Числа которые делятся на 2 и 5.


Признак делимости на 5 продолжает серию статей о признаках делимости . Здесь приведена формулировка признака делимости на 5, показано его доказательство и разобраны примеры, в которых устанавливается делимость на 5 заданных целых чисел с помощью указанного признака.

Навигация по странице.

Признак делимости на 5, примеры

Начнем с формулировки признака делимости на 5 : если в записи целого числа справа находится цифра 0 или 5 , то такое число делится на 5 , если же справа в записи числа стоит другая цифра, то такое число не делится на 5 .

Озвученный признак делимости позволяет очень легко устанавливать способность данного числа делиться на 5 . Следует отметить, что использование признака делимости на 5 приводит к результату быстрее, чем непосредственное деление.

Число 0 делится на 5 , так как нуль делится на любое целое число (смотрите свойства делимости). Из на 5 делится лишь число 5 , а числа 1 , 2 , 3 , 4 , 6 , 7 , 8 и 9 не делятся на 5 без остатка.

Рассмотрим примеры применения признака делимости на 5 .

Пример.

Какие из чисел 74 , −900 , 10 000 , −799 431 , 355 , −5 делятся на 5 ?

Решение.

Записи чисел 74 и −799 431 оканчиваются цифрами 4 и 1 , поэтому признак делимости на 5 позволяет утверждать, что эти числа не делятся на 5 нацело. А записи чисел −900 , 10 000 , 355 и −5 оканчиваются цифрами 0 и 5 , поэтому эти числа делятся на 5 .

Ответ:

−900 , 10 000 , 355 и −5 делятся на 5 .

Доказательство признака делимости на 5

Переформулируем признак делимости на 5 в виде необходимого и достаточного условия делимости на 5 , и докажем его.

Теорема.

Для делимости целого числа a на 5 необходимо и достаточно, чтобы запись числа a оканчивалась цифрой 0 или 5 .

Доказательство.

Сначала докажем вспомогательное утверждение: произведение a 1 ·10 , где a 1 – целое число, делится на 5 .

Число 10 делится на 5 , так как 10=5·2 , тогда произведение a 1 ·10 тоже делится на 5 в силу следующего свойства делимости: если целое число a делится на целое число b , то произведение m·a , где m – любое целое число, делится на b .

Теперь переходим к доказательству теоремы.

Позволяет любое целое число a , запись которого оканчивается нулем, представить в виде a=a 1 ·10 , где число a 1 получается из числа a , если в его записи справа убрать цифру 0 . Если же в записи числа a справа находится произвольная цифра a 0 (a 0 – это 0 или 1 , или 2 , …, или 9 ), то a можно представить в виде a=a 1 ·10+a 0 . Для пояснения приведем пример такого представления: 54 327= 5 432·10+7 .

Дальнейшее доказательство основано на следующем свойстве делимости: если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

В равенстве a=a 1 ·10+a 0 произведение a 1 ·10 делится на 5 (что мы показали в начале теоремы). Если a 0 делится на 5 (что возможно, если a 0 =0 или a 0 =5 ), то по указанному свойству делимости на 5 делится и число a . Этим доказана достаточность. С другой стороны, если a делится на 5 , то по указанному свойству делимости и a 0 делится на 5 . Так доказана необходимость.

Другие случаи делимости на 5

В этом пункте мы рассмотрим задачи, в которых требуется выяснить, делится ли значение некоторого выражения на 5 . Начнем с примера, в котором получить решение позволяет признак делимости на 5 .

Пример.

Делится ли на 5 значение выражения 10 2·n −5 при некотором натуральном n ?

Решение.

При n=1 имеем 10 2·1 −5=95 , при n=2 – 10 2·2 −5=9 995 , при n=3 – 10 2·3 −5=999 995 , … Очевидно, что при любом натуральном n значение выражения 10 2·n −5 представляет собой число, запись которого оканчивается цифрой 5 . Таким образом, в силу признака делимости на 5 можно говорить о делимости 10 2·n −5 на 5 при любом натуральном n .

Ответ:

Да.

Более строгое доказательство делимости на 5 позволяет проводить . Докажем с его помощью, что при любом натуральном n значение выражения делится на 5 .

Пример.

Докажите, что делится на 5 при любом натуральном n .

Решение.

Выполним все шаги метода математической индукции.

Проверим, что при n=1 значение выражения делится на 5 . Имеем , а 30 делится на 5 , так как 30=5·6 .

Предположим, что при n=k значение выражения делится на 5 , то есть, будем считать, что делится на 5 .

Докажем, что при n=k+1 делится на 5 .

Имеем

Мы пришли к разности, в которой выражение делится на 5 , так как на предыдущем шаге мы предположили, что делится на 5 , и выражение тоже делится на 5 , так как содержит множитель 5 . Следовательно, вся разность делится на 5 в силу свойств делимости.

Так методом математической индукции доказано, что делится на 5 при любом натуральном n .

Этот же пример можно было решить, воспользовавшись . Бином Ньютона позволяет представлять подобные выражения в виде произведения, и если при этом хотя бы один из множителей будет делиться на 5 , то и все произведение будет делиться на 5 в силу соответствующего свойства делимости.

Пример.

Делится ли на 5 при натуральных n ?

Решение.

Представим 6 как 5+1 и воспользуемся формулой бинома Ньютона:

Полученное произведение делится на 5 при любом натуральном n , так как содержит множитель 5 , а значение выражения в скобках представляет собой натуральное число. n·(n−1)·(n+1)·(n 2 +1) .

Первый множитель n при n=5·m делится на 5 , следовательно, и все произведение делится на 5 .

При n=5·m+1 множитель n−1=5·m делится на 5 , откуда следует делимость на 5 всего произведения n·(n−1)·(n+1)·(n 2 +1) .

При

При n=5·m+2 множитель n 2 +1 равен соответственно 25·m 2 +20·m+5=5·(5·m 2 +4·m+1) . Очевидно, он делится на 5 , следовательно, на 5 делится и все произведение n·(n−1)·(n+1)·(n 2 +1) .

Наконец, при n=5·m+4 множитель n+1 равен 5·m+5 делится на 5 , поэтому, и все произведение n·(n−1)·(n+1)·(n 2 +1) делится на 5 .

Таким образом, n 5 −n=n·(n−1)·(n+1)·(n 2 +1) делится на 5 при любом целом n .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

В этой статье подробно разобран признак делимости на 2 . Сначала дана его формулировка, после чего приведены примеры его применения при выяснении, какие из целых чисел делятся на два. Дальше показано доказательство признака делимости на 2 . В заключение рассмотрены альтернативные способы, позволяющие установить делимость на 2 чисел, заданных в виде значений некоторых выражений.

Навигация по странице.

Признак делимости на 2, примеры

Формулировка признака делимости на 2 такова: если запись оканчивается одной из цифр 0 , 2 , 4 , 6 , 8 , то это число делится на 2 нацело, если же запись целого числа оканчивается одной из цифр 1 , 3 , 5 , 7 или 9 , то такое число не делится на 2 без остатка.

Отметим, что озвученный признак делимости на 2 позволяет проверять как целые положительные числа (), так и целые отрицательные на их способность делиться на 2 без остатка.

Теперь можно рассмотреть примеры использования признака делимости на 2 .

Пример.

Какие из данных чисел 8 , −946 , 53 , 10 900 , −988 123 761 делятся на 2 ?

Решение.

Несомненно, можно разделить каждое из данных чисел на 2 (например, выполнив ), откуда будет видно, делится ли число на 2 без остатка или с остатком. Однако признак делимости на 2 позволяет ответить на вопрос задачи намного быстрее.

Так как числа 8 , −946 , 10 900 оканчиваются цифрами 8 , 6 и 0 соответственно, то они делятся на 2 без остатка. В свою очередь числа 53 и −988 123 761 не делятся нацело на 2 , так как оканчиваются на 3 и 1 соответственно.

Ответ:

8 , −946 и 10 900 делятся на 2 , а 53 и −988 123 761 не делятся на 2 .

Теперь можно рассмотреть доказательство признака делимости на 2 . Для удобства переформулируем признак делимости на 2 , озвученный в первом пункте этой статьи, в виде необходимого и достаточного условия делимости целого числа на 2 и докажем его.

Теорема.

Чтобы целое число a делилось на 2 необходимо и достаточно, чтобы в записи числа a последней цифрой была 0 , 2 , 4 , 6 или 8 .

Доказательство.

Число a всегда можно представить в виде суммы целого числа десятков и числа единиц, то есть, в виде a=a 1 ·10+a 0 , где a 1 – число, полученное из числа a , если в его записи убрать последнюю цифру, а a 0 – число, соответствующее последней цифре в записи числа a (для пояснения приведем примеры таких представлений: 46=4·10+6 , 24 328=2 432·10+8 ). В равенстве a=a 1 ·10+a 0 произведение a 1 ·10 всегда делится на 2 , что мы показали перед этой теоремой.

Все дальнейшее доказательство базируется на следующем свойстве делимости: если два из трех целых чисел в равенстве t=u+v делятся на некоторое целое число z , то и третье число тоже делится на z .

Если a делится на 2 , то из указанного свойства делимости и представления a=a 1 ·10+a 0 следует, что a 0 делится на 2 , а это возможно лишь для a 0 равного 0 , 2 , 4 , 6 или 8 . Если же a не делится на 2 , то опять же в силу указанного свойства делимости число a 0 не может делиться на 2 (иначе бы a делилось на 2 ), а это возможно только при a 0 равном 1 , 3 , 5 , 7 или 9 . Этим доказана необходимость.

Теперь обратно. Если число a оканчивается на одну из цифр 0 , 2 , 4 , 6 или 8 , то a 0 делится на 2 . Поэтому в силу указанного свойства делимости и представления a=a 1 ·10+a 0 можно сделать вывод о делимости числа a на 2 . Если же a оканчивается на одну из цифр 1 , 3 , 5 , 7 или 9 , то a 0 не делится на 2 , поэтому a тоже не делится на 2 . В противном случае в силу указанного свойства делимости и представления a=a 1 ·10+a 0 число a 0 делилось бы на 2 , что невозможно. Этим доказана достаточность.

В заключение этого пункта отметим, что числа, записи которых оканчиваются цифрами 1 , 3 , 5 , 7 или 9 при делении на 2 всегда дают остаток 1 .

Другие случаи делимости на 2

В этом пункте мы хотим коснуться случаев, в которых целое число задано не непосредственно, а в виде некоторого значения , и нужно определить, делится ли данное число на 2 или нет. Обычно в этих случаях признак делимости на 2 не помогает, также не представляется возможным выполнить и непосредственное деление. Следовательно, нужно искать какие-то другие пути решения.

Один из подходов к решению таких задач подсказывает следующее свойство делимости: если хотя бы один из множителей в произведении целых чисел делится на данное число, то и все произведение делится на это число. Таким образом, если мы представим исходное буквенное выражение в виде произведения нескольких множителей, один из которых будет делиться на 2 , то этим будет доказана делимость исходного числа 2 .

Представить исходное выражение в виде произведения нескольких множителей иногда помогает . Рассмотрим решение примера.

Пример.

Делится ли значение выражения , вычисленное при некотором натуральном n , на 2 ?

Решение.

Очевидно равенство . Теперь воспользуемся формулой бинома Ньютона, после чего упростим полученное выражение:

В последнем выражении можно 2 вынести за скобки, в итоге имеем равенство . При любом натуральном n правая его часть делится на 2 , так как содержит множитель 2 , следовательно, на 2 делится и левая часть равенства.

Ответ:

Да, делится.

Во многих случаях для доказательства делимости на 2 используется . Возьмем выражение из предыдущего примера и докажем методом математической индукции, что при любых натуральных n его значение делится на 2 .

Пример.

Докажите, что значение выражения при любом натуральном n делится на 2 .

Решение.

Воспользуемся методом математической индукции.

Во-первых, покажем, что значение выражения делится на 2 при n=1 . Имеем , а 6 очевидно делится на 2 .

Во-вторых, предположим, что значение выражения делится на 2 при n=k , то есть, - делится на 2 .

В-третьих, исходя из того, что делится на 2 , докажем, что значение выражения делится на 2 при n=k+1 . То есть, докажем, что делится на 2 , учитывая, что делится на 2 .

Для этого выполним следующие преобразования: . Выражение делится на 2 , так как делится на 2 , выражение тоже делится на 2 , так как содержит множитель 2 , следовательно, в силу свойств делимости разность этих выражений тоже делится на 2 .

Этим доказано, что при любом натуральном n значение выражения делится на 2 .

Отдельно следует сказать о том, что если в произведении присутствуют два числа, которые идут друг за другом в , то такое произведение делится на 2 . Например, произведение целых чисел вида (n+7)·(n−1)·(n +2)·(n+6) делится на 2 при любом натуральном n , так как оно содержит два подряд идущих числа из натурального ряда чисел (ими являются числа n+6 и n+7 ), а одно из них обязательно делится на 2 при любом натуральном n .

Аналогично, если в произведении присутствуют два множителя, между которыми находится четное число членов натурального ряда, то такое произведение делится на 2 . Например, значение выражения (n+1)·(n+6) при любом натуральном n делится на 2 , так как между натуральными числами n+1 и n+6 содержится четное количество чисел: n+2 , n+3 , n+4 и n+5 .

Обобщим информацию двух предыдущих пунктов. Если показать, что значение некоторого выражения делится на 2 при или n+3 обязательно делится на 2 , поэтому и произведение (n+2) 2 ·(n+3) делится на 2 , следовательно, и значение исходного выражения делится на 2 .

Приведем более строгое доказательство.

При n=2·m имеем . Это выражение делится на 2 , так как содержит множитель 4 , который делится на 2 .

При n=2·m+1 имеем . Полученное произведение делится на 2 , так как содержит множитель 2 .

Этим доказано, что n 3 +7·n 2 +16·n+12=(n+2) 2 ·(n+3) делится на 2 при любом натуральном n .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Рассмотрим основные признаки делимости чисел на 2, 5 и 10. Начнем с десятки

Признак делимости на десять

  • Если натуральное число оканчивается цифрой нуль, то это число делится без остатка на 10.

Для того чтобы в таком случае получить частное от деления, необходимо просто отбросить один нуль.

  • Например, 350 делится без остатка на 10. Результатом деления будет 35.

А теперь попробуем другое число, например, 357. При делении на 10 получим неполное частное 35 и остаток 7. То есть, в качестве остатка будет цифра, записанная на последнем месте в числе.

Если же в записи натурального числа, на последнем месте стоит другая цифра, то оно не делится без остатка на 10. Остатком от деления в таком случае будет последняя цифра.

Заметим, что число 10 является произведением чисел 2 и 5. Другими словами десятка делится на 2 и на 5 без остатка. А следовательно, любое число, которое делится без остатка на 10 делится и на 2, и на 5. А учитывая предыдущий признак, получаем, что любое число, в записи котоого на последнем месте стоит нуль, делится на 2 и на 5.

  • Например, 70 = 7*10 = 7*(2*5) = (7*2)*5=14*5, то есть 70:5=14

Аналогично для двойки,

  • 70=7*10 = 7*(2*5)=(7*5)*2=35*2, то есть 70:2=35.

Признаки делимости на 5

Заметим так же тот факт, что любое многозначное натуральное число можно представить в виде полных десятков и единиц. Например, 23=20+3, или 1253= 1250+3.

Так как число полных десятков всегда оканчивается нулем, то эта часть числа всегда делится на 5. Следовательно, делимость числа на 5 зависит от числа, которое записано на последнем месте. Т.е. от числа единиц. Там могут быть цифры 1,2,3,4,5,6,7,8,9, из этих чисел, только 5 делится на 5 без остатка. Следовательно, можем сформулировать признак делимости числа на 5.

  • Если запись натурального числа оканчивается на 5 или на 0, то это число делится на 5 без остатка. Если же запись числа оканчивается на другую цифру, то это число не делится на 5 без остатка.

Например, число 355 делится на 5 без остатка, и число 350 тоже делится на 5 без остатка, а числа 654 и 348 не делятся без остатка на 5.

Признаки делимости на 2

Аналогичными рассуждениями можно получить признак делимости числа на 2.

  • Если запись натурального числа оканчивается четной цифрой, то это число делится на 2 без остатка. Если же запись числа оканчивается нечетной цифрой, то это число не делится на 2 без остатка.

Четными называются числа, не имеют остатка при делении на 2. Из однозначных, цифры 0,2,4,6,8 являются четными. Цифры 1,3,5,7,9 – являются нечетными. Нечетные числа при делении на 2, дают остаток 1.

Признаки делимости чисел – это правила, позволяющие не производя деления сравнительно быстро выяснить, делится ли это число на заданное без остатка.
Некоторые из признаков делимости довольно просты, некоторые сложнее. На этой странице Вы найдете как признаки делимости простых чисел, таких как, например, 2, 3, 5, 7, 11, так и признаки делимости составных чисел, таких, как 6 или 12.
Надеюсь, данная информация будет Вам полезной.
Приятного обучения!

Признак делимости на 2

Это один из самых простых признаков делимости. Звучит он так: если запись натурального числа оканчивается чётной цифрой, то оно чётно (делится без остатка на 2), а если запись числа оканчивается нечётной цифрой, то это число нечётно.
Другими словами, если последняя цифра числа равна 2 , 4 , 6 , 8 или 0 - число делится на 2, если нет, то не делится
Например, числа: 234 , 8270 , 1276 , 9038 , 502 делятся на 2, потому что они чётные.
А числа: 235 , 137 , 2303
на 2 не делятся, потому что они нечетные.

Признак делимости на 3

У этого признака делимости совсем другие правила: если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.
А значит, чтобы понять, делится ли число на 3, надо лишь сложить между собой цифры, из которых оно состоит.
Выглядит это так: 3987 и 141 делятся на 3, потому что в первом случае 3+9+8+7=27 (27:3=9 - делится без остака на 3), а во втором 1+4+1=6 (6:3=2 - тоже делится без остака на 3).
А вот числа: 235 и 566 на 3 не делятся, потому как 2+3+5=10 и 5+6+6=17 (а мы знаем, что ни 10 ни 17 не делятся на 3 без остатка).

Признак делимости на 4

Этот признак делимости будет посложнее. Если последние 2 цифры числа образуют число, делящееся на 4 или это 00, то и число делится на 4, в противном случае данное число не делится на 4 без остатка.
Например: 100 и 364 делятся на 4, потому что в первом случае число оканчивается на 00 , а во втором на 64 , которое в свою очередь делится на 4 без остатка (64:4=16)
Числа 357 и 886 не делятся на 4, потому что ни 57 ни 86 на 4 не делятся, а значит не соответствуют данному признаку делимости.

Признак делимости на 5

И опять перед нами довольно простой признак делимости: если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
Это значит, что любые числа, оканчивающиеся цифрами 0 и 5 , например 12355 и 430 , подпадают под правило и делятся на 5.
А, к примеру, 15493 и 564 не оканчиваются на цифру 5 или 0, а значит они не могут делиться на 5 без остатка.

Признак делимости на 6

Перед нами составное число 6, которое является произведением чисел 2 и 3. Поэтому признак делимости на 6 тоже является составным: для того, чтобы число делилось на 6, оно должно соответствовать двум признакам делимости одновременно: признаку делимости на 2 и признаку делимости на 3. При этом обратите внимание, что такое составное число как 4 имеет индивидуальный признак делимости, ведь оно является призведением числа 2 на само себя. Но вернемся к признаку делимости на 6.
Числа 138 и 474 чётные и отвечают признакам делимости на 3 (1+3+8=12, 12:3=4 и 4+7+4=15, 15:3=5), а значит они делятся на 6. Зато 123 и 447 хоть и делятся на 3 (1+2+3=6, 6:3=2 и 4+4+7=15, 15:3=5), но они нечётные, а значит не соответсвуют признаку делимости на 2, а следовательно и не соответсвуют признаку делимости на 6.

Признак делимости на 7

Этот признак делимости более сложный: число делится на 7, если результат вычитания удвоенной последней цифры из числа десятков этого числа делится на 7 или равен 0.
Звучит довольно запутанно, но на практике просто. Смотрите сами: число 95 9 делится на 7, потому что 95 -2*9=95-18=77, 77:7=11 (77 делится на 7 без остатка). Причем если с полученным во время преобразований числом возникли сложности (из-за его размера сложно понять, делится оно на 7 или нет, то данную процедуру можно продолжать столько раз, сколько Вы сочтете нужным).
Например, 45 5 и 4580 1 обладают признаками делимости на 7. В первом случае все довольно просто: 45 -2*5=45-10=35, 35:7=5. Во втором случае мы поступим так: 4580 -2*1=4580-2=4578. Нам сложно понять, делится ли 457 8 на 7, поэтому повторим процесс: 457 -2*8=457-16=441. И опять воспользуемся признаком делимости, так как перед нами пока еще трехзначное число 44 1. Итак, 44 -2*1=44-2=42, 42:7=6, т.е. 42 делится на 7 без остатка, а значит и 45801 делится на 7.
А вот числа 11 1 и 34 5 не делятся на 7, потому что 11 -2*1=11-2=9 (9 не делится без остатка на 7) и 34 -2*5=34-10=24 (24 не делится без остатка на 7).

Признак делимости на 8

Признак делимости на 8 звучит так: если последние 3 цифры образуют число, делящееся на 8, или это 000, то заданное число делится на 8.
Числа 1000 или 1088 делятся на 8: первое оканчивается на 000 , у второго 88 :8=11 (делится на 8 без остатка).
А вот числа 1100 или 4757 не делятся на 8,так как числа 100 и 757 не делятся без остатка на 8.

Признак делимости на 9

Этот признак делимости схож с признаком делимости на 3: если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
Например: 3987 и 144 делятся на 9, потому что в первом случае 3+9+8+7=27 (27:9=3 - делится без остака на 9), а во втором 1+4+4=9 (9:9=1 - тоже делится без остака на 9).
А вот числа: 235 и 141 на 9 не делятся, потому как 2+3+5=10 и 1+4+1=6 (а мы знаем, что ни 10 ни 6 не делятся на 9 без остатка).

Признаки делимости на 10, 100, 1000 и другие разрядные единицы

Данные признаки делимости я объединил потому, что их можно описать одинаково: число делится на разрядную единицу, если количество нулей на конце числа больше или равно количеству нулей у заданной разрядной единицы.
Другими словами, например, мы имеем такие числа: 6540 , 46400 , 867000 , 6450 . из них все делятся на 10 ; 46400 и 867000 делятся еще и на 100 ; и лишь одно из них - 867000 делится на 1000 .
Любые числа, у которых количество нулей на конце меньше чем у разрядной единицы, не делятся на эту разрядную единицу, например 60030 и 793 не делятся 100 .

Признак делимости на 11

Для того, чтобы выяснить, делится ли число на 11, надо получить разность сумм четных и нечетных цифр этого числа. Если данная разность равна 0 или делится на 11 без остатка, то и само число делится на 11 без остатка.
Чтобы было понятнее, предлагаю рассмотреть примеры: 2 35 4 делится на 11, потому что (2 +5 )-(3+4)=7-7=0. 29 19 4 тоже делится на 11, так как (9 +9 )-(2+1+4)=18-7=11.
А вот 11 1 или 4 35 4 не делятся на 11, так как в первом случае у нас получается (1+1)-1 =1, а во втором (4 +5 )-(3+4)=9-7=2.

Признак делимости на 12

Число 12 является составным. Его признаком делимости является соответствие признакам делимости на 3 и на 4 одновременно.
Например 300 и 636 соответствуют и признакам делимости на 4 (последние 2 цифры это нули или делятся на 4) и признакам делимости на 3 (сумма цифр и первого и втророго числа делятся на 3), а занчит, они делятся на 12 без остатка.
А вот 200 или 630 не делятся на 12, потому что в первом случае число отвечает лишь признаку делимости на 4, а во втором - лишь признаку делимости на 3. но не обоим признакам одновременно.

Признак делимости на 13

Признаком делимости на 13 является то, что если число десятков числа, сложенное с умноженными на 4 единицами этого числа, будет кратно 13 или равно 0, то и само число делится на 13.
Возьмем для примера 70 2. Итак, 70 +4*2=78, 78:13=6 (78 делится без остатка на 13), значит и 70 2 делится на 13 без остатка. Еще пример - число 114 4. 114 +4*4=130, 130:13=10. Число 130 делится на 13 без остатка, а значит заданное число соответсвует признаку делимости на 13.
Если же взять числа 12 5 или 21 2, то получаем 12 +4*5=32 и 21 +4*2=29 соответсвенно, и ни 32 ни 29 не делятся на 13 без остатка, а значит и заданные числа не делятся без остатка на 13.

Делимость чисел

Как видно из вышеперечисленного, можно предположить, что к любому из натуральных чисел можно подобрать свой индивидуальный признак делимости или же "составной" признак, если число кратно нескольким разным числам. Но как показывает практика, в основном чем больше число, тем сложнее его признак. Возможно, время,потраченное на проверку признака делимости, может оказаться равно или больше чем само деление. Поэтому мы и используем обычно простейшие из признаков делимости.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека