Неспецифическая трансдукция. Фаговая трансдукция

Специфическая трансдукция была открыта в 1956 г. М. Морзе и суп- ругами Е. и Дж. Ледерберг. Характерной особенностью специфической трансдукции является то, что каждый трансдуцирующий фаг передает только определенную, весьма ограниченную область бактериальной хромосомы. Если в генерализованной трансдукции фаг выступает в каче- стве «пассивного» переносчика генетического материала бактерий, а ге- нетическая рекомбинация у трансдуцируемых бактерий происходит по общим закономерностям рекомбинационного процесса, то при специфи- ческой трансдукции фаг не только переносит генетический материал, но и обеспечивает его включение в бактериальную хромосому. Наиболее известным примером специфической трансдукции является трансдукция, осуществляемая фагом λ, который способен заражать клет- ки бактерий E. coli с последующей интеграцией его ДНК в геном бакте- рий. Умеренный фаг λ при лизогенизации бактерий в результате сайт- специфической рекомбинации (разрыв и перекрестное воссоединение цепей ДНК) встраивается в их хромосому только в одном месте: на уча- стке между локусами bio и gal. Этот участок получил название attλ. Вы- резание (эксцизия) профага из хромосомы при индукции профага осуще- ствляется также по механизму сайт-специфической рекомбинации. Сайт-специфическая рекомбинация происходит точно, но не безоши- бочно. Приблизительно один раз на миллион событий при эксцизии про- фага рекомбинация осуществляется не в attλ-сайте, а захватывает участ- ки gal либо bio. Полагают, что это обусловлено «неправильным» образо- ванием петли при дезинтеграции профага. В результате этого прилегаю- щая к профагу область бактериального генома выщепляется из состава хромосомы и переходит в состав генома свободного фага. Соответст- вующая по расположению в петле область генома профага остается в бактериальной хромосоме. Таким образом, между профагом и бактери- альной хромосомой осуществляется генетический обмен. Встраи- вающийся в геном фага бактериальный генетический материал может заместить до 1/3 генетического материала фага. После упаковки фаговой ДНК, часть которой замещена бактериаль- ной, в фаговую головку образуются дефектные фаговые частицы. Фаг является дефектным вследствие того, что объем головки ограничен и при включении в его геном фрагмента бактериальной ДНК часть фагового генома остается в хромосоме бактерий. Если дефект несущественен, то фаг сохраняет жизнеспособность, так как его белковая оболочка остается неповрежденной и обеспечивает адсорбцию на клетках. Такой дефект- ный фаг может заражать другие клетки, но не может вызывать репродук- тивную инфекцию, так как гены, ответственные за репродукцию, отсут- ствуют. Если в таком дефектном фаге в ДНК сохранились липкие концы, обеспечивающие превращение ее в циркулярную форму, то ДНК де- фектного фага вместе с фрагментом бактериальной ДНК может интегри- роваться в ДНК реципиентных бактерий и вызывать их лизогенизацию Было установлено, что при индукции профага λ чаще образуются дефектные частицы, содержащие гены локуса gal. Такие дефектные час- тицы обозначают λdgal (фаг λ, defective, gal). Если в геноме фага λ со- держится ген, ответственный за синтез биотина, то – λdbio. Следователь- но, если фаголизатом, полученным после заражения донорных бактерий фагом λ, в котором содержится дефектные частицы, обработать реципи- ентные клетки bio– или gal–, то с частотой 10–5–10–6 образуются транс- дуктанты bio+ или gal+. Специфическая трансдукция у E. coli осуществляется не только фа- гом λ, но и родственными ему фагами, получившими наименование лямбдоидных фагов, к числу которых относятся φ80, 434, 82 и др. В ча- стности, фаг φ80 включается в хромосому вблизи генов, кодирующих образование ферментов, ответственных за синтез триптофана. По этой причине фаг φ80 пригоден для переноса генов trp. Было установлено, что фаг P22 S. typhimurium, кроме общей транс- дукции, может осуществлять и специфическую трансдукцию. При лити- ческом цикле развития бактериофаг Р22 может осуществлять общую трансдукцию, а при лизогенизации – специфическую. ДНК фага Р22 ин- тегрируется в участок хромосомы рядом с генами, ответственными за синтез пролина. Интеграция профага резко стимулирует образование специфических трансдуцирующих частиц. Таким образом, для осуществления специфической трансдукции не- обходима предварительная лизогенизация бактерий-доноров и после- дующая индукция профага из клеток. Образовавшиеся при этом дефект- ные трансдуцирующие частицы фагов заражают клетки реципиентного штамма, происходит их лизогенизация и встраивание профага с участком генома бактерий донора в хромосому реципиента. Использовать трансдукцию можно в следующих направлениях: трансдуцировать плазмиды и короткие фрагменты хромосомы до- нора; для конструирования штаммов заданного генотипа, в частности изогенных штаммов. Здесь малый размер передаваемых фрагментов обеспечивает преимущество трансдукции перед конъюгацией. Изоген- ные штаммы, сконструированные при помощи генерализованной транс- дукции, различаются только по участку хромосомы, переносимому трансдуцирующим фагом; для точного картирования бактериальных генов, установления по- рядка и их расположения в оперонах и тонкой структуры отдельных ге- нетических детерминант, что осуществляют с помощью комплемента- ционного теста. Известно, что для синтеза определенной группы про- дуктов необходимо функционирование нескольких генов. Допустим, что синтез какого-то фермента определяется продуктами генов а и b. Пусть имеются два фенотипически одинаковых мутанта, не способных к синте- зу фермента, но неизвестно, идентичны или различны они генетически. Для идентификации генотипа проводят трансдукцию, т. е. размножают фаг на клетках одной популяции, а затем фаголизатом заражают клетки второй популяции. Если при высеве на селективную среду формируются как большие колонии истинных трансдуктантов, так и маленькие коло- нии абортивных трансдуктантов, делают вывод, что мутации локализо- ваны в разных генах.

Трансдукция - разновидность рекомбинативной изменчивости микроорганизмов, сопровождающаяся переносом генетической информации от донора к реципиентус помощью бактериофага. Перенос участков бактериальной хро­мосомы фагами был открыт в 1951г. Ледербергом и Циндером у Salmonella typhimurium, впоследствииописана у многих родов бактерий: Salmonella, Escherichia, Shigella, Bacillus, Pseudomonas, Vibrio, Streptococcus, Slaphylococcus, Corynebacterium. Капсидная оболочка бактериофага защищает ДНК от действия нуклеаз, поэтому трансдукция, в отличие от трансформации, не чувствительна к нуклеазам. Трансдукцию осуществляют умеренные фаги . Они переносят лишь небольшой фрагмент генома клетки хозяина, и как правило, среди особей одного вида, но возможен и межвидовой перенос генетической информации, если бактериофаг имеет широкий спектр хозяев.

В зависимости от исхода взаимодействия фага с бактерией выделяют литические и умеренные фаги.

Литические (вирулентные) фаги впрыскиваютнуклеиновую кислоту в клетку и репродуцируются в ней, после чего покидают клетку путем лизиса.

Лизогенные, или умеренные фаги , инъецировав свою ДНК в клетку, могут вести двояко: 1) начать цикл репродукции и покинуть клетку путем лизиса; 2) интегрировать свою генетическую информацию в геном бактерии и в его составе передаваться дочерним клеткам. Фаги, встроенные в геном бактерий, называют профагами , а бактерии со встроенными в геном фагами, - лизогенными. В результате действия факторов, прерывающих лизогению (УФ, ионизирующей радиация, химические мутагены), вновь синтезируются вирусные частицы, которые покидают клетку. Примером умеренного фаг является фаг l, поражающий E. coli . Этапы его трансдукции:

  1. Адсорбция фага к рецепторам на поверхности E. coli .
  2. Проникновение хвостовой части фага через клеточную стенку и инъекция ДНК в клетку-хозяина.
  3. Рекомбинация кольцевой молекулы ДНК фага с ДНК хозяина и установление лизогении (фаговая ДНК находится в интегрированном состоянии).
  4. Передача профага дочерним клеткам в процессе размножения E. coli . Чем больше делений, тем большее количество клеток содержит бактериофаг.
  5. Окончание лизогении. ДНК бактериофага вырезается из бактериальной хромосомы. Происходит синтез вирусных белков и репликация ДНК фага, сопровождающиеся созреванием вирусных частиц и их выходом из клетки путем ее лизиса. Во время вырезания бактериофаг может захватывать близлежащие бактериальные гены, которые в последующем попадают в клетку реципиента.
  6. Встраивание генома бактериофага, несущего бактериальные гены, в ДНК бактерии-реципиента. В зависимости от места встраивания бактериофага выделяют следующие виды трансдукции:

a. Неспецифическую (общую). Бактериофаг может встраиваться в любом месте генома бактерии и потому способен переносить любой фрагмент ДНК хозяина.

b. Специфическую. Бактериофаг встраивается в строго определенные места генома бактерии, а потому переносит лишь строго определенные фрагменты ДНК.

c. Абортивную . Участок бактериальной хромосомы донора, перенесенный бактериофагом, не вступает в рекомбинацию с хромосомой реципиента, а остается вне хромосомы. Происходит транскрипция перенесенной ДНК (на это указывает синтез соответ­ствующего генного продукта), но не репликация. В процессе деления клетки донорский фрагмент переходит только в одну из дочер­них клеток и со временем утрачивается.

Трансдукция - перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Впервые это явление уста­новили в 1952 г. Н. Зиндер и Дж. Ледерберг. Они проводили исследования на патогенных для мышей бактериях Salmonella typhimurium. Были отобраны два штамма этих бактерий: штамм 22А ауксотрофный, не способный синтезировать триптофан (Т~), и штамм 2А, способный синтезировать триптофан (Т 1 "). Эти штаммы засевали в U-образную трубку, разделенную внизу бак­териальным фильтром (рис. 24). В одно колено трубки засевали штамм 22А (Т~), в другое - штамм 2А (Т 1 "). После определенно­го периода инкубации бактерии штамма 22А при посеве на ми­нимальную питательную среду дали небольшое количество коло­ний (частота появления трансдуцированных клеток была равна Ы0~ 5). Это свидетельствовало о том, что некоторые клетки приобрели способность синтезировать триптофан. Каким же об­разом бактерии могли приобрести это свойство? Исследования

Рис. 24. Схема опыта по трансдукцин

показали, что штамм 22А был лизогенен по фагу Р-22. Этот
фаг освобождался из лизогенной культуры, проходил через
фильтр и лизировал штамм 2А. Присоединив часть генетичес-
кого материала штамма 2А, фаг Бактериальные возвращался обратно и переда­ вал этот генетический материал штамму 22А. Штамм 22А при­
обретал специфические наслед­ственные свойства штамма 2А,
в данном случае свойство син­тезировать триптофан. Анало­гичным образом могут бытьтрансдуцированы и другие при­знаки, в том числе способность
к сбраживанию, устойчивость кантибиотикам и т. д.

Явление трансдукции уста­новлено также у кишечной па-лочки и актиномицетов. Как правило, трансдуцируется один ген, реже два и очень редко три сцепленных гена. При переносе генетического материала заменяется участок молекулы ДНК фага. Фаг при этом теряет свой собственный фрагмент и стано­вится дефектным. Включение генетического материала в хромо­сому бактерии реципиента осуществляется механизмом типа кроссинговера. Происходит обмен наследственным материалом между гомологичными участками хромосомы реципиента и мате­риала, привнесенного фагом.

Различают три вида трансдукции: общую, или неспецифичес­кую, специфическую и абортивную. При неспецифической транс­дукции в период сборки фаговых частиц в их головку вместе с фаговой ДНК может включиться любой из фрагментов ДНК пораженной бактерии. В результате в реципиентные клетки могут переноситься различные гены бактерии донора. Неспеци­фическую трансдукцию могут осуществлять фаги Р-1 и Р-22 у эшерихий, шигелл и сальмонелл. При специфической трансдукции профаг включается в определенное место хромосомы бактерии и трансдуцирует определенные гены, расположенные в хромосоме клетки донора рядом с профагом. Например, фаг "к (лямбда) в состоянии профага всегда включается в одно и то же место в хромосоме кишечной палочки и трансдуцирует локус, обуслов­ливающий способность к сбраживанию галактозы. При отделе­нии профагов от ДНК хозяина прилегающие к профагу бактери­альные гены вместе с ним выщепляются из состава хромосомы, а часть генов профага остается в ее составе. Частота общей трансдукции составляет от 1 на 1 млн до 1 на 100 млн. Специ­фическая трансдукция происходит чаще.

Установлено, что фрагмент хромосомы донора, перенесенный в % клетку реципиента, не всегда включается в хромосому реципи­ента, а может сохраняться в цитоплазме клетки. При делении бактерий он попадает только в одну из дочерних клеток. Такое состояние получило название абортивной трансдукции.

Общая трансдукция

Механизм ее заключается в том, что в процессе внутриклеточного размножения фага в его головку может быть случайно включен вместо фаговой ДНК фрагмент бактериальной ДНК, равный по длине фаговой. Это вполне возможно, так как в инфицированной клетке биосинтез ее ДНК блокирован, а сама ДНК подвергается распаду. Таким образом в процессе репродукции фага возникают дефектные вирионы, у которых в головках вместо собственной геномной ДНК содержится фрагмент ДНК бактерии. Такие фаги сохраняют инфекционные свойства. Они адсорбируются на бактериальной клетке, вводят в нее ДНК, содержащуюся в головке, но при этом размножения фага не происходит. Введенная в клетку реципиента донорная ДНК (фрагмент хромосомы донора), если она содержит гены, отсутствующие у реципиента, наделяет его новым признаком. Этот признак будет зависеть от того, какой ген (гены) попал в головку трансдуцирующего фага. В случае рекомбинации привнесенного фагом фрагмента ДНК донора с хромосомой клетки - реципиента этот признак наследственно закрепляется.

Специфическая трансдукция

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина. При выходе (исключении) из хромосомы профаг может захватить ген с левого или правого фланга, например или gal, или bio. Но в этом случае он должен лишиться такого же размера своей ДНК с противоположного конца, чтобы ее общая длина оставалась неизменной (иначе она не может быть упакована в головку фага). Поэтому при такой форме исключения образуются дефектные фаги: A - dgal или Xdbio.

Специфическую трансдукцию у Е. coli осуществляет не только фаг лямбда, но и родственные ему лямбдоидные и другие фаги. В зависимости от места расположения сайтов attB на хромосоме они при своем исключении могут включать различные бактериальные гены, сцепленные с профагом, и трансдуцировать их в другие клетки. Встраивающийся в геном материал может замещать до 1/3 генетического материала фага.

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту. Однако лизогенная конверсия может произойти и в том случае, если геном умеренного фага содержит такие собственные гены, которые у клетки отсутствуют, но отвечают за синтез существенно важных белков. Например, способностью вырабатывать экзотоксин обладают только те возбудители дифтерии, в хромосому которых интегрирован умеренный профаг, несущий оперон tox. Он отвечает за синтез дифтерийного токсина. Иначе говоря, умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токси - генную.

Рис. 4.

1 - спот-тест; 2 - титрование по Грациа.

Метод агаровых слоев заключается в следующем. Вначале в чашку наливают слой питательного агара. После застывания на этот слой добавляют 2 мл расплавленного и охлажденного до 45 °С 0,7% - ного агара, в который предварительно добавляют каплю концентрированной суспензии бактерий и определенный объем суспензии фага. После того, как верхний слой застынет, чашку помещают в термостат. Бактерии размножаются внутри мягкого слоя агара, образуя сплошной непрозрачный фон, на котором хорошо видны колонии фага в виде стерильных пятен (рис.4.2). Каждая колония образуется за счет размножения одного исходного фагового вириона. Применение этого метода позволяет:

а) путем подсчета колоний точно определить количество жизнеспособных фаговых вирионов в данном материале;

б) по характерным признакам (размер, прозрачность и др.), изучать наследственную изменчивость V фагов.

По спектру действия на бактерии фаги подразделяются на поливалентные (лизируют родственные бактерии, например поливалентный сальмонеллезный фаг лизирует почти все сальмонеллы), монофаги (лизируют бактерии только одного вида, например фаг Vi - I лизирует только возбудителей брюшного тифа) и типоспецифические фаги, которые избирательно лизируют отдельные варианты бактерий внутри вида. С помощью таких фагов производится наиболее тонкая дифференциация бактерий внутри вида, с разделением их на фаговарианты. Например, с помощью набора фагов Vi - II возбудитель брюшного тифа делится более чем на 100 фаговариантов. Поскольку чувствительность бактерий к фагам является относительно стабильным признаком, связанным с наличием соответствующих рецепторов, фаготипирование имеет важное диагностическое и эпидемиологическое значение.

Оглавление темы "Генетические элементы бактерий. Мутации у бактерий. Трансдукция.":
1. Мигрирующие генетические элементы бактерий. Транспозоны. Бактериофаги, как мигрирующие генетические элементы.
2. Мутация. Мутации у бактерий. Мутагены. Спонтанные мутации. Обратные мутации (реверсии).
3. Индуцированные мутации бактерий. Химический мутагенез. Радиационный мутагенез. Типы мутаций.
4. Репарация ДНК бактерий. Системы репарации днк. Компенсация функций нарушенных в результате мутаций. Интрагенная супрессия. Экстрагенная супрессия.
5. Перенос бактериальной ДНК. Конъюгация бактерий. F-фактор бактерии.
6. Трансформация бактерий. Стадии трансформации бактерии. Картирование хромосом бакетерий.

8. Свойства бактерий. Ненаследуемые изменения свойств бактерий. S - колонии. R - колонии. M - колонии. D - колонии бактерий.

Трансдукция - перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг. Трансдуцирующий бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент).

Выделено три типа трансдукции : неспецифическая (общая), специфическая и абортивная . В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов вместе с вирусной ДНК могут проникнуть фрагменты бактериальной ДНК или плазмиды. Вирусы ограничены в объёме генетического материала в соответствии с объёмом головки. Если ДНК бактериальной клетки расщепляется фагом в нетипичном месте, то чтобы освободить пространство для фрагмента хромосомной ДНК, некоторые участки вирусных ДНК «приносятся в жертву», что приводит к утере определённых их функций. При этом фаговая частица может стать дефектной. Количество аномальных фагов может достигать 0,3% всей дочерней популяции.

Образовавшийся фаг и есть частица, вызывающая неспецифическую (общую) трансдукцию . При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены.

При неспецифической трансдукции фагом может быть перенесён любой фрагмент ДНК хозяина, а при специфической лишь строго определённые фрагменты ДНК. Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при транедукции. При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в генофор реципиента, а остаётся в цитоплазме, где его ДНК транскрибируется, но не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток (то есть наследуется однолинейно) и затем теряется в потомстве.

Свойства трансдуцирующих фаговых частиц следующие:

Частицы несут лишь часть ДНК фага , то есть не являются функциональными вирусами, а скорее ёмкостями, переносящими фрагменты бактериальной ДНК.

Подобно прочим дефектным вирусам , частицы не способны к репликации.

Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества (например, гены устойчивости к антибиотикам или гены, кодирующие способность к синтезу различных веществ). Подобное приобретение бактериями новых свойств получило название феномен лизогении .

Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трансформации.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека