимфы передаются основной мембране, на которой находится кортиев орган, содержащий чувствительные волосковые клетки (около 24 000), в которых возникают электрические потенциалы, передаваемые по слуховому нерву в мозг.

Барабанный ход заканчивается мембраной круглого окна, которая компенсирует перемещения перелимфы.

Длина основной мембраны приблизительно равна 32 мм. Она очень неоднородна по своей форме: расширяется и утончается в направлении от овального окна к верхушке улитки. Вследствие этого модуль упругости основной мембраны вблизи основания улитки примерно в 100 раз больше, чем у вершины.

Частотно-избирательные свойства основной мембраны улитки

Основная мембрана является неоднородной линией передачи механического возбуждения. При действии акустического раздражителя по основной мембране распространяется волна, степень затухания которой зависит от частоты: чем меньше частота раздражения, тем дальше от овального окна распространится волна по основной мембране. Так, например, волна с частотой 300 Гц до затухания распространится приблизительно на 25 мм от овального окна, а волна с частотой 100 Гц - приблизительно на 30 мм.

В настоящее время считается, что восприятие высоты тона определяется положением максимума колебаний основной мембраны.

Колебания основной мембраны стимулируют рецепторные клетки, расположенные в кортиевом органе, в результате чего возникают потенциалы действия, передаваемые слуховым нервом в кору головного мозга.

4.5. Определение локализации источника звука в горизонтальной плоскости - бинауральный эффект

Бинауральный эффект - способность устанавливать направление на источник звука в горизонтальной плоскости. Суть эффекта поясняется на рис. 4.7.

Пусть источник звука поочередно располагают в точках А, В и С. Из точки А, находящейся прямо перед лицом, звуковая волна попадает одинаково в оба уха, при этом путь звуковой волны до ушных раковин один и тот же, т.е. для обоих ушей разность хода δ и разность фаз Δφ звуковых волн равны нулю: δ = 0, Δφ = 0. Поэтому приходящие волны имеют одинаковую фазу и интенсивность.

Из точки В звуковая волна приходит в левую и правую ушные раковины в разных фазах и с отличающимися интенсивностями, так как проходит до ушей разное расстояние.

Если источник расположен в точке С, против одной из ушных раковин, то в этом случае разность хода δ можно принять равной расстоянию между ушными раковинами: δ ≈ L ≈ 17 см = 0,17 м. При этом разность фаз Δφ можно рассчитать по формуле: Δφ = (2π/λ) δ. Для частоты ν = 1000 Гц и v « 340 м/с λ = v/ν = 0,34 м. Отсюда получим: Δφ = (2π/λ) δ = (2π/0,340)*0,17 = π. В данном примере волны приходят в противофазе.

Всем реальным направлениям на источник звука в горизонтальной плоскости будут соответствовать разности фаз от 0 до π (от 0

Таким образом, разность фаз и неодинаковость интенсивностей звуковых волн, попадающих в разные уши, обеспечивают бинауральный эффект. Человек с нор-

Рис. 4.7. Различная локализация источника звука (А, В, С) в горизонтальной плоскости: L - расстояние между ушными раковинами

мальным слухом может фиксировать направление на источник звука при разности фаз 6°, что соответствует фиксированию направления на источник звука с точностью до 3°.

4.6. Определение локализации источника звука в вертикальной плоскости

Рассмотрим теперь случай, когда источник звука расположен в вертикальной плоскости, ориентированной перпендикулярно прямой, соединяющей оба уха. В этом случае он одинаково удален от обоих ушей и разности фаз не возникает. Значения интенсивности звука, попадающего в правое и левое ухо, при этом совпадают. На рисунке 4.8 показаны два таких источника (А и С). Различит ли слуховой аппарат эти источники? Да. В данном случае это произойдет благодаря особой форме ушной раковины, которая (форма) способствует определению локализации источника звука.

Звук, исходящий от этих источников, падает на ушные раковины под различными углами. Это приводит к тому, что дифракция звуковых волн на ушных раковинах происходит по-разному. В результате на спектр звукового сигнала, попадающего в наружный слуховой проход, накладываются дифракционные максимумы и минимумы, зависящие от положения источника звука. Эти различия и позволяют определять положение источника звука в вертикальной плоскости. По всей видимости, в результате огромного опыта слушания люди научились ассоциировать различные спектральные характеристики с соответствующими направлениями. Это подтверждается опытными данными. В частности, установлено, что специальным подбором спектрального состава звука ухо можно «обмануть». Так, человек воспринимает звуковые волны, содержащие основную часть энергии в области 1 кГц,

Рис. 4.8. Различная локализация источника звука в вертикальной плоскости

локализованными «сзади» независимо от действительного направления. Звуковая волна с частотами ниже 500 Гц и в области 3 кГц воспринимается локализованной «спереди». Звуковые источники, содержащие большую часть энергии в области 8 кГц, распознаются локализованными «сверху».

4.7. Слуховые аппараты и протезы. Тимпанометрия

Потеря слуха в результате нарушения проведения звука или частичного поражения звуковосприятия может быть компенсирована с помощью слуховых аппаратов-усилителей. В последние годы в этой области происходит большой прогресс, связанный с развитием аудиологии и быстрым внедрением достижений электроакустической аппаратуры на основе микроэлектроники. Созданы миниатюрные слуховые аппараты, работающие в широком частотном диапазоне.

Однако при некоторых тяжелых формах тугоухости и глухоты слуховые аппараты не помогают больным. Это имеет место, например, когда глухота связана с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Такие поражения могут быть вызваны неправильной дозировкой лекарственных препаратов, применяемых для лечения заболеваний, совсем не связанных с лор-болезнями. В настоящее время возможна частичная реабилитация слуха и у таких больных. Для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула. Такое протезирование основной функции улитки осуществляется с помощью кохлеарных протезов.

Тимпанометрия - метод измерения податливости звукопроводящего аппарата слуховой системы под влиянием аппаратного изменения воздушного давления в слуховом проходе.

Данный метод позволяет оценить функциональное состояние барабанной перепонки, подвижность цепи слуховых косточек, давление в среднем ухе и функцию слуховой трубы.

Рис. 4.9. Определение податливости звукопроводящего аппарата методом тимпанометрии

Исследование начинается с установки зонда с надетым на него ушным вкладышем, который герметично перекрывает слуховой проход в начале наружного слухового прохода. Через зонд в слуховом проходе создается избыточное (+) или недостаточное (-) давление, а затем подается звуковая волна определенной интенсивности. Дойдя до барабанной перепонки, волна частично отражается и возвращается к зонду (рис. 4.9).

Измерение интенсивности отраженной волны позволяет судить о звукопроводящих возможностях среднего уха. Чем больше интенсивность отраженной звуковой волны, тем меньше подвижность звукопроводящей системы. Мерой механической податливости среднего уха является параметр подвижности, измеряемый в условных единицах.

В процессе исследования давление в среднем ухе изменяют от +200 до -200 дПа. При каждом значении давления определяется параметр подвижности. Результатом исследования является тимпанограмма, отражающая зависимость параметра подвижности от величины избыточного давления в слуховом проходе. При отсутствии патологии среднего уха максимум подвижности наблюдается при отсутствии избыточного давления (Р = 0) (рис. 4.10).

Рис. 4.10. Тимпанограммы при различной степени подвижности системы

Повышенная подвижность свидетельствует о недостаточной упругости барабанной перепонки или о вывихе слуховых косточек. Пониженная подвижность указывает на избыточную жесткость среднего уха, связанную, например, с наличием жидкости.

При патологии среднего уха вид тимпанограммы изменяется

4.8. Задачи

1. Размер ушной раковины равен d = 3,4 см. При какой частоте будут наблюдаться дифракционные явления на ушной раковине? Решение

Явление дифракции становится заметным, когда длина волны сравнима с размерами препятствия или щели: λ ≤ d. При меньших длинах волн или больших частотах дифракция становится незначительной.

λ = v/ν = 3,34, ν = v/d = 334/3,34*10 -2 = 10 4 Гц. Ответ: менее 10 4 Гц.

Рис. 4.11. Основные типы тимпанограмм при патологиях среднего уха: А - отсутствие патологии; В - экссудативный средний отит; С - нарушение проходимости слуховой трубы; D - атрофические изменения барабанной перепонки; Е - разрыв слуховых косточек

2. Определить максимальную силу, действующую на барабанную перепонку уха человека (площадь S = 64 мм 2) для двух случаев: а) порог слышимости; б) порог болевого ощущения. Частоту звука принять равной 1 кГц.

Решение

Звуковые давления, соответствующие порогам слышимости и болевого ощущения равны ΔΡ 0 = 3?10 -5 Па и ΔP m = 100 Па, соответственно. F = ΔΡ*S. Подставив пороговые значения получим: F 0 = 310 -5 ?64?10 -6 = 1,9-10 -9 H; F m = 100? 64-10 -6 = 6,410 -3 H.

Ответ: а) F 0 = 1,9 нН; б) F m = 6,4 мН.

3. Разность хода звуковых волн, приходящих в левое и правое ухо человека, составляет χ = 1 см. Определить сдвиг фаз между обоими звуковыми ощущениями для тона с частотой 1000 Гц.

Решение

Разность фаз, возникающая вследствие разности хода, равна: Δφ = 2πνχ/ν = 6,28x1000x0,01/340 = 0,18. Ответ: Δφ = 0,18.

Звуковая волна является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают её колебания. В фазе повышения давления или сгущения барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молотка, благодаря подвешивающим связкам смещается кнаружи, а длинный росток наковальни - кнутри, смещая, таким образом, кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение волны по лестнице преддверия передают колебательные движения мембране Рейсснера, а та в свою очередь приводит в движение эндолимфу и через основную мембрану - перилимфу барабанной лестницы. В результате такого перемещения перилимфы возникают колебания основной и рейсснеровской мембран. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге приводит к смещению в сторону барабанной полости мембраны окна преддверия. В фазе снижения давления происходит возврат передающей системы в исходное положение.

Воздушный путь доставки звуков во внутреннее ухо является основным. Другим путем проведения звуков к спиральному органу является костная (тканевая) проводимость. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм костно-тканевой передачи звука может иметь двоякий характер. В одном случае звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану круглого окна и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой - инерционный вариант. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа и, следовательно, основная и рейсснерова мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание кос­тей черепа можно вызвать прикосновением к нему звучащего камертона или телефона. Таким образом, костный путь передачи при нарушении передачи звука через воздух приобретает большое значение.

Ушная раковина. Роль ушной раковины в физиологии слуха человека невелика. Некоторое значение она имеет в ототопике и как коллекторы звуковых волн.

Наружный слуховой проход. Представляет собой форму трубки, благодаря чему является хорошим проводником звуков в глубину. Ширина и форма слухового прохода не играет особой роли при звукопроведении. Вместе с тем механическая закупорка его препятствует распространению звуковых волн к барабанной перепонке и приводит к заметному ухудшению слуха. В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, что обеспечивает стабильность упругих сред барабанной полости. В силу особого строения наружного уха, давление звуковой волны в наружном слуховом проходе в два раза больше, чем в свобод­ном звуковом поле.

Барабанная перепонка и слуховые косточки. Основная роль барабанной перепонки и слуховых кос­точек заключается в трансформации звуковых колебаний большой ампли­туды и малой силы в колебания жидкостей внутреннего уха с малой амплитудой и большой силой (давлением). Колебания барабанной пере­понки приводят в соподчинение движение молоточек, наковальню и стремя. В свою очередь стремя передает колебания перилимфе, которое вызывает смещение мембран улиткового хода. Движение основной мемб­раны обусловливает раздражение чувствительных, волосковых клеток спирального органа, вследствие чего возникают нервные импульсы, следующие по слуховому пути в кору головного мозга.

Барабанная перепонка вибрирует в основном в своем нижнем квадранте с синхронным движением прикрепленного к ней молоточка. Ближе к периферии её колебания уменьшаются. При максимальной интенсивности звука колебания барабанной перепонки могут варьировать от 0,05 до 0,5 мм, причем на тоны низкой частоты размах колебаний больше, на тоны высокой частоты - меньше.

Трансформационный эффект достигается за счет разницы площади барабанной перепонки и площади основания стремени, соотношение которых составляет приблизительно 55:3 (соотношение площадей 18:1), а также благодаря рычажной системе слуховых косточек. При переводе в дБ рычажное действие системы слуховых косточек составляет 2 дБ, а повышение звукового давления вследствие разницы соотношения полезных площадей барабанной перепонки к основанию стремени обеспечивает усиление звука на 23 - 24 дБ.

По данным Бекеши /I960/, общий акустический выигрыш трансфор­матора звукового давления составляет 25 - 26 дБ. Это повышение давления компенсирует естественную потерю звуковой энергии, возникающую в результате отражения звуковой волны при переходе её из воз­душной среды в жидкую, особенно для низких и средних частот (Вульштеин JL, 1972).

Помимо трансформации звукового давления, барабанная перепонка; выполняет также функцию звукозащиты (экранирования) окна улитки. В норме звуковое давление, передаваемое через систему слуховых косточек к средам улитки, достигает окна преддверия несколько раньше, чем оно приходит к окну улитки через воздушную среду. Вследствие разницы давлений и сдвига фазы возникает движение перилимфы, вызывающее изгиб основной мембраны и раздражение рецепторного аппарата. При этом мембрана окна улитки колеблется синхронно с основанием стремени, но в противоположном направлении. При отсутствии барабанной перепонки этот механизм звукопередачи нарушается: следующая наружного слухового прохода звуковая волна одновременно в фазе достигает окна преддверия и улитки, в результате чего действие волны взаимно уничтожается. Теоретически при этом не должно быть сдвига перилимфы и раздражения чувствительных волосковых клеток. На caмом деле при полном дефекте барабанной перепонки, когда оба окна в равной степени доступны звуковым волнам, слух снижается до 45 - 50 Разрушение же цепи слуховых косточек сопровождается значительной потерей слуха (до 50-60 дБ).

Конструктивные особенности рычажной системы позволяют не только усиливать слабые звуки, но и выполнять в определённой мере защитную функцию - ослаблять передачу сильных звуков. При слабых звуках основание стремени колеблется главным образом вокруг вертикальной оси. При сильных звуках происходит скольжение в наковально-молоточковом суставе главным образом при низкочастотных тонах, в результате чего движение длинного отростка молоточка ограничивается. Наряду с этим основание стремени начинает колебаться преиму­щественно в горизонтальной плоскости, что также ослабляет переда звуковой энергии.

Помимо барабанной перепонки и слуховых косточек, защита внутреннего уха от избыточной звуковой энергии осуществляется в результате сокращения мышц барабанной полости. При сокращении мышцы стремени, когда акустический импеданс среднего уха резко возрастает, чувствительность внутреннего уха к звукам главным образом низкой частоты снижается до 45 дБ. Исходя из этого, существует мнение, стременная мышца предохраняет внутреннее ухо от избыточной энергии низкочастотных звуков (Ундриц В.Ф. и др., 1962; Мороз Б.С., 1978)

Функция мышцы, натягивающей барабанную перепонку, остается недостаточно изученной. Полагают, что она в большей степени связана с вентиляцией среднего уха и поддерживанием нормального давления в барабанной полости, чем с защитой внутреннего уха. Обе внутриушные мышцы сокращаются также при открытии рта, глотании. В этот момент чувствительность улитки к восприятию низких звуков снижается.

Звукопроводящая система среднего уха функционирует в оптималь­ном режиме, когда давление воздуха в барабанной полости и клетках сосцевидного отростка равно атмосферному давлению. В норме давление воздуха в системе среднего уха уравновешено с давлением внешней среды достигается это благодаря слуховой трубе, которая, открываясь в носоглотку, обеспечивает приток воздуха в барабанную полость. Одна­ко непрерывное поглощение воздуха слизистой оболочкой барабанной полости создает в ней слегка отрицательное давление, что требует постоянного выравнивания его с атмосферным давлением. В спокойном состоянии слуховая труба обычно закрыта. Она открывается при глота­нии или зевании в результате сокращения мышц мягкого неба (натяги­вающей и поднимающей мягкое нёбо). При закрытии слуховой трубы в ре­зультате патологического процесса, когда воздух не поступает в ба­рабанную полость, возникает резко отрицательное давление. Это при­водит к снижению слуховой чувствительности, а также к транссудации серозной жидкости из слизистой оболочки среднего уха. Потеря слуха при этом преимущественно на тоны низких и средних частот достигает 20 - 30 дБ. Нарушение вентиляционной функции слуховой трубы сказы­вается также на внутрилабиринтном давлении жидкостей внутреннего уха, что в свою очередь ухудшает проведение низкочастотных звуков.

Звуковые волны, вызывая перемещение лабиринтной жидкости, при­водят в колебание основную мембрану, на которой расположены чувст­вительные волосковые клетки спирального органа. Раздражение волосковых клеток сопровождается нервным импульсом, поступающим в спиральный ганглий, а затем по слуховому нерву к центральным отделам анализатора.

Пение птиц, приятная мелодия, счастливый смех веселого ребенка… Какой была бы наша жизнь без звуков? Не многие задумываются о том, какие сложные механизмы мы носим в своем теле. Наша способность слышать зависит от чрезвычайно сложной, взаимосвязанной и детально спроектированной системы. «Ухо слышащее и глаз видящий - и то и другое создал Господь» (Притчи 20:12). Он не желает, чтобы по поводу авторства этой системы у нас были какие-либо сомнения. Совсем наоборот, Бог хочет, чтобы человек твердо ходил в осознании истинности Сотворения: «Познайте, что Господь есть Бог, и что Он сотворил нас, и мы принадлежим Ему» (Псалом 99:3).

Слух человека устроен так, чтобы улавливать широкий диапазон звуковых волн, превращать их в миллионы электрических импульсов, направляя их далее в мозг для глубокого и быстрого анализа. Все звуки на самом деле "слушаются" мозгом и потом представляются нам как поступающие от внешнего источника. Как же работает система слуха?

Процесс начинается со звука - колебательного движения воздуха - вибрации, при которой к слушателю распространяются импульсы давления воздуха, достигающие, в конце концов, барабанной перепонки. Наше ухо чрезвычайно чувствительно и способно воспринимать изменения давления всего в 0,0000000001 атмосфер.

Ухо состоит из 3-х частей: наружное, среднее и внутреннее. Звук достигает вначале внешнее ухо через воздух, ударяя потом барабанную перепонку. Перепонка передает вибрацию косточкам. Здесь происходит смена способа проведения звука - от воздуха к косточкам. Потом звук переходит к внутреннему уху, где он передается с помощью жидкости. Таким образом, в процессе слуха задействуются 3 способа передачи звука: воздух, кость, жидкость. Давайте детальней их рассмотрим.

Слух человека: путешествие звука

Вначале звук достигает ушных раковин, которые действуют как спутниковые тарелки. (Рис.1) Ушная раковина человека имеет свой неповторимый рельеф из выпуклостей, вогнутостей и канавок, благодаря чему звук поступает от ушной раковины к слуховому каналу по двум путям. Это необходимо для тончайшего акустического и трехмерного анализа, позволяя распознавать направление и источник звука, что важно для языкового общения.

Рис.1 Источник: APP, www.apologeticspress.org

Ушная раковина также усиливает звуковые волны, которые далее входят в слуховой канал - пространство от раковины к барабанной перепонке длиной около 2,5 см и диаметром около 0,7 см. Здесь уже напрямую виден дизайн Господа - наш палец толще слухового канала! В противном случае мы повредили бы слух еще в младенчестве. Этот проход имеет такую форму, что создает резонанс оптимального диапазона.

Еще одной его интересной характеристикой является наличие воска (ушной серы), который постоянно выделяется из 4000 желез. Он имеет антисептические свойства, защищая ухо от бактерий и насекомых. Но как же тогда этот узкий проход постоянно очищается? Господь побеспокоился и об этой детали, создав очистительный механизм.

Оказывается, внутри прохода любые частички двигаются спиралевидно, так как клетки на поверхности слухового канала выстраиваются в форме спирали, направленной наружу. Кроме этого эпидермис (верхний слой кожи) растет там в стороны, а не вверх, как обычно это происходит на коже. Отпадая, он движется спиралевидно наружу к ушной раковине, постоянно унося с собой воск. Без такой системы очистки наше ухо быстро забилось бы.

Слух человека: среднее ухо мастерски решает сложнейшую задачу физики

Вы пытались когда-либо докричаться до человека, находящегося под водой? Это практически невозможно, так как 99,9% звука, идущего по воздуху, отражается водой. Но в нашем ухе звук движется к чувствительным клеткам улитки через жидкость, так как эти клетки не могут находиться в воздухе. Как же решается в нашем ухе эта сложнейшая задача перехода звука от воздуха к жидкости? Нам необходимо согласующее устройство. Эту роль у нас выполняет среднее ухо, состоящее из мембраны, специальных косточек, мышц и нервов. (См. Рис. 2)

Достигнув барабанной перепонки, звук заставляет ее колебаться. Покачиваясь, она приводит в движение молоточек, чья рукоятка прикреплена к перепонке. Молоточек, в свою очередь, вынуждает двигаться следующую косточку, которая называется наковальней. Между ними находится хрящевой сустав, который, как и все остальные суставы, для поддержания работы должен постоянно смазываться. Господь позаботился и об этом - все делается автоматически без нашего участия, так что нам нечего беспокоиться.

Нижняя часть наковальни, выглядящая как ось, передает движение следующей косточке, называемой стремечко (по форме она напоминает стремя). В результате передачи движения, стремечко постоянно толкается. Нижнее овальное основание стремечка напоминает поршень и входит в овальное окно улитки. Этот поршень соединен с овальным окном специальным креплением, прочным, но при этом подвижным, так что поршень двигается взад и вперед в овальном окне.

Барабанная перепонка поразительно чувствительна. Она способна реагировать на вибрацию диаметром всего в один атом водорода! Еще удивительней есть то, что перепонка при этом является живой тканью с кровяными сосудами и нервами. Кровяные клетки в тысячи раз больше атома водорода и при движении в сосудах постоянно колеблют перепонку, но при этом она все равно способна уловить звуковое колебание размером в один атом водорода. Это возможно благодаря чрезвычайно эффективной системе фильтрации шума. После определения даже самого слабого колебания перепонка может вернуться в исходное положение за 5 тысячных секунды. Если бы она не смогла возвращаться в регулярное состояние так быстро, то каждый звук, попадающий в ухо, отдавался бы эхом.

Молоточек, наковальня и стремечко - самые крошечные косточки в нашем теле. И у этих косточек есть мышцы и нервы! Одна мышца прикрепляется сухожилием к рукоятке молоточка, другая - к стремечку. Что же они делают? При громком звуке нужно понижать чувствительность всей системы, чтобы ее не повредить. При резком громком звуке мозг реагирует гораздо быстрее, чем мы успеваем осознать услышанное, при этом он мгновенно вынуждает мышцы сокращаться и притуплять чувствительность. Время реагирования на громкий звук составляет всего лишь около 0,15 секунды.

Определенно, генетические мутации или случайные пошаговые изменения, предлагаемые эволюционистами, не могут быть ответственны за развитие такого сложного механизма. Давление воздуха внутри среднего уха должно быть таким же, как и давление вне барабанной перепонки. Проблема в том, что воздух внутри поглощается телом. Это приводит к понижению давления в среднем ухе и снижению чувствительности перепонки из-за того, что она вдавливается внутрь более высоким внешним давлением воздуха.

Для решения этой проблемы ухо оснащено специальным каналом, известным как евстахиева труба. Это пустая трубочка длиной в 3,5 см, идущая от внутреннего уха к задней части носа и глотки. Она обеспечивает обмен воздуха между средним ухом и окружающей средой. При глотании, зевании и жевании специальные мышцы открывают Евстихееву трубку, впуская внешний воздух. Так обеспечивается равновесие давлений. Нарушения работы трубки приводит к болям, затянувшейся закупорке и даже к кровотечению в ухе. Но как же она возникла изначально, и какие части среднего уха появились первыми? Как они функционировали один без другого? Анализ всех частей уха и важность каждого из них для слуха человека демонстрирует присутствие неснижаемой сложности (весь орган должен был возникнуть как одно целое, иначе он не смог бы функционировать), что мощно свидетельствует о сотворении.

Слух человека: внутреннее ухо: система невероятной сложности

Итак, звук прошел через воздух к барабанной перепонке, и в виде вибрации передался косточкам. Что же дальше? А дальше эти механические движения должны превратиться в электрические сигналы. Это чудо превращения происходит во внутреннем ухе. Внутреннее ухо состоит из улитки и присоединенных к ней нервов. Здесь мы так же наблюдаем очень сложную конструкцию.

Обладание двумя ушами помогает нам вычислять месторасположение звука. Разница во времени достижения звуком ушей может быть всего 20 миллионных секунды, но этого запаздывания достаточно для определения источника звука.

Улитка - это специальный орган внутреннего уха, который устроен в виде лабиринта и наполнен специальной жидкостью (перилимфой). Смотрите Рис.1 и Рис.3. тройное покрытие, которое обеспечивает прочность и герметичность. Это необходимо для тонких процессов, происходящих в ней. Мы помним, что последняя косточка (стремечко) входит в овальное окно улитки (Рис.2 и Рис.3). Получив вибрацию от барабанной перепонки, стремечко двигается в этом окне своим поршнем взад и вперед, создавая колебания давления внутри жидкости. Другими словами, стремечко передает звуковую вибрацию улитке.

Эта вибрация распространяется в жидкости улитки и достигает там специального органа слуха, Кортиева органа. Он и превращает вибрации жидкости в электрические сигналы, которые через нервы идут в мозг. Так как улитка полностью наполнена жидкостью, как же поршню удается входить в нее? Вспомните, как практически невозможно засунуть пробку в полностью наполненную бутылку. Из-за большой плотности жидкости ее трудно сжать.

Оказалось, что внизу улитки есть круглое окно (как задний выход), покрытое гибкой мембраной. Когда поршень стремечка входит в овальное окно, мембрана круглого окна внизу выпячивается под давлением в жидкости. Это похоже на то, если бы у бутылки было резиновое дно, прогибающееся каждый раз при вталкивании пробки. Благодаря такому гениальному устройству облегчения давления стремечко может передавать вибрацию звука к жидкости улитки.

Однако импульсы давления распространяются в жидкости не простым образом. Чтобы понять, как они распространяются, заглянем внутрь лабиринта улитки (См. Рис 3 и Рис. 4). Канал лабиринта состоит из трех каналов - верхний (вестибулярная лестница), нижний (барабанная лестница) и канал посередине (улитковый проток). Они не соединены между собой и идут в лабиринте параллельно.

От поршня давление идет вверх в лабиринте к вершине улитки только по верхнему каналу (а не по всем трем). Там, через специальное соединительное отверстие, давление переходит в нижний канал, который идет по лабиринту обратно вниз и выходит в круглом окне. На рисунке 3 красной стрелкой обозначен путь давления от овального окна вверх по кругу в лабиринте. На вершине давление переходит в другой канал, обозначенный синей стрелкой, и направляется по нему вниз к круглому окну. Но зачем все это? Как это помогает нам слышать?

Дело в том, что посередине двух каналов лабиринта есть третий канал (улитковый проток), также наполненный жидкостью, но отличающейся от жидкости в двух других каналах. Этот средний канал не соединен с двумя другими. Он отделен от верхнего гибкой пластинкой (Рейснерова мембрана), а от нижнего канала - эластичной пластинкой (базилярная мембрана). Проходя по верхнему каналу вверх лабиринта, звук в жидкости колеблет верхнюю пластинку. Идя обратно вниз улитки по нижнему каналу, звук в жидкости колеблет нижнюю пластинку. Таким образом, когда звук идет через жидкость лабиринта вверх улитки и обратно вниз, пластины среднего канала колеблются. После прохода звука их колебание постепенно угасает. Как же колебание пластинок среднего канала обеспечивает нам слух?

Между ними находится наиболее важная часть слуховой системы - Кортиев орган. Он чрезвычайно меленький, но без него мы были бы глухими. Нервные клетки Кортиевого органа превращают колебательные движения пластинок в электрические сигналы. Они называются волосковыми клетками и играют огромную роль. Как же волосковым клеткам Кортиевого органа удается превратить колебание пластинок в электрические сигналы?

Посмотрите на рисунок 4 и 5. Дело в том, что эти клетки находятся в контакте сверху со специальной покровной мембраной Кортиевого органа, которая похожа на твердое желе. На вершине волосковых клеток расположено от 50 до 200 ресничек, называемых стереоцилиями. Они входят в покровную мембрану.

Рис.7

Когда звук идет через лабиринт улитки, пластинки среднего канала колеблются, и это вызывает колебание желеподобной покровной мембраны. А ее движение вызывает колебание стериоцилий волосковых клеток. Колыхание стериоцилий вынуждает волосковые клетки производить электрические сигналы, которые посылаются далее в мозг. Потрясающе, не так ли? Кортиев орган имеет около 20 000 волосковых клеток, которые делятся на внутренние и внешние (Рис.5 и Рис.6). Но как колебание ресничек производит электрические сигналы?

Оказывается, движение стериоцилий вызывает открытие и закрытие специальных ионных каналов на их поверхности (Рис.7). Каналы, открываясь, впускают ионы во внутрь, что изменяет электрический заряд внутри волосковой клетки. Изменения электрического заряда дают возможность волосковой клетке посылать электрические сигналы в мозг. Эти сигналы трактуются мозгом как звук. Проблема в том, что мы должны открывать канал для ионов и закрывать его со скоростью вплоть до самой высокой улавливаемой нами частоты звука - до 20 000 раз в секунду. Что-то должно открывать и закрывать миллионы этих каналов на поверхности ресничек со скоростью до 20 000 раз в секунду. Ученые обнаружили, что для этого к поверхностям стериоцилий прикреплена молекулярная пружина!!! (Рис.7.) Быстро растягиваясь и сжимаясь при колебании ресничек, она и обеспечивает такую высокую скорость открытия и закрытия каналов. Гениальный дизайн!

Слух человека: слушаем на самом деле мозгом

Улитка способна уловить каждый инструмент в оркестре и заметить пропущенную ноту, слышать каждый вздох и разобрать шепот - все с поразительной скоростью дискретизации до 20 000 раз за секунду. Мозг интерпретирует сигналы и определяет частоту, силу и значение сигналов. В то время как большое фортепиано имеет 240 струн и 88 клавиш, внутренне ухо имеет 24 000 "струн" и 20 000 "клавиш", которые позволяют нам слышать невероятное количество и разнообразие звуков.

Описанное выше - это только половина пути, так как самое сложное происходит в мозге, которым мы в действительности и "слышим". Наши уши достаточно чувствительны, чтобы услышать, как перо скользит по одежде, но при этом мы не слышим, как кровь идет через капилляры в нескольких миллиметрах от ушей. Если бы мы постоянно слышали наше дыхание, глотание слюны, каждое сердцебиение, движение суставов и т.д., мы никогда не смогли бы ни на чем сфокусироваться. Наш мозг автоматически приглушает некоторые звуки, в некоторых случаях он их вообще блокирует. Вдохните воздух и посмотрите, сможете ли вы его услышать. Конечно же, сможете, но вы обычно не слышите. За последние 24 часа вы вдохнули примерно 21 000 раз. Слуховая часть мозга человека работает как служба безопасности, слушая каждый звук и говоря, что нам нужно слышать, а что нет. Звуки могут также вызывать воспоминания.

Вывод

Очевидным есть тот факт, что все части уха необходимы для обеспечения слуха человека. Например, если все компоненты будут на месте, но не будет барабанной перепонки, то как звук перейдет к косточкам и улитке? Какой смысл тогда в наличии лабиринта, Кортиевого органа и нервных клеток, если звук к ним даже не дойдет? Если будет все на месте, включая перепонку, но будет отсутствовать "всего лишь" овальное окно или, скажем, жидкость в улитке, то слуха не будет, так как звук не сможет дойти до нервных клеток.

Отсутствие малейшей детали сделает нас глухими, а наличие всей остальной системы - бесполезной. Мало того, каждая "малейшая деталь" в этой цепочка в действительности сама является системой из множества составляющих. Барабанная перепонка, например, состоит из специальной живой ткани, креплений к молоточку, нервов, сосудов и т.д. Улитка - это лабиринт, тройное покрытие, три отдельных канала, разные жидкости, гибкие пластины протока и т.д.

Глупо верить, что такая удивительная сложность произошла случайно в результате пошаговой эволюции. Наблюдаемая сложность системы слуха у человека указывает на историческую реальность сотворения Адама Богом, как об этом и говорит Слово Божье. «Ухо слышащее и глаз видящий - и то и другое создал Господь» (Притчи 20:12).

В следующих выпусках мы продолжим исследование Божьего дизайна человеческого тела. Надеюсь, данная статья помогла вам глубже осознать Его мудрость и Его любовь к вам. «Славлю Тебя, ибо я чудно устроен, и душа моя вполне осознает это» (Псалом 138:13). Воздайте Богу хвалу и благодарность, ведь Он достоин!

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека