Белки как биополимеры. Свойства и биологические функции белков

Белковые вещества или белки также относятся к природным ВМС. Они представляют собой высокомолекулярные органические соединения, сложные молекулы которых построены из аминокислот. Молекулярная масса белков колеблется в пределах от 27 000 до 7 млн. При растворении в воде белки образуют истинные растворы. В воде молекулы белков диссоциируют на ионы. Эта диссоциация может происходить по кислотному или основному типу, в зависимости от рН среды. В сильно кислой среде белок ведёт себя как основание, его молекула диссоциирует за счёт групп NH2 по основному типу:

HONH3 - R - COOH + + OH-

Кислотная диссоциация при этом подавлена.

В щелочной среде, напротив, подавлена основная диссоциация, а идёт преимущественно кислотная.

HONH3 - R - COOH - + H+

Однако при каком-то значении рН степень диссоциации амино- и карбоксильных групп приобретает одинаковые значения, когда молекулы белков становятся электронейтральными. Значение рН, при котором молекула белка находится в электронейтральном состоянии носит название изоэлектрической точки, сокращенно ИЭТ. Для большинства белков ИЭТ лежит в области кислых растворов. В частности, для желатина - 4,7; казеина молока - 4,6; г-глобулина крови - 6,4; пепсина - 2,0; химотрипсина - 8,0; альбумина яичного - 4,7; фармагеля А - 7,0; фармагеля Б - 4,7. Необходимо знать изоэлектрическую точку, т. к. установлено, что в иэт устойчивость растворов белков будет минимальной (проявление всех его свойств будет минимальным). В некоторых случаях возможно даже выпадение белков в осадок. Это связано с тем, что в иэт по всей длине белковой молекулы находится равное количество положительно и отрицательно заряженных ионогенных групп, что приводит к изменению конфигурации молекулы. Гибкая молекула сворачивается в плотный клубок в силу притяжения разноименных ионов.

С изменением формы макромолекул связано изменение вязкости растворов.

Представителями этой группы природных ВМС являются такие ферменты, в частности:

Пепсин получается путём специальной обработки слизистых оболочек желудка свиней и смешанных с сахарной пудрой. Это белый, слегка желтоватый порошок сладкого вкуса со слабым своеобразным запахом. Применяется при расстройствах пищеварения (ахилии, гастритах, диспепсии и др.).

Трипсин получают из поджелудочных желез крупного рогатого скота. Это белок с молекулярной массой 21000. Может быть в двух полиморфных формах: кристаллической и аморфной. Трипсин кристаллический применяется наружно в глазных каплях; в концентрации 0,2-0,25% при гнойных ранах, пролежнях, некрозах для парентералыюго (внутримышечного) применения. Это белый кристаллический порошок, без запаха, легко растворим в воде, изотоническом растворе натрия хлорида.

Химотрипсин - смесь химопсина и трипсина, рекомендуется только для местного применения в воде 0,05-0,1-1% растворов при гнойных ранах, ожогах.

Гидролизин - получают гидролизом крови животных, входит в состав противошоковых жидкостей.

Аминопептид - получается также при гидролизе крови животных, применяется для питания истощённых организмов. Применяется внутривенно, рекомендуется и ректальный способ введения.

Коллаген является основным белком соединительной ткани, состоит из макромолекул, имеющих трёхспиральную структуру. Главным источником коллагена служит кожа крупного рогатого скота, в которой содержится его до 95%. Коллаген получают путём щелочно-солевой обработки спилка.

Коллаген применяют для покрытия ран в виде плёнок с фурацилином, кислотой борной, маслом облепиховым, метилурацилом, также в виде глазных плёнок с антибиотиками. Применяются губки гемостатические с различными лекарственными веществами. Коллаген обеспечивает оптимальную активность лекарственных веществ, что связано с глубоким проникновением и продолжительным контактом лекарственных веществ, включённых в коллагеновую основу, с тканями организма.

Совокупность биологических свойств коллагена (отсутствие токсичности, полная резорбция и утилизация в организме, стимуляция репаративных процессов) и его технологические свойства создают возможность широкого использования в технологии лекарственных форм.

Все эти белковые вещества - хорошо растворяются в воде. Они являются неограниченно набухающими ВМС, что объясняется строением их макромолекул. Макромолекулы этих веществ представляют собой свёрнутые шаровидные глобули. Связи между молекулами невелики, они легко сольватируются и переходят в растворы. Образуются маловязкие растворы.

Желатин медицинский также относится к группе белков, описание этого вещества приведено в ГФ ІХ на стр. 309. Это продукт частичного гидролиза коллагена и казеина, содержащихся в костях, коже и хрящах животных. Представляет собой бесцветные или слегка желтоватые просвечивающие гибкие листочки или мелкие пластинки без запаха.

Применяется внутрь для повышения свёртываемости крови и остановки желудочно-кишечных кровотечений. 10% р-ры желатина используют для инъекций. Р-ры желатина в воде и глицерине используют для приготовления мазей и суппозиториев. Молекулы желатина имеют линейную вытянутую форму (фибрилярную). Желатин - это белок, продукт конденсации аминокислот, в его молекулах содержится много полярных групп (карбоксильных и аминогрупп), которые имеют большое сродство к воде, поэтому в воде желатин образует истинные растворы. При комнатной температуре 20-25?С ограниченно набухает, с повышением температуры растворяется.

Желатоза - продукт гидролиза желатина. Представляет слегка желтоватый гигроскопический порошок. Используется для стабилизации гетерогенных систем (суспензий и эмульсий). Ограниченно растворима в воде.

Фармагель А и Б - это продукты гидролиза желатина, которые различаются по изоэлектрическим точкам. Фармагель А имеет при рН - 7,0 ИЭТ, фармагель Б - при рН 4,7. Используются как стабилизаторы в гетерогенных системах. Недостатки желатина, желатозы и фармагелей: их растворы быстро подвергаются микробной порче.

Из белков применяется ещё лецитин как эмульгатор. Он содержится в яичном белке. Обладает хорошими эмульгирующими свойствами, может применяться для стабилизации лекарственных форм для инъекций.

Тема урока: Белки - природные полимеры. Состав и строение белков

Цели:

Обучающая: сформировать целостное представление о биополимерах –

белках на основе интеграции курсов химии и биологии. Познакомить учащихся с составом, строением, свойствами и функциями белков. Использовать опыты с белками для реализации межпредметных связей и для развития познавательного интереса учащихся.

Развивающая: развивать познавательный интерес к предметам, умение логически рассуждать, применять знания на практике.

Воспитывающая: развивать навыки совместной деятельности, формировать способность к самооценке.

Тип урока: изучение новых знаний.

ХОД УРОКА

Организационный момент.

Приветствие, отметка отсутствующих. Озвучивание темы урока и цели урока.

Актуализация внимания

Современная наука представляет процесс жизни следующим образом:

«Жизнь – это переплетение сложнейших химических процессов взаимодействия белков между собой и другими веществами».

«Жизнь – это способ существования белковых тел»

Ф.Энгельс


Сегодня мы рассмотрим белки с биологической и химической точек зрения.

Изучение нового материала.

1. Понятие о белках

Белок – это мышцы, соединительные ткани (сухожилия, связки, хрящи). Белковые молекулы включены в состав костной ткани. Из особых форм белка сотканы волосы, ногти, зубы, кожный покров. Из белковых молекул образуются отдельные очень важные гормоны, от которых зависит здоровье. Большинство ферментов также включают белковые фрагменты, а от ферментов зависит качество и интенсивность происходящих в организме физиологических и биохимических процессов.

Содержание белков в различных тканях человека неодинаково. Так, мышцы содержат до 80% белка, селезенка, кровь, легкие – 72%, кожа – 63%, печень – 57%, мозг – 15%, жировая ткань, костная и ткань зубов – 14–28%.

Белки – это высокомолекулярные природные полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью -CO-NH-. Каждый белок характеризуется специфической аминокислотной последовательностью и индивидуальной пространственной структурой. На долю белков приходится не менее 50% сухой массы органических соединений животной клетки.

2. Состав и строение белков.

В состав белковых веществ входят углерод, водород, кислород, азот, сера, фосфор.

Гемоглобин – С 3032 H 4816 О 872 N 780 S 8 Fe 4 .

Молекулярная масса белков колеблется от нескольких тысяч до нескольких миллионов. Mr белка яйца = 36 000, Mr белка мышц = 1 500 000.

Установить химический состав белковых молекул, их строение помогло изучение продуктов гидролиза белков.

В 1903 г. немецкий ученый Эмиль Герман Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. русским ученым Александр Яковлевич Данилевским.

3. Определение и классификация белков

Белки – это природные высокомолекулярные природные соединения (биополимеры), построенные из альфа-аминокислот, соединенных особой пептидной связью. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.

Число аминокислотных остатков, входящих в молекулы, различно: инсулин – 51, миоглобин – 140. Отсюда M r белка от 10 000 до нескольких миллионов.

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки).

4. Структура белков

Строго определенная последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой. Часто её называют линейной цепочкой. Такая структура характерна для ограниченного числа белков.

Исследования показали, что некоторые участки полипептидной цепи свернуты в виде спирали за счет водородных связей между группами – CO и – NH . Так образуется вторичная структура.

Спиралевидная полипептидная цепь должна быть каким-то образом свернута, уплотнена. В упакованном состоянии молекулы белков имеют эллипсоидную форму, которую часто называют клубком. Это третичная структура, образованная за счет гидрофобных. Сложноэфирных связей, у некоторых белков – S–S-связи (бисульфидные связи)

Высшей организацией белковых молекул является четвертичная структура– соединенные друг с другом макромолекулы белков, образующие комплекс.

Функции белков

Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков.

    Строительная (пластическая) – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы.

    Каталитическая – все клеточные катализаторы – белки (активные центры фермента).

    Двигательная – сократительные белки вызывают всякое движение.

    Транспортная – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям.

    Защитная – выработка белковых тел и антител для обезвреживания чужеродных веществ.

    Энергетическая – 1 г белка эквивалентен 17,6 кДж.

    Рецепторная – реакция на внешний раздражитель.

Формирование знаний:

Учащиеся отвечают на вопросы:

    Что такое белки?

    Сколько пространственных структур белковой молекулы вам известно?

    Какие функции выполняют белки?

Выставить и объявить оценки.

Домашнее задание : § 38 без химических свойств. Подготовить сообщение на тему «Можно ли полностью заменить белковую пищу на углеводную?», «Роль белков в жизни человека»

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, объясни-тельно-иллюстративный.

Цель:

Формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

Умения давать аргументированную оценку новой информации по биоло-гическим вопросам;

Воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные : о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

Развитие творческихспособностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

Личностные результаты обучения биологии :

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные : выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру-гих видов деятельности.

Технологии: Здоровьесбережения, проблем-ного, раз-вивающего обучения, групповой деятельно-сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи

Раскрыть ведущую роль белков в строении и жизнедеятельности клетки. ,

Объяснить строение макромолекул белка, име-ющих характер информационных биополимеров.

Углубить знания школьников о связи строения молекул веществ и их функции на примере бел-ков.

Основные положения

Первичная структура белка определяется геноти-пом.

Вторичная, третичная и четвертичная структурная организация белка зависит от первичной структу-ры.

Все биологические катализаторы — ферменты — имеют белковую природу.

4.Белковые молекулы обеспечивают иммуноло-гическую защиту организма от чужеродных ве-ществ.

Вопросы для обсуждения

Чем: определяется специфичность деятельности биологических катализаторов - ментов?

Каков механизм действия рецептор точной поверхности?

Биологические полимеры — белки

Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У жи-вотных на них приходится около 50% сухой массы клетки. В организме человека встречаются 5 млн типов белковых мо-, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и слож-ность строения они построены всего из 20 различных амино-кислот.

Аминокислоты имеют общий план строения, но отлича-ются друг от друга по строению радикала (К), которое весьма разнообразно. Например, у аминокислоты аланина радикал простой — СН3, радикал цистеина содержит серу — СН28Н, другие аминокислоты имеют более сложные радикалы.

Белки, выделенные из живых организмов животных, растений и микроорганизмов, включают несколько сотен, а иногда и тысяч комбинаций 20 основных аминокислот. Порядок их чередования самый разнообразный, что делает возможным существование огромного числа молекул белка, отличающихся друг от друга. Например, для белка, состоя-щего всего из 20 остатков аминокислот, теоретически воз-можно около 2 . 1018 вариантов различных белковых моле-кул, отличающихся чередованием аминокислот, а значит, и свойствами. Последовательность аминокислот в поли- пептидной цепи принято называть первичной структурой белка.

Однако молекула белка в виде цепи аминокислотных ос-татков, последовательно соединенных между собой пептид-ными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокис-лот белковая молекула принимает вид спирали (а-структу- ра) или складчатого слоя — «гармошки» (Р-структура). Это вторичная структура но и ее часто не-достаточно для приобретения характерной биологической активности.

Вторичном структура белка ((3-структура) — сверху. Третичная структура белка внизу:

— ионные взаимодействия,

— водородные связи.

— дисульфидные связи,

— гидрофобные взаимодействия,

— гидратируемые группы

Часто только молекула, обладающая третичной струк-турой, может выполнять роль катализатора или какую-либо другую. Третичная структура образуется благодаря взаимо-действию радикалов, в частности радикалов аминокисло-ты цистеина, которые содержат серу. Атомы серы двух ами-нокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или 8—8, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает фор-му шарика, или глобулы. Способ укладки полипептид- ных спиралей в глобуле называют третичной структурой белка. Многие белки, обладающие третичной структурой, мо-гут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требует-ся участие белков с еще более высоким уровнем организа-ции. Такую организацию называют четвертичной структу-рой. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого слож-ного белка — гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы — инсулин, вклю-чающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъеди-ниц и разнообразные небелковые компоненты. Тот же гемо-глобин содержит сложное гетероциклическое соединение, в состав которого входит железо.Свойства белка. Белки, как и другие неорганические и органические соединения, обладают рядом физико-хими-ческих свойств, обусловленных их структурной организа-цией. Это во многом обусловливает функциональную актив-ность каждой молекулы. Во-первых, белки — преимущественно водорастворимые молекулы.

Во-вторых, белковые молекулы несут большой поверхно-стный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран, ка-талитической активности ферментов и других функций.

В-третьих, белки термолабильны, т. е. проявляют свою активность в узких температурных рамках.

Действие повышенной температуры, а также обезвожи-вание, изменение рН и другие воздействия вызывают разру-шение структурной организации белков. Вначале разруша-ется самая слабая структура — четвертичная, затем третич-ная, вторичная и при более жестких условиях — первичная. Утрата белковой молекулой своей структурной организации называется денатурацией.

Если изменение условий среды не приводит к разруше-нию первичной структуры молекулы, то при восстанов-лении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренату рации. Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленнос-ти для приготовления некоторых медицинских препара-тов, например антибиотиков, вакцин, сывороток, фермен-тов; для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

Функции белков. Функции белков в клетке чрезвы-чайно многообразны. Одна из важнейших — пластическая (строительная) функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также вне-клеточных структур.

Исключительно важное значение имеет каталитическая роль белков. Все биологические катализаторы — фермен-ты — вещества белковой природы, они ускоряют химиче-ские реакции, протекающие в клетке, в десятки и сотни тысяч раз.

Взаимодействие фермента (Ф) с веществом (С), в результате чего образуются продукты реакции (П)

Остановимся на этой важнейшей функции несколько подробнее. Термин «катализ», который в биохимии встре-чается не менее часто, чем в химической промышленности, где широко используются катализаторы, буквально означа-ет «развязывание», «освобождение». Сущность каталитиче-ской реакции, несмотря на огромное разнообразие катали-заторов и типов реакций, в которых они принимают участие, в основных чертах сводится к тому, что исходные вещества образуют с катализатором промежуточные соединения. Они сравнительно быстро превращаются в конечные продукты реакции, а катализатор восстанавливается в первоначаль-ном виде. Ферменты — те же катализаторы. На них распро-страняются все законы катализа. Но ферменты имеют бел-ковую природу, и это сообщает им особые свойства. Что же общего у ферментов с известными из неорганической химии катализаторами, например платиной, оксидом ванадия и дру-гими неорганическими ускорителями реакций, а что их от-личает? Один и тот же неорганический катализатор может применяться во многих различных производствах. Ферменты активны только при физиологических зна-чениях кислотности раствора, т. е. при такой концен-трации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или сис-темы.

Регуляторная функция белков заключается в осуществ-лении ими контроля обменных процессов: инсулин, гормо-ны гипофиза и др.

Двигательная функция живых организмов обеспечива-ется специальными сократительными белками. Эти бел-ки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и движение жгути-ков у простейших, сокращение мышц у многоклеточных животных, движение листьев у растений и др.

Транспортная функция белков заключается в присое-динении химических элементов (например, кислорода к ге-моглобину) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела. Специ-альные транспортные белки перемещают РНК, синтезиро-ванные в клеточном ядре, в цитоплазму. Широко представ-лены транспортные белки в наружных мембранах клеток, они переносят различные вещества из окружающей среды в цитоплазму.

При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах — лейкоци-тах — образуются особые белки — антитела. Они связы-

ваются с несвойственными организму веществами (антиге-нами) по принципу соответствия пространственных конфи-гураций молекул (принцип — «ключ-замок»). В результате этого образуется безвредный, нетоксичный комплекс — «ан-тиген-антитело», который впоследствии фагоцитируется и переваривается другими формами лейкоцитов — это за-щитная функция.

Белки могут служить и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка до конечных продуктов вы-деляется 17,6 кДж энергии. Однако белки в таком качестве используются редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, участвуют в реакциях пластического обмена для построения новых белков.

Вопросы и задания для повторения

Какие органические вещества входят в со-став клетки?

Из каких простых органических соединений состоят белки?

Что такое пептиды?

Какова первичная структура белка?

Как образуется вторичная, третичная структуры белка?

Что такое денатурация белка?

Какие функции белков Вам известны?

Выберите правильный на ваш взгляд вариант ответа.

1. Кто открыл существование клеток?

Роберт Гук

Карл Линней

2. Чем заполнена клетка?

Цитоплазмой

Оболочкой

3. Как называется плотное тело расположенное в цитоплазме?

ядро

оболочка

органоиды

4. Какой из органоидов помогает клетке дышать?

лизосома

митохондрия

мембрана

5. Какой органоид придает зеленый цвет растениям?

лизосома

хлоропласт

митохондрия

6. Какого вещества больше всего в неорганических клетках?

вода

минеральные соли

7. Какие вещества составляют органическую клетку на 20%?

Нуклеиновые кислоты

Белки

8. Каким общим названием можно объединить следующие вещества: сахар, клетчатка, крахмал?

углеводы

9. Какое из веществ дает 30 % энергии клетке?

жиры

углеводы

10. Какого вещества больше всего в клетке?

Кислород

Аминокислоты, белки. Строение белков. Уровни организации белковой молекулы

Видеоурок по биологии " Белки "

Функции белков

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.

Хостинг презентаций

"Жизнь, есть способ существования белковых тел"

Ф. Энгельс.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями. В состав этих биополимеров входят мономеры 20 типов. Такими мономерами являются аминокислоты. Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот. Образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:

Аминокислоты соединяются друг с другом за счёт образования новой связи между атомами углерода и азота – пептидной (амидной):

Из двух аминокислот (АК) можно получить дипептид, из трёх – трипептид, из большего числа АК получают полипептиды (белки).

Функции белков

Функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником α - аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают α - аминокислоты. Многие α - аминокислоты синтезируются в организме, а некоторые необходимые для синтеза белков α - аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. К ним относятся валин, лейцин, треонин, метионин, триптофан и др. (см. таблицу). При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

· Каталитическая функция - осуществляется с помощью специфических белков - катализаторов (ферментов). При их участии увеличивается скорость различных реакций обмена веществ и энергии в организме.

Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов. Среди них такие, как, например пепсин, расщепляют белки в процессе пищеварения.

· Транспортная функция - связывание и доставка (транспорт) различных веществ от одного органа к другому.

Так, белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин. Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

· Защитная функция - связывание и обезвреживание веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Защитную функцию выполняют специфические белки (антитела - иммуноглобулины), образующиеся в организме (физическая, химическая и иммунная защита). Так, например, защитную функцию выполняет белок плазмы крови фибриноген, участвуя в свертывании крови и тем самым уменьшая кровопотери.

· Сократительная функция (актин, миозин) – в результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

· Структурная функция - белки составляют основу строения клетки. Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей и кожи, эластин сосудистой стенки, кератин шерсти, фиброин шелка и др.) выполняют почти исключительно структурную функцию.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

· Гормональная (регуляторная) функция - способность передавать сигналы между тканями, клетками или организмами.

Выполняют белки-регуляторы обмена веществ. Они относятся к гормонам, которые образуются в железах внутренней секреции, некоторых органах и тканях организма.

· Питательная функция - осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост и развитие плода, а белки молока служат источником питания для новорожденного.

Разнообразные функции белков определяются α-аминокислотным составом и строением их высокоорганизованных макромолекул.

Физические свойства белков

Белки – очень длинные молекулы, которые состоят из звеньев аминокислот, сцепленных пептидными связями. Это – природные полимеры, молекулярная масса белков колеблется от нескольких тысяч до нескольких десятков миллионов. Например, альбумин молока имеет молекулярную массу 17400, фибриноген крови – 400.000, белки вирусов – 50.000.000. Каждый пептид и белок обладают строго определенным составом и последовательностью аминокислотных остатков в цепи, это и определяет их уникальную биологическую специфичность. Количество белков характеризует степень сложности организма (кишечная палочка – 3000, а в человеческом организме более 5 млн. белков).

Первый белок, с которым мы знакомимся в своей жизни, это белок куриного яйца альбумин - хорошо растворим в воде, при нагревании свертывается (когда мы жарим яичницу), а при долгом хранении в тепле разрушается, яйцо протухает. Но белок спрятан не только под яичной скорлупой. Волосы, ногти, когти, шерсть, перья, копыта, наружный слой кожи - все они почти целиком состоят из другого белка, кератина. Кератин не растворяется в воде, не свертывается, не разрушается в земле: рога древних животных сохраняются в ней так же хорошо, как и кости. А белок пепсин, содержащийся в желудочном соке, способен разрушать другие белки, это процесс пищеварения. Белок инрерферон применяется при лечении насморка и гриппа, т.к. убивает вызывающие эти болезни вирусы. А белок змеиного яда способен убивать человека.

Классификация белков

С точки зрения пищевой ценности белков, определяемой их аминокислотным составом и содержанием так называемых незаменимых аминокислот, белки подразделяются на полноценные и неполноценные . К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

В состав многих белков помимо пептидных цепей входят и неаминокислотные фрагменты, по этому критерию белки делят на две большие группы - простые и сложные белки (протеиды). Простые белки содержат только аминокислотные цепи, сложные белки содержат также неаминокислотные фрагменты (Например, гемоглобин содержит железо ).

По общему типу строения белки можно разбить на три группы:

1. Фибриллярные белки - нерастворимы в воде, образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Белки, имеющие вытянутую нитевидную структуру. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.

Большинство фибриллярных белков не растворяются в воде. К фибриллярным белкам относят например, α-кератины (на их долю приходится почти весь сухой вес волос, белки шерсти, рогов, копыт, ногтей, чешуи, перьев), коллаген - белок сухожилий и хрящей, фиброин - белок шёлка).

2. Глобулярные белки - водорастворимы, общая форма молекулы более или менее сферическая. Среди глобулярных и фибриллярных белков выделяют подгруппы. К глобулярным белкам относятся ферменты, иммуноглобулины, некоторые гормоны белковой природы (например, инсулин) а также другие белки, выполняющие транспортные, регуляторные и вспомогательные функции.

3. Мембранные белки - имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Мембранные белки выполняют функцию рецепторов, то есть осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортеры специфичны, каждый из них пропускает через мембрану только определённые молекулы или определённый тип сигнала.

Белки – неотъемлемая часть пищи животных и человека. Живой организм отличается от неживого в первую очередь наличием белков. Для живых организмов характерно огромное разнообразие белковых молекул и их высокая упорядоченность, что и определяет высокую организацию живого организма, а также способность двигаться, сокращаться, воспроизводиться, способность к обмену веществ и к многим физиологическим процессам.

Строение белков

Фишер Эмиль Герман, немецкий химик-органик и биохимик. В 1899 начал работы по химии белков. Используя созданный им в 1901 эфирный метод анализа аминокислот, Ф. впервые осуществил качественные и количественные определения продуктов расщепления белков, открыл валин, пролин (1901) и оксипролин (1902), экспериментально доказал, что аминокислотные остатки связываются между собой пептидной связью; в 1907 синтезировал 18-членный полипептид. Ф. показал сходство синтетических полинептидов и пептидов, полученных в результате гидролиза белков. Ф. занимался также изучением дубильных веществ. Ф. создал школу химиков-органиков. Иностранный член-корреспондент Петербургской АН (1899). Нобелевская премия (1902).

Белки - высокомолекулярные соединения, гетерополимеры, мономерами которых являются аминокислоты. В организме человека содержится более 5 миллионов типов белковых молекул. Разнообразие белков обеспечивается комбинациями 20 аминокислот – основных аминокислот. Все аминокислоты делят на заменимые и незаменимые.

Заменимые синтезируются в организме, незаменимые- попадают в организм с пищей.

Белки образуются из аминокислот, которые соединяются между собой пептидной связью. В состав аминокислот входят карбоксильные группы (-СООН) с кислотными свойствами и аминогруппы (-NH2) с щелочными свойствами, поэтому они являются амфотерными соединениями. Пептидная связь образуется между карбоксильной группой одной аминокислоты с аминогруппой другой.

При взаимодействии 2х аминокислот образуется дипептид. При образовании пептидной связи отцепляется молекула воды.

Существует 4 уровня организации белковой молекулы: первичная, вторичная, третичная, четвертичная.

Первичная структура белков является простейшей. Имеет вид полипептидной цепи, где аминокислоты связаны пептидной связью. Определяется качественным и количественным составом аминокислот и их последовательностью. Эта последовательность определяется наследственной программой, поэтому белки каждого организма строго специфичны.

Водородные связи между пептидными группами- основа вторичной структуры белков. Основные виды вторичных структур.

Вторичная структура белка возникает в результате образования водородных связей между атомами водорода NH-группы одного завитка спирали и кислорода СО-группы другого завитка и направлены вдоль спирали или между параллельными складками молекулы белка. Несмотря на то, что водородные связи малопрочные, их значительное количество в комплексе обеспечивает довольно прочную структуру.

Белковая молекула частично скручена в а-спирали (пиши греческую альфа) или образует в-складчатую (пиши греч. Бета) структуру.

Белки кератина образуют а-спираль (альфа). Они входят в состав копыт, рогов, волос, перьев, ногтей, когтей.

Белки, входящие в состав шелка имеют в-складчатую (бета) структуру. Извне спирали остаются аминокислотные радикалы (на рис. R1. R2, R3…)

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека